
Assignment 1, Due on September 3rd, Wednesday

1 (2 points) Page 8 of DPV, 0.1(c), 0.1(e), 0.1(f) 0.1(g),
0.1(j), 0.1(k), 0.1(m), 0.1(o), 0.1(p), 0.1(q),

2 (3 points) Page 9 of DPV, 0.2
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In each of the following situations, indicate whether f = O(g), or f = Ω(g), or both
(in which case f = Θ(g)).

c. f (n) = 100 · n + log n and g(n) = n + (log n)2.

lim
n→+∞

100 · n + log n

n + (log n)2
= lim

n→+∞

100 + 1/n

1 + 2 · log n/n
≈ 100⇒ f (n) = Θ(g(n)).

e. f (n) = log(2 · n) and g(n) = log(3 · n).

f (n) = log 2 + log n, and g(n) = log 3 + log n⇒ f (n) = Θ(g(n)).

f. f (n) = 10 · log n and g(n) = log(n2).

g(n) = 2 · log n⇒ f (n) = Θ(g(n)).

g. f (n) = n1.01 and g(n) = n log2 n.

lim
n→+∞

f (n)

g(n)
=

n0.01

(log n)2
=

0.01 · n−0.99

2 · log n · n−1

=
0.005 · n0.01

log n
= 0.005 · 0.01 · n0.01 ⇒ f (n) = Ω(g(n)).

j. f (n) = (log n)log n and g(n) = n/ log n.
Let n = 2k . f (n) = kk and g(n) = 2k/k. Thus, f (n) = Ω(g(n)).

k. f (n) =
√

n and g(n) = (log n)3.
Let n = 2k . f (n) = 2k−1 and g(n) = k3. Thus, f (n) = Ω(g(n)).
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In each of the following situations, indicate whether f = O(g), or f = Ω(g), or both
(in which case f = Θ(g)).

m. f (n) = n · 2n and g(n) = 3n.

lim
n→+∞

n · 2n

3n
=

n

1.5n
⇒ f (n) = O(g(n)).

o. f (n) = n! and g(n) = 2n.
From Stirling formula, f (n) ≈

√
2 · π · n · ( n

e
)n. Thus, f (n) = Ω(g(n)).

p. f (n) = (log n)log n and g(n) = 2log n2
.

Let log n = k. f (n) = kk and g(n) = 2k2
= 2k·k = (2k )k . Thus,

f (n) = O(g(n)).

q. f (n) =
∑n

i=1 ik and g(n) = nk+1. k is a constant.

f (n) = 1k+2k+. . .+nk ≤ nk+nk+. . . nk = n·nk = nk+1 = g(n)⇒ f (n) = O(g(n)).

Also,

f (n) = 1k + 2k + . . .+ (
n

2
)k + (

n

2
+ 1)k + . . .+ nk ≥

nk

2k
+

nk

2k
+ . . .+

nk

2k

=
n

2
·

1

2k
· nk = nk+1 ·

1

2k+1
⇒ f (n) = Ω(g(n)).

Thus, f (n) = Θ(g(n)).
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Show that, if c is a positive real number, then g(n) = 1 + c + c2 + . . .+ cn is

1 Θ(1) if c < 1.

2 Θ(n) if c = 1.

3 Θ(cn) if c > 1.

Proof.

If c = 1, g(n) = 1 + 1 + . . .+ 1 = n + 1 = Θ(n). Otherwise,

g(n) =
cn+1 − 1

c − 1
=

1− cn+1

1− c
.

If c < 1, 1− c < 1− cn+1 < 1. Thus, 1 < g(n) < 1
1−c

. g(n) = Θ(1).

If c > 1, cn+1 > cn+1 − 1 > cn. Thus, cn

1−c
< g(n) < c

1−c
· cn. g(n) = Θ(cn).
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Assignment 2, Due on September 10th, Wednesday

1 (1 point) Page 39 of DPV, 1.11

2 (2 points) Page 40 of DPV, 1.19

3 (2 points) Page 40 of DPV, 1.20
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Is 41536 − 94824 divisible by 35?

