Assignment 1, Due on September 3rd, Wednesday

(1 (2 points) Page 8 of DPV, 0.1(c), 0.1(e), 0.1(f) 0.1(g), $0.1(\mathrm{j}), 0.1(\mathrm{k}), 0.1(\mathrm{~m}), 0.1(\mathrm{o}), 0.1(\mathrm{p}), 0.1(\mathrm{q})$,
(3) (3 points) Page 9 of DPV, 0.2

In each of the following situations, indicate whether $f=O(g)$, or $f=\Omega(g)$, or both (in which case $f=\Theta(g)$).
c. $f(n)=100 \cdot n+\log n$ and $g(n)=n+(\log n)^{2}$.

$$
\lim _{n \rightarrow+\infty} \frac{100 \cdot n+\log n}{n+(\log n)^{2}}=\lim _{n \rightarrow+\infty} \frac{100+1 / n}{1+2 \cdot \log n / n} \approx 100 \Rightarrow f(n)=\Theta(g(n))
$$

e. $f(n)=\log (2 \cdot n)$ and $g(n)=\log (3 \cdot n)$.

$$
f(n)=\log 2+\log n, \text { and } g(n)=\log 3+\log n \Rightarrow f(n)=\Theta(g(n)) .
$$

f. $f(n)=10 \cdot \log n$ and $g(n)=\log \left(n^{2}\right)$.

$$
g(n)=2 \cdot \log n \Rightarrow f(n)=\Theta(g(n))
$$

g. $f(n)=n^{1.01}$ and $g(n)=n \log ^{2} n$.

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} \frac{f(n)}{g(n)} & =\frac{n^{0.01}}{(\log n)^{2}}=\frac{0.01 \cdot n^{-0.99}}{2 \cdot \log n \cdot n^{-1}} \\
& =\frac{0.005 \cdot n^{0.01}}{\log n}=0.005 \cdot 0.01 \cdot n^{0.01} \Rightarrow f(n)=\Omega(g(n)) .
\end{aligned}
$$

j. $f(n)=(\log n)^{\log n}$ and $g(n)=n / \log n$.

Let $n=2^{k} . f(n)=k^{k}$ and $g(n)=2^{k} / k$. Thus, $f(n)=\Omega(g(n))$.
k. $f(n)=\sqrt{n}$ and $g(n)=(\log n)^{3}$.

Let $n=2^{k} . f(n)=2^{k-1}$ and $g(n)=k^{3}$. Thus, $f(n)=\Omega(g(n))$.

In each of the following situations, indicate whether $f=O(g)$, or $f=\Omega(g)$, or both (in which case $f=\Theta(g)$).
m. $f(n)=n \cdot 2^{n}$ and $g(n)=3^{n}$.

$$
\lim _{n \rightarrow+\infty} \frac{n \cdot 2^{n}}{3^{n}}=\frac{n}{1.5^{n}} \Rightarrow f(n)=O(g(n))
$$

o. $f(n)=n!$ and $g(n)=2^{n}$.

From Stirling formula, $f(n) \approx \sqrt{2 \cdot \pi \cdot n} \cdot\left(\frac{n}{e}\right)^{n}$. Thus, $f(n)=\Omega(g(n))$.
p. $f(n)=(\log n)^{\log n}$ and $g(n)=2^{\log n^{2}}$.

Let $\log n=k . f(n)=k^{k}$ and $g(n)=2^{k^{2}}=2^{k \cdot k}=\left(2^{k}\right)^{k}$. Thus,
$f(n)=O(g(n))$.
q. $f(n)=\sum_{i=1}^{n} i^{k}$ and $g(n)=n^{k+1} . k$ is a constant.

$$
f(n)=1^{k}+2^{k}+\ldots+n^{k} \leq n^{k}+n^{k}+\ldots n^{k}=n \cdot n^{k}=n^{k+1}=g(n) \Rightarrow f(n)=O(g(n)) .
$$

Also,

$$
\begin{aligned}
f(n) & =1^{k}+2^{k}+\ldots+\left(\frac{n}{2}\right)^{k}+\left(\frac{n}{2}+1\right)^{k}+\ldots+n^{k} \geq \frac{n^{k}}{2^{k}}+\frac{n^{k}}{2^{k}}+\ldots+\frac{n^{k}}{2^{k}} \\
& =\frac{n}{2} \cdot \frac{1}{2^{k}} \cdot n^{k}=n^{k+1} \cdot \frac{1}{2^{k+1}} \Rightarrow f(n)=\Omega(g(n)) .
\end{aligned}
$$

Thus, $f(n)=\Theta(g(n))$.

