CS483 Design and Analysis of Algorithms Lectures 10-11 Paths in Graphs

Instructor: Fei Li

lifei@cs.gmu.edu with subject: CS483

Office hours: STII, Room 443, Friday 4:00pm - 6:00pm or by appointments

Course web-site:

 $\label{linear_http://www.cs.gmu.edu/} $$ \begin{array}{ll} \text{http://www.cs.gmu.edu/} \sim & \text{lifei/teaching/cs483_fall08/} \\ \text{Figures unclaimed are from books "Algorithms" and "Introduction to Algorithms"} \\ & & \text{linear_http://www.cs.gmu.edu/} \sim & \text{linear_http://www.edu/} \sim & \text{linear_http://www.cs.gmu.edu/} \sim & \text{linear_http://www.edu/} \sim & \text{linear_$

Paths in Graphs

- Breath-First Search
- ② Dijkstra's Algorithm
- Shortest Paths in the Presence of Negative Edges
- Shortest Paths in Directed Acyclic Graphs

Depth-First Search

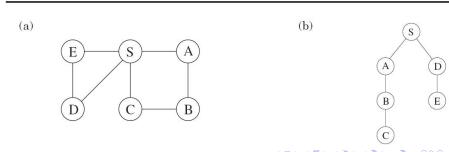
Remark

Depth-first search readily identifies all the vertices of a graph that can be reached from a designated starting point. It also finds explicit paths to these vertices, summarized in its search tree. However, these paths might not be the most economical ones possible.

Problem

Is there a way to find the shortest path in graphs?

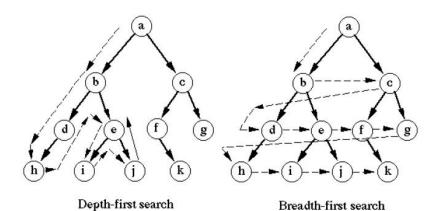
Figure 4.1 (a) A simple graph and (b) its depth-first search tree.



Distances

Definition

The distance between two nodes is the length of the shortest path between them



Breath-First Search

- 1 Initially, the queue Q consists only of s, the one node at distance 0.
- 2 For each subsequent distance $d=1,2,\ldots$, there is a point in time at which Q contains all the nodes at distance d and nothing else.
- As these nodes are processed (ejected off the front of the queue), their as-yet-unseen neighbors are injected into the end of the queue.

Proof.

For each d = 0, 1, 2, ..., there is a moment at which

- **1** all nodes at distance $\leq d$ from s have their distances correctly set;
- 2 all other nodes have their distances set to ∞ ; and
- \odot the queue contains exactly the nodes at distance d.

Theorem

The overall running time of this algorithm is O(|V| + |E|).

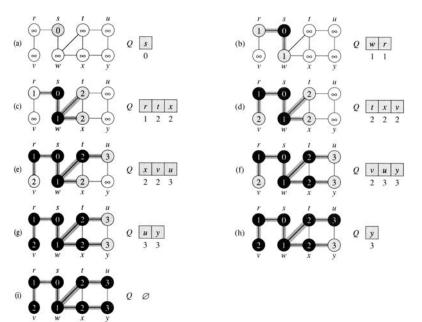
Each vertex is put on the queue exactly once, when it is first encountered, so there are $2 \cdot |V|$ queue operations.

Over the course of execution, the innermost loop looks at each edge once (in directed graph) or twice (in undirected graphs), and therefore takes O(|E|) time.

Breath-First Search

```
procedure bfs(G,s)
Input: Graph G = (V, E), directed or undirected; vertex s \in V
Output: For all vertices u reachable from s, dist(u) is set
        to the distance from s to u.
for all n \in V:
   dist(u) = \infty
dist(s) = 0
Q = [s] (queue containing just s)
while Q is not empty:
   u = eject(Q)
   for all edges (u, v) \in E:
       if dist(v) = \infty:
          inject(Q, v)
          dist(v) = dist(u) + 1
```

Breath-First Search



Analysis of BFS

Theorem

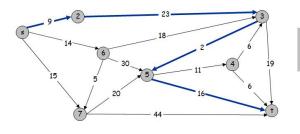
BFS runs in O(m+n) time if the graph is given by its adjacency representation, n is the number of nodes and m is the number of edges

Proof.