Proof.

35 = 5 · 7, 5 and 7 are primes.

By Fermat’s Little Theorem,

Theorem

For any prime p and 1 ≤ a < p, ap−1 ≡ 1 mod p.

Thus, a5−1 ≡ 1 mod 5 and a7−1 ≡ 1 mod 7. Furthermore, we have
(a5−1)7−1 = (a4)6 = a24 ≡ 1 mod (5 · 7). That is a24 ≡ 1 mod 35, for all 1 ≤ a < 35.
Therefore, 41536 = 424·64 ≡ 1 mod 35 and 94824 = 924·201 ≡ 1 mod 35. We conclude
that 41536 ≡ 94824 mod 35. So the difference is divisible by 35.
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The Fibonacci numbers F0,F1, . . . are given by the recurrence Fn+1 = Fn + Fn−1,
F0 = 0, F1 = 1. Show that for any n ≥ 1, gcd(Fn+1,Fn) = 1.

Proof.

We can show this by induction on n. For n = 1, gcd(F1,F2) = gcd(1, 1) = 1. Now
say that the inductive hypothesis is true for all n ≤ k, this implies that for n = k + 1,

gcd(Fk+1,Fk+2) = gcd(Fk+1,Fk+2 − Fk+1) = gcd(Fk+1,Fk ) = 1.

Thus, the statement is true for all n ≥ 1.

7 / 13



Find the inverse of: 20 mod 79, 3 mod 62, 21 mod 91, and 5 mod 23.

1 gcd(20, 79) = gcd(20, 19) = gcd(19, 1) = 1. Thus,
1 = 20− 1 · 19 = 20− 1 · (79− 3 · 20) = 20− 79 + 3 · 20 = 4 · 20− 1 · 79. So,
20−1 = 4 mod 79.

2 gcd(3, 62) = gcd(3, 2) = gcd(2, 1) = 1. Thus,
1 = 3− 2 = 3− (62− 20 · 3) = 3− 62 + 20 · 3 = 21 · 3− 62 · 1. So,
3−1 = 21 mod 62.

3 gcd(21, 91) = gcd(21, 7) = gcd(7, 7) 6= 1. Thus, 21−1 mod 91 does not exist.

4 gcd(5, 23) = gcd(5, 3) = gcd(3, 2) = gcd(2, 1) = 1. Thus,
1 = 3− 2 = 3− (5− 3) = 3 · 2− 5 · 1 = (23− 4 · 5) · 2− 5 · 1 = 23 · 2− 9 · 5.
So, 5−1 = −9 = 14 mod 23.
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Assignment 3, Due on September 24th, Wednesday

1 (1.5 points.) Page 40 of DPV, 1.29. You do not need to answer how many bits
are needed to choose a function from the family.

2 (1 point.) (CLSR page 98, 5.2-4) Use indicator random variable to solve the
following problem, which is known as the hat-check problem. Each of n
customers gives a hat to a hat-checker persona at a restaurant. The hat-checker
person gives the hats back to the customer in a random order. What is the
expected number of customers that get back their own hat?

3 (1.5 points.) (CLSR page 98, 5.2-5) Let A[1, . . . , n] be an array of n distinct
numbers. If i < j and A[i ] < A[j], then the pair (i , j) is called an inversion of A.

1 (0.5 point.) What array with elements from the set {1, 2, . . . , n} has the

most inversions? How many does it have?

2 (1 point.) Suppose that the elements of A form a uniform random

permutation of < 1, 2, . . . , n >. Use indicator random variables to

compute the expected number of inversions.

4 (1 point.) (CLSR page 105, 5.3-5) Prove that in the array P in procedure
permute-by-sorting, the probability that all elements are unique is at least
1− 1/n.
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Page 40 of DPV, 1.29. You do not need to answer how many bits are needed to
choose a function from the family.

