(CS483 Design and Analysis of Algorithms
Lecture 6-8 Divide and Conquer Algorithms

Instructor: Fei Li
lifei@cs.gmu.edu with subject: CS483

Office hours: STII, Room 443, Friday 4:00pm - 6:00pm or by
appointments

Course web-site:
http://www.cs.gmu.edu/~1lifei/teaching/cs483_£all08/
Figures unclaimed are from books “Algorithms” and “Introduction
to Algorithms”



Divide and Conquer Algorithms

problem | of size n

@ Breaking the problem into
subproblems of the same
type

@ Recursively solving these
subproblems

Q Approprlately combining soliition 6 solution to
their answers subproblem 1 subproblem 2

subproblem 2
of size n/2

subproblem 1
of size n/2

solution to
the original problem




Divide-and-Conquer Recurrence

Size n




Divide-and-Conquer Recurrence

@ Divide the problems into b smaller instances; a of them need to be
solved. f(n) is the time spent on dividing and merging
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Divide-and-Conquer Recurrence

@ Divide the problems into b smaller instances; a of them need to be
solved. f(n) is the time spent on dividing and merging

T(n)=a-T(n/b)+ f(n)
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Divide-and-Conquer Recurrence

@ Divide the problems into b smaller instances; a of them need to be
solved. f(n) is the time spent on dividing and merging

T(n)=a-T(n/b)+ f(n)

@ @ The iteration method
Expand (iterate) the recurrence and express it as a summation of terms
depending only on n and the initial conditions
@ The substitution method

@ Guess the form of the solution
@ Use mathematical induction to find the constants

© Master Theorem (T(n) = a- T(n/b) + f(n))

6
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Iteration Method — Examples

n!

@ Tower of Hanoi

T(n)=T(h-1)+1

http://en.wikipedia.org/wiki/Tower_of_Hanoi

T(n)=2-T(h—1)+1

faQe
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lteration — Example

@ nl (T(n)=T(n—-1)+1)

T(n) = T(h—-1)+1
(Tlh—2)+1)+1
= T(n—2)+2

= Th—=0)+i

T(O0)+n=n

@ Tower of Hanoi (T(n)=2-T(n—1)+1)7?
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lteration — Example
Tower of Hanoi (T(n) =2-T(n—1)+1)

T(n)

2. T(h—1)+1
= 2.2 T(n=2)+1)+1
= 22.T(n—2)+2+1

= 2. T(n—N+2"1+... 41

= 2" T(@) 42t 2t

n—2
= 2" T+ ) 2
i=0

— 2n71+2n7171
= 2"-1

+1
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Substitution Method — Count Number of Bits

@ Count number of bits (T(n) = T(|n/2]) + 1)
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Substitution Method — Count Number of Bits

@ Count number of bits (T(n) = T(|n/2]) + 1)

@ Guess T(n) < log n.

T(n)

IA IA AN

T(ln/2)) +1
log([n/2]) +1
log(n/2) +1
(logn—log2)+1
logn—1+4+1

log n

11/49



Substitution Method — Tower of Hanoi

@ Tower of Hanoi (T(n)=2-T(n—1)+1)
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Substitution Method — Tower of Hanoi

@ Tower of Hanoi (T(n)=2-T(n—1)+1)
@ Guess T(n) <27

T(n) 2. T(n—1)+1
2.2"141

2" +1, wrong!

INIA I
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Substitution Method — Tower of Hanoi

@ Tower of Hanoi (T(n)=2-T(n—1)+1)
@ Guess T(n) <27

T(n) = 2-T(n—-1)+1
< 2.2"141
< 2"+4+1, wrong!
@ Guess T(n)<2"—1
T(n) = 2-T(h—1)+1
< 2.1 +1
= 2"-2+1

2" —1,  correct!
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Substitution Method — Extension F,

@ Fibonacci Numbers (Fo =0, F; = 1, Fy = Fp_1 + Fp_2)
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Substitution Method — Extension F,

@ Fibonacci Numbers (Fo =0, F; = 1, Fy = Fp_1 + Fp_2)
@ FhLo< Fh1<Fp,Vn>1
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Substitution Method — Extension F,

@ Fibonacci Numbers (Fo =0, F; = 1, Fy = Fp_1 + Fp_2)
@ FhLo< Fh1<Fp,Vn>1

@ Assume 2"l < F, < 27
Guess Fp=c-¢", 1< <2
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Substitution Method — Extension F,

@ Fibonacci Numbers (Fo =0, F; = 1, Fy = Fp_1 + Fp_2)
@ FhLo< Fh1<Fp,Vn>1

@ Assume 2"l < F, < 27
Guess Fp=c-¢", 1< <2

(]
C.¢n — C.¢n71+c.¢n72
¢ = o+1
1++5
¢ = 2\[
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Substitution Method — Extension F,

Fibonacci Numbers (Fo = 0,F1 = 1,F, = Fp—1 + Fp_2)
Fho < Fho1 < Fp,¥n2>1

Assume 2""1 < F, < 2"
Guess Fp=c-¢", 1< <2
C'¢n — C.¢n71+c.¢n72
¢ = ¢+1
1+5
¢ = >
General solution: F, = c; - ¢ + 2 - ¢
Fi=0, F> =1
F_ L (1+ﬁ)n 1 (17\/5),7
"T VB2 VB2
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Master Theorem

T(n)=a-T(n/b)+ f(n)

Figure 2.3 Each problem of size n is divided into a subproblems of size n/b.