Show that, if c is a positive real number, then $g(n)=1+c+c^{2}+\ldots+c^{n}$ is
(1) $\Theta(1)$ if $c<1$.
(2) $\Theta(n)$ if $c=1$.
(3) $\Theta\left(c^{n}\right)$ if $c>1$.

Proof.

If $c=1, g(n)=1+1+\ldots+1=n+1=\Theta(n)$. Otherwise,

$$
g(n)=\frac{c^{n+1}-1}{c-1}=\frac{1-c^{n+1}}{1-c}
$$

If $c<1,1-c<1-c^{n+1}<1$. Thus, $1<g(n)<\frac{1}{1-c} . g(n)=\Theta(1)$.
If $c>1, c^{n+1}>c^{n+1}-1>c^{n}$. Thus, $\frac{c^{n}}{1-c}<g(n)<\frac{c}{1-c} \cdot c^{n} . g(n)=\Theta\left(c^{n}\right)$.

Assignment 2, Due on September 10th, Wednesday

(1) (1 point) Page 39 of DPV, 1.11
(2 (2 points) Page 40 of DPV, 1.19
(0) (2 points) Page 40 of DPV, 1.20

Is $4^{1536}-9^{4824}$ divisible by 35 ?

Proof.

$$
35=5 \cdot 7, \quad 5 \text { and } 7 \text { are primes. }
$$

By Fermat's Little Theorem,

Theorem

For any prime p and $1 \leq a<p, a^{p-1} \equiv 1 \bmod p$.
Thus, $a^{5-1} \equiv 1 \bmod 5$ and $a^{7-1} \equiv 1 \bmod 7$. Furthermore, we have $\left(a^{5-1}\right)^{7-1}=\left(a^{4}\right)^{6}=a^{24} \equiv 1 \bmod (5 \cdot 7)$. That is $a^{24} \equiv 1 \bmod 35$, for all $1 \leq a<35$. Therefore, $4^{1536}=4^{24 \cdot 64} \equiv 1 \bmod 35$ and $9^{4824}=9^{24 \cdot 201} \equiv 1 \bmod 35$. We conclude that $4^{1536} \equiv 9^{4824} \bmod 35$. So the difference is divisible by 35 .

The Fibonacci numbers F_{0}, F_{1}, \ldots are given by the recurrence $F_{n+1}=F_{n}+F_{n-1}$, $F_{0}=0, F_{1}=1$. Show that for any $n \geq 1, \operatorname{gcd}\left(F_{n+1}, F_{n}\right)=1$.

Proof.

We can show this by induction on n. For $n=1, \operatorname{gcd}\left(F_{1}, F_{2}\right)=\operatorname{gcd}(1,1)=1$. Now say that the inductive hypothesis is true for all $n \leq k$, this implies that for $n=k+1$,

$$
\operatorname{gcd}\left(F_{k+1}, F_{k+2}\right)=\operatorname{gcd}\left(F_{k+1}, F_{k+2}-F_{k+1}\right)=\operatorname{gcd}\left(F_{k+1}, F_{k}\right)=1
$$

Thus, the statement is true for all $n \geq 1$.

Find the inverse of: $20 \bmod 79,3 \bmod 62,21 \bmod 91$, and $5 \bmod 23$.
(1) $\operatorname{gcd}(20,79)=\operatorname{gcd}(20,19)=\operatorname{gcd}(19,1)=1$. Thus, $1=20-1 \cdot 19=20-1 \cdot(79-3 \cdot 20)=20-79+3 \cdot 20=4 \cdot 20-1 \cdot 79$. So, $20^{-1}=4 \bmod 79$.
(2) $\operatorname{gcd}(3,62)=\operatorname{gcd}(3,2)=\operatorname{gcd}(2,1)=1$. Thus, $1=3-2=3-(62-20 \cdot 3)=3-62+20 \cdot 3=21 \cdot 3-62 \cdot 1$. So, $3^{-1}=21 \bmod 62$.
(3) $\operatorname{gcd}(21,91)=\operatorname{gcd}(21,7)=\operatorname{gcd}(7,7) \neq 1$. Thus, $21^{-1} \bmod 91$ does not exist.
(4) $\operatorname{gcd}(5,23)=\operatorname{gcd}(5,3)=\operatorname{gcd}(3,2)=\operatorname{gcd}(2,1)=1$. Thus, $1=3-2=3-(5-3)=3 \cdot 2-5 \cdot 1=(23-4 \cdot 5) \cdot 2-5 \cdot 1=23 \cdot 2-9 \cdot 5$. So, $5^{-1}=-9=14 \bmod 23$.

