
CS483 Design and Analysis of Algorithms

Lectures 15-16 Dynamic Programming

Instructor: Fei Li

lifei@cs.gmu.edu with subject: CS483

Office hours: STII, Room 443, Friday 4:00pm - 6:00pm or by
appointments

Course web-site:
http://www.cs.gmu.edu/∼lifei/teaching/cs483 fall08/

Figures unclaimed are from books “Algorithms” and “Introduction
to Algorithms”

1 / 27

Dynamic Programming

1 Shortest Path

2 Longest Increasing Subsequences

3 Edit Distance

4 Knapsack

5 Chain Matrix Multiplication

6 Independent Sets in Trees

2 / 27

Algorithmic Paradigms

1 Greed
Build up a solution incrementally, optimizing some local criterion in each step

2 Divide-and-conquer
Break up a problem into two sub-problems, solve each sub-problem
independently, and combine solution to sub-problems to form solution to
original problem

3 Dynamic programming
Identify a collection of subproblems and tackling them one by one, smallest first,
using the answers to smaller problems to help figure out larger ones, until the
whole lot of them is solved

3 / 27

Shortest Paths in Directed Acyclic Graphs (DAG)
Remark

The special distinguishing feature of a DAG is that its node can be linearized.

dist(D) = min{dist(B) + 1, dist(C) + 3}.

This algorithm is solving a collection of subproblems, {dist(u) : u ∈ V }. We start with

the smallest of them, dist(s) = 0.

4 / 27

Some Thoughts on Dynamic Programming

Remark

1 In dynamic programming, we are not given a DAG; the DAG is implicit.

2 Its nodes are the subproblems we define, and its edges are the dependencies
between the subproblems: If to solve subproblem B we need to answer the
subproblem A, then there is a (conceptual) edge from A to B. In this case, A is
thought of as a smaller subproblems than B — and it will always be smaller, in
an obvious sense.

Problem

How to solve/calculate above subproblems’ values in Dynamic Programming?

Solution

?

5 / 27

Longest Increasing Subsequences

Definition

The input is a sequence of numbers a1, . . . , an. A subsequence is any subset of these
numbers taken in order, of the form ai1, ai2, . . . , aik where 1 < i1 < i2 < . . . < ik ≤ n,
and an increasing subsequence is one in which the numbers are getting strictly larger.
The task is to find the increasing subsequence of greatest length.

6 / 27

Longest Increasing Subsequences

1

2 function inc-subsequence(G = (V, E))

for j = 1, 2, ... n
L(j) = 1 + maxL(i): (i , j) ∈ E;

return max j L(j);

7 / 27

Longest Increasing Subsequences

1

2 function inc-subsequence(G = (V, E))

for j = 1, 2, ... n
L(j) = 1 + maxL(i): (i , j) ∈ E;

return max j L(j);

8 / 27

Longest Increasing Subsequences

1

2 function inc-subsequence(G = (V, E))

for j = 1, 2, ... n
L(j) = 1 + maxL(i): (i , j) ∈ E;

return max j L(j);

9 / 27

Longest Increasing Subsequences
Remark

There is an ordering on the subproblems, and a relation that shows how to solve a
subproblem given the answers to “smaller” subproblems, that is, subproblems that
appear earlier in the ordering.

Theorem

The algorithm runs in polynomial time O(n2).

Proof.

L(j) = 1 + max{L(i) : (i , j) ∈ E}.

Problem

Why not using recursion? For example,

L(j) = 1 + max{L(1), L(2), . . . , L(j − 1)}.

Solution

Bottom-up versus (top-down + divide-and-conquer).

10 / 27

Announcements

1 Assignment 7 is released today. The due date is Nov. 19th.

11 / 27

Edit Distance

from Wayne’s slides on “Algorithm Design”

Problem

If we use the brute-force method, how many alignments do we have?

Solution

?

12 / 27

Edit Distance
1 Goal. Given two strings X = x1x2 . . . xm and Y = y1y2 . . . yn, find alignment of

minimum cost. Call this problem E(m, n).