Size n Branching factor a

Size n/b

Size n/b?
Depth
logy n

o NN DN

Width a'8s » = plogs @
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Master Theorem

T(n)=a-T(n/b)+f(n), a>1b>1 be constants.

We interpret n/b to mean either [n/b] or |n/b].
If f(n) € ©(n?), where d > 0, then

o(n9) ifa < b4
T(n)={ ©(nlogn) ifa=b?
O(n'°es 2) if a > b4

O(f(n)) if f(n) = Q(n'°853%€) and if a- f(n/b) < c - f(n)

for some constant ¢ < 1 and all sufficiently large n
O(n'°8s2 - log n)  if f(n) = ©(n'°8»?)
CIGE) if f(n) = O(n'°8>2=¢€) for some constant ¢ > 0

T(n) =

Q@ T(n=4-T(n/2)+n=2
Q T(n)=4-T(n/2) +n*=2

Q T(n=4-T(n/2)+n*=2
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Chapter 2 of DPV — Divide and Conquer Algorithms

@ Multiplication

@ Mergesort

© Medians

@ Matrix Multiplication

@ The Fast Fourier Transform

22/49



An Unanswered Question

Basic Arithmetic — Multiplication

1. Is it correct?

2. Running time?

x = 1101 and y = 1011. The multiplication would proceed thus

1101 OmM+0@+---+0(n),
x 1 0 1 1 i
n— 1 times
1 1 0 1 (101 times 1)
1 1 0 1 (1101 times 1, shifted once)
00 0 0 (1101 times 0, shifted twice) 3 Can we dO better?
+ 1 1 0 1 (1101 times 1, shifted thrice)
1 0 0 0 1 1 1 1 (binaryl43) > DIVIde-BHd-COHqUGFi

~ O(n**9) (in Chapter 2)
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Multiplication

(a+b)-(c+d)
= a-ct+a-d+b-c+b-d

Carl Friedrich Gauss
1777-1855

(@a+b-i)-(c+d-i)
c—b-d+(a-d+b-c)-i
c—b-d

+ [(@+b)-(c+d)—a-c—b-d]-i

a
a
are n/2 bits long:

x=

:
y=[ =2+

For instance, if x = 10110110, (the subscript 2 means “binary”) then x, = 1011,,
Xz = 0110, and x = 1011, x 2* +0110,. The product of x and y can then be re-

written as T(n) = 3. T(n/2) =+ O(n)

Xy = %%+ )7+ ) = 2%y + 27 (e + X)) + Xed = O(nl°g2 3)
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Mergesort
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Mergesort

@ Given an array of n numbers, sort the elements in non-decreasing order
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Mergesort

@ Given an array of n numbers, sort the elements in non-decreasing order

@ function mergesort(A[n])

if (n = 1)
return A;

else
B = AL ... [215
C=A[2]+1 .., n

mergesort (B) ;
mergesort (A) ;
merge(B, C, A);
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Mergesort

@ Given an array of n numbers, sort the elements in non-decreasing order

@ function mergesort(A[n])

if (n = 1)
return A;

else
B = AL ... [215
C=A[2]+1 .., n

mergesort (B) ;
mergesort (A) ;
merge(B, C, A);

@ Is this algorithm complete?
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Mergesort

Merge two sorted arrays, B and C and put the result in A

function merge(B[1, .. pl, C[1, .. ql, A[1,

for (k =1, 2, .. p+ 1)
if (B[i] < C[jD)
Alk] = B[il;
i=1+1;
else

24, 11, 91, 10, 22, 32, 22, 3, 7, 99

T(n)=2-T(n/2)+ O(n) = O(n - logn)

.p+aql)
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Medians

The median is a single representative value of a list of numbers: half of them are
larger and half of them are smaller; less sensitive to outliers

S5:={2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1}
Selection problem:

@ Input: A list of number S; an integer k.
@ Output: The k-th smallest element of S.

selection(S,8) =7
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Medians

The median is a single representative value of a list of numbers: half of them are
larger and half of them are smaller; less sensitive to outliers

