CS483 Design and Analysis of Algorithms

Lecture 9 Decompositions of Graphs

Instructor: Fei Li

lifei@cs.gmu.edu with subject: CS483

Office hours: STII, Room 443, Friday 4:00pm - 6:00pm or by appointments

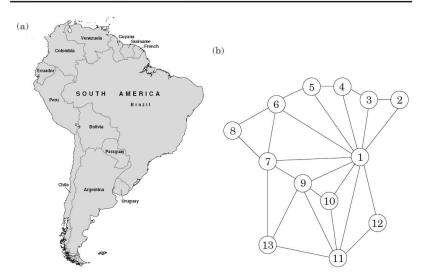
Course web-site:

Decomposition of Graphs

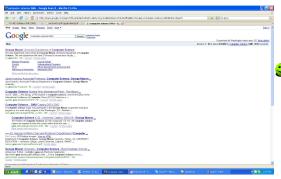
- Why Graphs?
- 2 Depth-First Search
- Topological Sorting
- Strongly Connected Components (SCC)

Why Graphs?

Figure 3.1 (a) A map and (b) its graph.



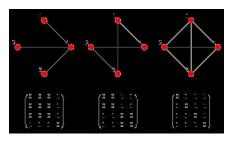
Why Graphs?



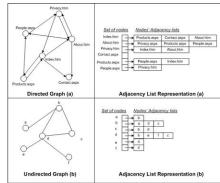
Graphs

- ① A graph G = (V, E) is specified by a set of vertices (nodes) V and edges E between selected pairs of vertices
- 2 Edges are symmetric → undirected graph
- **3** Directions over edges → *directed graph*
- 4 E.g., political maps, exam conflicts, World Wide Web, etc.

Graph Representation



http://msdn2.microsoft.com/en-us/library/



Graph Traversal

Exploring a graph is rather like navigating a maze Which parts of the graph are reachable from a given vertex?

Depth-First Search

```
Input: Graph G = (V, E), vertex s \in V
Output: All vertices u reachable from s

function DFS(G)

for all v \in V
    visited(v) = false;

for all v \in V
    if not visited(v)
        explore(v);

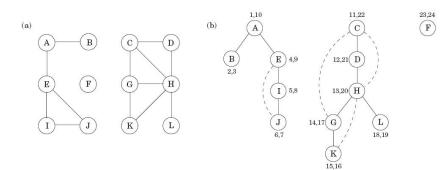
function explore(G, v)

visited(v) = true;

for each edge (v, u) \in E
    if not visited(u)
        explore(u);
```

Depth-First Search

Figure 3.6 (a) A 12-node graph. (b) DFS search forest.

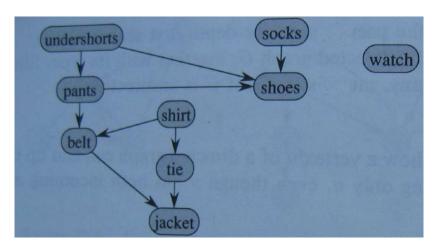


Analysis of DFS

Theorem All nodes reachable from s can be found via DFS Proof. Theorem The overall running time of DFS is O(|V| + |E|)Proof. 1 The time initializing each vertex is O(|V|)2 Each edge $(u, v) \in E$ is examined twice, once exploring u and once exploring v. Therefore takes O(|E|) time

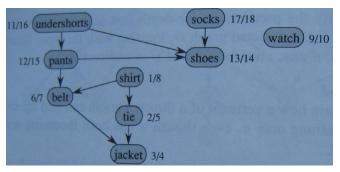
Topological Sorting — An Application of DFS

Input: a directed acyclic graph (DAG) G **output**: A linear ordering of all its vertices, such that if G contains an edge (u, v), then, u appears before v in the ordering



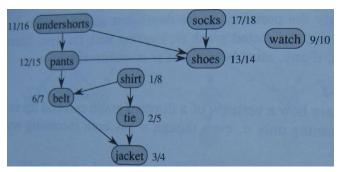
Topological Sorting — An Application of DFS

Question of the state of the



Topological Sorting — An Application of DFS

1 Run DFS to get (startingtime, finishingtime)



2 List nodes in reverse order of their finishing time

Announcements

- Assignment 4 is due on this Wednesday.
- There is a review class on October 8th (this Wednesday): Chapters 0 4.3 of DPV, Chapter 5 of CLSR.
 Covers: Solutions of assignment 4 and a few selected problems with their solutions
 - Later submission of assignment 4 will not be accepted.
- 3 Next Monday (October 13th) is a holiday. (Monday class meets Tuesday).
- Midterm is scheduled on October 14th (next TUESDAY), 1:30pm 2:45pm, Innovation Hall 136.
- 5 The class on October 15th (next Wednesday) is canceled.

Strongly Connected Components in Directed Graphs

Definition

Two nodes u and v of a directed graph are **connected** if there is a path from u to v and a path from v to u.

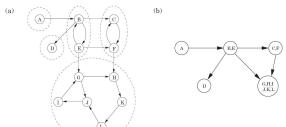
Remark

Connectivity in undirected graphs is straightforward.

Remark

Every directed graph is a directed acyclic graph (DAG) of its strongly connected components (disjoint sets of V)

Figure 3.9 (a) A directed graph and its strongly connected components. (b) The meta-graph.



How to Find SCC?

Remark

If the explore subroutine starts at node u, then it will terminate precisely when all nodes reachable from u have been visited. If we call explore on a node that lies somewhere in a sink strongly connected component, then we will retrieve exactly that component

What can we learn?

- How do we find a node that we know for sure lies in a sink strongly connected component?
- 2 How do we continue once this first component has been discovered?

Remark

The node that receives the highest ending time (i.e., post number) in a depth-first search must lie in a source strongly connected component.

How to Find SCC?

Remark

If C and C' are strongly connected components, and there is an edge from a node in C to a node in C', the the highest post number in C is larger than the highest post number in C'

What can we learn?

Remark

The strongly connected components can be linearized by arranging them in decreasing order of their highest post numbers.

Remark

The reverse graph G^R , the same as G but with all edges reversed, has the same SCC as G.

Strongly Connected Components

- \bigcirc Run depth-first search on G^R
- Run the undirected connected components algorithm on G, and during the depth-first search, process the vertices in decreasing order of their finishing time from step 1