2 Subproblem E(i , j).
Define diff (i , j) = 0 if x[i] = y [j] and diff (i , j) = 1 otherwise

E(i , j) = min{1 + E(i − 1, j), 1 + E(i , j − 1), diff (i , j) + E(i − 1, j − 1)}

function edit-distance(X, Y)

for i = 0, 1, 2, ... m

E(i, 0) = i;

for j = 1, 2, ... n

E(0, j) = j;

for i = 1, 2, ... m

for j = 1, 2, ... n

E(i, j) = min { E(i - 1, j) + 1, E(i, j - 1) + 1,

E(i - 1, j - 1) + diff(i, j) };

return E(m, n);

13 / 27

Edit Distance

Theorem

edit-distance runs in time O(m · n)

14 / 27

The Underlying DAG

Remark

Every dynamic program has an underlying DAG structure: Think of each node as
representing a subproblem, and each edge as a precedence constraint on the order in
which the subproblems can be tackled.
Having nodes u1, . . . , uk point to v means “subproblem v can only be solved once the
answers to u1, u2, . . . , uk are known”.

Remark

Finding the right subproblems takes creativity and experimentation.

15 / 27

Solving Problems Using Dynamic Programming Approach

1 What is a subproblem?
Can you define it clearly?

2 What is the relation between a smaller-size subproblem and a larger-size
subproblem?
Can we get the solution of the larger one from the smaller one?
What is the dependency between them?
What is the “DAG”?
Is there a relationship between the optimality of a smaller subproblem and a
larger subproblem?

3 How to solve this problem?
What is the running-time complexity?

16 / 27

Knapsack
Knapsack Problem
Given n objects, each object i has weight wi and value vi , and a knapsack of capacity
W , find most valuable items that fit into the knapsack

http://en.wikipedia.org/wiki/Knapsack problem

17 / 27

Knapsack Problem

1 What will you do if all items are splittable?

2 What will you do if some items are splittable?

3 What will you do if all items are non-splittable?

4 What is the subproblem — the “node” in a “DAG”?

5 Can we always have a polynomial-time algorithm when we use Dynamic
Programming approach?

18 / 27

Knapsack Problem

Subproblem:

K(w , j) = maximum value achievable using a knapsack of capacity w and items 1, 2, . . . , j

Goal: K(W , n)

function knap-sack(W, S)

Initialize all K(0, j) = 0 and all K(w, 0) = 0;

for j = 1 to n

for w = 1 to W

if (w_j > w)

K(w, j) = K(w, j - 1);

else

K(w, j) = max{K(w, j - 1), K(w - w_j, j - 1) + v_j};

return K(W, n);

19 / 27

from Wayne’s slides on “Algorithm Design”
20 / 27

Chain Matrix Multiplication

21 / 27

Chain Matrix Multiplication

C(i , j) = minimum cost of multiplying Ai × Ai+1 × · · · × Aj

C(i , j) = min
i≤k<j

{C(i , k) + C(k + 1, j) + mi−1 ·mk ·mj}

22 / 27

Traveling Salesman Problems
Definition

(TSP). Start from his hometown, suitcase in hand, he will conduct a journey in which
each of his target cities is visited exactly once before he returned home. Given the
pairwise distance between cities, what is the best order in which to visit them, so as to
minimize the overall distance traveled?

Figure:
http://watching-movies-online.blogspot.com/2008/09/watch-mr-beans-holiday-hindi-dubbed.html

23 / 27

Traveling Salesman Problems
Definition

(TSP). Start from his hometown, suitcase in hand, he will conduct a journey in which
each of his target cities is visited exactly once before he returned home. Given the
pairwise distance between cities, what is the best order in which to visit them, so as to
minimize the overall distance traveled?

Subproblem.
Let C(S, j) be the length of the shortest path visiting each node in S exactly once,
starting at 1 and ending at j .
Relation.

C(S , j) = min
i∈S,i 6=j

C(S − {j}, i) + dij .

24 / 27

Independent Sets

Definition

A subset of nodes S ⊂ V is an independent set of graph G = (V , E) if there are no
edges between them

Goal: Find the largest independent set
Known: This problem is believed to be intractable

25 / 27

Independent Sets in Trees

I (u) = size of largest independent set of subtree hanging from u

I (u) = max{1 +
∑

grandchildren w of u

I (w),
∑

children w of u

I (w)}

26 / 27

Independent Sets in Trees

Theorem

The running time of using Dynamic Programming to find Independent Sets in Trees is
O(|V |+ |E |)

Proof.

The number of subproblems is exactly the number of vertices ?

27 / 27