S:=1{2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1}

Let us split at v=>5

SL = {27 4, 1}
S, = {57 5}
Sk = {36, 21, 8, 13, 11, 20}

selection(S, 8) = selection(Sg, 3).

selection(Sy, k)
selection(S, k) = v
selection(Sg, k — |S.| — |Sv])

if kK <|S;]
if |S1] < k < |S1|+1Sy|
if k> [S.]+1|Sv|.
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Medians

The median is a single representative value of a list of numbers: half of them are
larger and half of them are smaller; less sensitive to outliers

S:=1{2, 36, 5, 21, 8, 13, 11, 20, 5, 4, 1}

selection(S, 8) = selection(Sg, 3).

selection(Sy, k) if kK <|S.]
selection(S, k) = v if |S| < k< |S.]+|Sv]
selection(Sg, k — S| — |Sv])  if k> |S.] +|Sv].

If |SL| = |Sr| (i.e., pick up v to be the median),

T(n) = T(n/2) + O(n)

Pick up v randomly from S
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Medians

v is good if it lies within 25% and 75% of the array it is chosen

Lemma

On average a fair coin needs to be tossed two times before a “heads” is seen

Remark

v has 50% chance of being in-between [25%, 75%]. We need to pick v twice to make
it good

Theorem

T(n) < T((3/4)-n)+ O(n) = O(n)
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Matrix Multiplication

The product of two n x n matrices X and Y is a third n x n matrix Z = XY, with
(i, j)th entry

n
Zy =) XuYy.
k=1

To make it more visual, Z; is the dot product of the ith row of X with the jth
column of Y:

(3:7)
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Matrix Multiplication

@ Matrix Multiplication (by definition):
Gu Go | _| Au Aw Bii B
C1 Cx Axn  Ax By B

A - Bu+Aw-Ba A B+ A Ba
A1 Bii +Axn - B A Bio+ Az B
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Matrix Multiplication

@ Matrix Multiplication (by definition):
Gu Go | _| Au Aw Bii B
C1 Cx Axn  Ax By B

A - Bu+Aw-Ba A B+ A Ba
A1 Bii +Axn - B A Bio+ Az B

2]

T(n)=8- T(g) +0(n) = O(n®)

Time complexity of the brute-force algorithm is O(n%)
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Matrix Multiplication

@ Strassen’s Matrix Multiplication:

|:C11 C12:|:|:A11 A12:||:Bu 312}

C1 Cx Axn  Ax B Bx
_ my + my — ms + my m3 + ms
mo -+ my my + m3 — m2 + me

my = (A1 + Ax) - (B + Ba)
my = (Ao + A22) - B
mz = A1 - (B2 — B)
my = Az - (Ba1 — Bi1)
ms = (A1 + A12) - B
me = (Az1 — A1) - (B + Bi2)
my = (A2 — Ax) - (Bo1 + Ba2)
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Matrix Multiplication

@ Strassen’s Matrix Multiplication:

{ G G ] _ { An

Can Az
_ my + my — ms + my
my + my

my = (Ao + A22) - B
mz = A1 - (B2 — B)
my = Az - (Ba1 — Bi1)
ms = (A1 + A12) - B

my = (A1 + A») - (Bi1 + Bx)

me = (A1 — A1) - (Bi1 + Bi2)
m7 = (A2 — A») - (B + B»)

A1 Bii B
Ax B Bx

m3 + ms
my + m3 — m2 + me

T(n) =7 T(3)+ O(n) = O(log n27) ~ O(n**)

Time complexity of the brute-force algorithm is O(n®)
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Fourier Transform

Fourier Series: Any periodic function can be expressed as the sum of a series of sines
and cosines (of varying amplitudes)

Square Wave Sawtooth Wave
Frequencies: f Frequencies: f + 3f Freauencies: f Freauencies: f + 2f
Freauencies: f + 3f + 5f Frequencies: f + 3f + 5f + ... + 15f Frequencies:if-+ 2+ 3 Frequencies: f +2f + 3f + ... + 8f

8y W Wy 4

http://www.cs.ucl.ac.uk/teaching/GZ05/03-fourier.pdf
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Fourier Transform

A function f(x) can be expressed as a series of sines and cosines. Fourier Series can
be generalized to complex numbers, and further generalized to derive the Fourier

Transform
1 oo oo
flx) = —+ ap - cos(n-x)+ by, - sin(n - x
(x) 0 ; (n-x) ; (n-x)
a = 1 /ﬂ f(x)dx
o = = -
1 ™
an, = —- f(x) - cos(n - x)dx
a —T
1 " .
b, = 7-/ f(x) - sin(n - x)dx
™ —1T
e¥’ = cos(x)+i-sin(x)
F(k) = / f(x) e 2™ dk
flk) = / F(x) - e*™ " dk
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Discrete Fourier Transform