When we consider node u, there are deg(u) incident edges (u, v). Thus, the total time processing edges is $\sum_{u \in V} deg(u) = 2 \cdot m$

Dijkstra's Algorithm

Annotate every edge $e \in E$ with a length l_e . If e = (u,v), let $l_e = l(u,v) = l_{uv}$ Input: Graph G = (V, E) whose edge lengths l_e are positive integers Output: The shortest path from s to t



Cost of path s-2-3-5-t = 9 + 23 + 2 + 16 = 48.

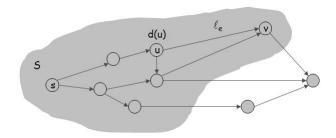
from Wayne's slides on "Algorithm Design"

Dijkstra's Algorithm

- ① Maintain a set of explored nodes S for which we have determined the shortest path distance d(u) from s to u
- 2 Initialize $S = \{s\}, d(s) = 0$
- 3 Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e=(u,v),u\in S} d(u) + l_e$$

4 Add v to S, and set $d(v) = \pi(v)$

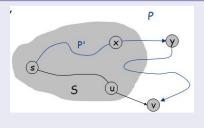


Dijkstra's Algorithm

Theorem

Dijkstra's algorithm finds the shortest path from s to any node v: d(v) is the length of the shortest $s \leadsto v$ path

Proof.



from Wayne's slides on "Algorithm Design"

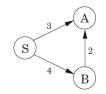
Theorem

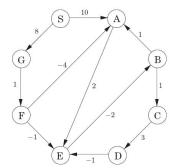
The overall running time of Dijkstra's algorithm is $O((|V| + |E|) \cdot \log |V|)$

Shortest Paths in the Presence of Negative Edges

Simply update all the edges, |V| - 1 times

Dijkstra's algorithm will not work if there are negative edges





Node	Iteration							
	0	1	2	3	4	5	6	7
S	0	0	0	0	0	0	0	C
A	∞	10	10	5	5	5	5	
В	∞	∞	∞	10	6	5	5	
\mathbf{C}	∞	∞	∞	∞	11	7	6	6
D	∞	∞	∞	∞	∞	14	10	Q
\mathbf{E}	∞	∞	12	8	7	7	7	7
\mathbf{F}	∞	∞	9	9	9	9	9	6
G	∞	8	8	8	8	8	8	8

Shortest Paths in Directed Acyclic Graphs

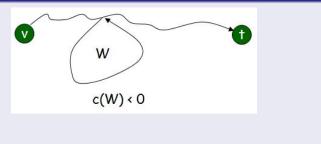
Definition

OPT(i, v) :=length of shortest $v \leadsto t$ path P using at most i edges

Lemma

If OPT(n, v) = OPT(n - 1, v) for all v, then no negative cycles

Proof.

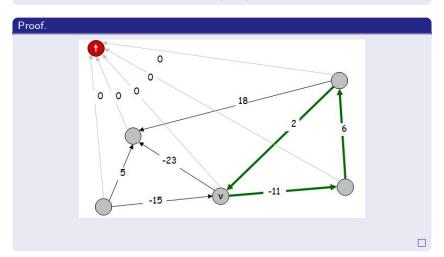


from Wayne's slides on "Algorithm Design"

Detecting Negative Cycles

Theorem

Negative cycles can be detected in time $O(m \cdot n)$



Shortest Paths in Directed Acyclic Graphs

Figure 4.15 A single-source shortest-path algorithm for directed acyclic graphs

```
procedure dag-shortest-paths (G, l, s)
Input: Dag G = (V, E);
        edge lengths \{l_e : e \in E\}; vertex s \in V
Output: For all vertices u reachable from s, dist(u) is set
        to the distance from s to u.
for all u \in V:
   dist(u) = \infty
   prev(u) = nil
dist(s) = 0
linearize G
for each u \in V, in linearized order:
   for all edges (u, v) \in E:
      update(u, v)
```

Demo