1 Here H is the same as in the example in the book, only with 2 coefficients
instead of 4. With the same reasoning as the proof of the Property in page 46,
we assume that x2 6= y2 and we want to determine the probability that equation
a1 · (x1 − y1) = a2 · (y2 − x2) holds. Assuming we already picked a1, that
probability is equal to 1/m, since the only way for the equation to hold is to
pick a2 to be (y2 − x2)−1 · a1 · (x1 − y1) mod m. We can see that, since m is
prime, (y2 − x2)−1 is unique. Thus H is universal. We need 2 · dlog me bits.

2 H is not universal, since according to above analysis, we need a unique inverse
of (y2 − x2) mod m where m = 2k . For this to hold m has to be prime, which is
not true (unless k = 1). We need 2 · k bits.

3 We calculate P = Pr[f (x) = f (y)], for x 6= y . We have

P =
∑m−1

i=1
1

(m−1)2 = 1
m−1

. Thus H is universal. The total number of functions

f : [m]→ [m − 1] is (m − 1)m, so we need m · log(m − 1) bits.
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(CLSR page 98, 5.2-4) Use indicator random variable to solve the following problem,
which is known as the hat-check problem. Each of n customers gives a hat to a
hat-checker persona at a restaurant. The hat-checker person gives the hats back to
the customer in a random order. What is the expected number of customers that get
back their own hats?

Proof.

Let I (X = i) be the indictor random variable showing whether the customer i gets
his/her hat back.

I (X = i) =

{
1, if customer i gets his/her hat;

0, otherwise.

Let S be the expected number of customers getting back their own hats; Si be the
expectation for customer i gets his/her hat. Then

E [S] = E [
n∑

i=1

Si ] =
n∑

i=1

E [Si ] =
n∑

i=1

Pr{I (X = i)} =
n∑

i=1

1

n
= 1.
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Let A[1, . . . , n] be an array of n distinct numbers. If i < j and A[i ] < A[j], then the
pair (i , j) is called an inversion of A.

1 What array with elements from the set {1, 2, . . . , n} has the most inversions?
How many does it have?

2 Suppose that the elements of A form a uniform random permutation of
< 1, 2, . . . , n >. Use indicator random variables to compute the expected
number of inversions.

Proof.

1 [1, 2, . . . , n] has the most number of inversions:∑n
i=1(i − 1) = [1+(n−1)]·(n−1)

2
= n·(n−1)

2
.

2 Let I (i , j) denote the indicator variable that (i , j) is an inversion pair. Let S
denote the expected total number of inversions. Let Si,j denote that a pair (i , j)
is inverse.

E [S] = E [

n−1∑
i=1

n∑
j=i+1

S(i , j)]

=

n−1∑
i=1

n∑
j=i+1

E [S(i , j)] =

n−1∑
i=1

n∑
j=i+1

Pr{I (i , j) = 1}

=

n−1∑
i=1

n∑
j=i+1

1

2
=

n · (n − 1)

4
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Prove that in the array P in procedure permute-by-sorting, the probability that all
elements are unique is at least 1− 1/n.

Proof.

We choose a range [1, n3] to select an element, n ≥ 2. The probability that 2 or more
elements are NOT selected from the same number is

P =
n3

n3
·
n3 − 1

n3
·
n3 − 2

n3
· . . . ·

n3 − (n − 1)

n3
.

Since n ≥ 2, n3 − i ≥ n3 − n = n · (n2 − 1) ≥ n · n = n2, for all 0 ≤ i < n.
Thus,

P ≥ (1−
1

n2
) · (1−

1

n2
) · . . . · (1−

1

n2
) = (1−

1

n2
)n =

n∑
k=0

(n
k )1k (−

1

n2
)n−k

=
n∑

k=0

(n
k )(−

1

n2
)n−k

= 1− n ·
1

n2
+ . . . , Note (n

k+1) · (
1

n2
)n−(k+1) ≥ (n

k ) · (
1

n2
)n−k

(That is, the remaining items are positive, if you pick two by two).

≥ 1−
1

n
.
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