@ Fourier Transform maps a time series (e.g., audio samples) into the series of
frequencies (their amplitudes and phases) that composed the time series

@ Inverse Fourier Transform maps the series of frequencies (their amplitudes and
phases) back into the corresponding time series

© The two functions are inverses of each other

N—-1
F, = f - ef2<7r>i-n~k/N

k=0

1 N—1
f - . F _672-7'r-i<k-n/N
k N ;} n
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Fast Fourier Transform

@ Polynomial
n—1 )
A(X)Zzai-X’ —aytay-x+a-x>+...+ap_1-x""t
i=0
Fox any distinct points xg, X1, - .., Xn—1, We can specify A(x) by (1.)

ap, at,...,an—1 or (2.) A(x0), A(x1), ..., A(xn—1)
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Fast Fourier Transform

@ Polynomial
n—1 )
A(X)Zzai-X’ —aytay-x+a-x>+...+ap_1-x""t
i=0
Fox any distinct points xg, X1, - .., Xn—1, We can specify A(x) by (1.)

ap, at,...,an—1 or (2.) A(x0), A(x1), ..., A(xn—1)
@ Horner’s Rule

Ax)=ao +x- (a1 +x-(a2+... +x-(an—2+x-ap-1)...))
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Fast Fourier Transform

@ Polynomial
n—1 )
A(X):ZQI'X’ —aytay-x+a-x>+...+ap_1-x""t
i=0
Fox any distinct points xg, X1, - .., Xn—1, We can specify A(x) by (1.)

a0,a1,-.-,an—1 or (2.) A(x0), A(x1), ..., A(Xn—1)
@ Horner's Rule

Ax)=a+x-(a1+x-(a2+ ...+ x-(an—2+x-an—1)...))

© Given coefficients (ao, a1, - - .,an—1) and (bo, b1, ..., by—1), compute A(x) - B(x)
Horner’s Rule does not work since

C(x) := A(x) - B(x) = Z ¢i-x', where ¢; = Z aj-bi_j
=0
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Fourier Transform

Theorem

For any set {(x0,Y0), (x1,¥1); - - - s (Xn—1,¥n—1)} of n point-value pair such that all the
xk values are distinct, there is a unique polynomial A(x) of degree-bound n such that
Yk = A(xk) fork=0,1,...,n—1

Proof.

-~
O

Remark

C(x) = A(x) - B(x) = Vz,C(z) = A(z) - B(2)

C(x) has degree 2 - n — 2, it is determined by its values at any 2 - n — 1 points. The
value at any given point z is A(z) - B(z). Polynomial multiplication takes linear time
in the value representation
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Oy Qpp <20 B,y Ordinary multiplication \} Coefficient
by byy e by Time O(n%) representations
|
Evaluation | Interpolation
Time O(n lg n) | Time O(n lg 1)
‘II
A (COE"). B(wgu] C(w;]")
f’l(ﬂﬁl"). B(e)) | Pointwise multiplication Cf"-d_al,,) k Point-value
Time O(n) - { representations
Alwlt Y, Ba2s-h co§ ).|

Figure 32.1 A graphical outline of an efficient polynomial-multiplication process.
Representations on the top are in coefficient form. while those on the bottom are
in point-value form. The arrows from lef1 to right correspond to the multiplication
operation. The ruz, terms are complex (2x)th roots of unity.
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Fast Fourier Transform

@ A number w is a primitive n-th root of unity, for n > 1, if
o w =1
@ The numbers 1,w,w?,...,w
2.mw-i/n

n=1 are all distinct

© The complex number e is a primitive n-th root of unity, where i = /—1

e Inverse Property
If w is a primitive root of unity, w =1
e Cancelation Property
For non-zero —n < k < n, Zf;ol wki =0
o Reduction Property
If w is a primitive 2n-th root of unity, then w? is a primitive
n-th root of unity
o Reflective Property
If nis even, then w2 = —1
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Fast Fourier Transform

Use Divide-and-Conquer Approach to Calculate C(x) = A(x) - B(x)
First step: calculate A(w?),..., A(w""1)

Figure 2.7 The fast Fourier transform (polynomial formulation)

function FFT(A w)

Input: Coefficient representation of a polynomial A(x)
of degree <n—1, where n is a power of 2
w, an nth root of unity

Output: Value representation A(w'),..., Alo™!)

if w=1: return A(1)
express A(x) in the form A.(x?) 4+ xA,(x?)
call FFT(A.. »*) to evaluate A, at even powers of w
call FFT(A,. «?) to evaluate A, at even powers of o
for j=0 to n—1:

compute A(w') = As(w?) + o’ Ay(w?)

return A", .... Alo™1)
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Fast Fourier Transform — Implementation

Figure 2.10 The fast Fourier transform circuit.
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