Assignment 3, Due on September 24th, Wednesday

(1) (1.5 points.) Page 40 of DPV, 1.29. You do not need to answer how many bits are needed to choose a function from the family.
(2) (1 point.) (CLSR page 98,5.2-4) Use indicator random variable to solve the following problem, which is known as the hat-check problem. Each of n customers gives a hat to a hat-checker persona at a restaurant. The hat-checker person gives the hats back to the customer in a random order. What is the expected number of customers that get back their own hat?
(3) (1.5 points.) (CLSR page 98, 5.2-5) Let $A[1, \ldots, n]$ be an array of n distinct numbers. If $i<j$ and $A[i]<A[j]$, then the pair (i, j) is called an inversion of A.
(1) (0.5 point.) What array with elements from the set $\{1,2, \ldots, n\}$ has the most inversions? How many does it have?
(2) (1 point.) Suppose that the elements of A form a uniform random permutation of $\langle 1,2, \ldots, n\rangle$. Use indicator random variables to compute the expected number of inversions.
(4) (1 point.) (CLSR page $105,5.3-5$) Prove that in the array P in procedure permute-by-sorting, the probability that all elements are unique is at least $1-1 / n$.

Page 40 of DPV, 1.29. You do not need to answer how many bits are needed to choose a function from the family.
(1) Here H is the same as in the example in the book, only with 2 coefficients instead of 4 . With the same reasoning as the proof of the Property in page 46, we assume that $x_{2} \neq y_{2}$ and we want to determine the probability that equation $a_{1} \cdot\left(x_{1}-y_{1}\right)=a_{2} \cdot\left(y_{2}-x_{2}\right)$ holds. Assuming we already picked a_{1}, that probability is equal to $1 / \mathrm{m}$, since the only way for the equation to hold is to pick a_{2} to be $\left(y_{2}-x_{2}\right)^{-1} \cdot a_{1} \cdot\left(x_{1}-y_{1}\right) \bmod m$. We can see that, since m is prime, $\left(y_{2}-x_{2}\right)^{-1}$ is unique. Thus H is universal. We need $2 \cdot\lceil\log m\rceil$ bits.
(2) H is not universal, since according to above analysis, we need a unique inverse of $\left(y_{2}-x_{2}\right) \bmod m$ where $m=2^{k}$. For this to hold m has to be prime, which is not true (unless $k=1$). We need $2 \cdot k$ bits.
(3) We calculate $P=\operatorname{Pr}[f(x)=f(y)]$, for $x \neq y$. We have $P=\sum_{i=1}^{m-1} \frac{1}{(m-1)^{2}}=\frac{1}{m-1}$. Thus H is universal. The total number of functions $f:[m] \rightarrow[m-1]$ is $(m-1)^{m}$, so we need $m \cdot \log (m-1)$ bits.
(CLSR page 98, 5.2-4) Use indicator random variable to solve the following problem, which is known as the hat-check problem. Each of n customers gives a hat to a hat-checker persona at a restaurant. The hat-checker person gives the hats back to the customer in a random order. What is the expected number of customers that get back their own hats?

Proof.

Let $I(X=i)$ be the indictor random variable showing whether the customer i gets his/her hat back.

$$
I(X=i)= \begin{cases}1, & \text { if customer } i \text { gets his } / \text { her hat } \\ 0, & \text { otherwise }\end{cases}
$$

Let S be the expected number of customers getting back their own hats; S_{i} be the expectation for customer i gets his/her hat. Then

$$
E[S]=E\left[\sum_{i=1}^{n} S_{i}\right]=\sum_{i=1}^{n} E\left[S_{i}\right]=\sum_{i=1}^{n} \operatorname{Pr}\{I(X=i)\}=\sum_{i=1}^{n} \frac{1}{n}=1 .
$$

Let $A[1, \ldots, n]$ be an array of n distinct numbers. If $i<j$ and $A[i]<A[j]$, then the pair (i, j) is called an inversion of A.
(1) What array with elements from the set $\{1,2, \ldots, n\}$ has the most inversions? How many does it have?
(2) Suppose that the elements of A form a uniform random permutation of $<1,2, \ldots, n\rangle$. Use indicator random variables to compute the expected number of inversions.

Proof.

(1) $[1,2, \ldots, n]$ has the most number of inversions:
$\sum_{i=1}^{n}(i-1)=\frac{[1+(n-1)] \cdot(n-1)}{2}=\frac{n \cdot(n-1)}{2}$.
(2) Let $I(i, j)$ denote the indicator variable that (i, j) is an inversion pair. Let S denote the expected total number of inversions. Let $S_{i, j}$ denote that a pair (i, j) is inverse.

$$
\begin{aligned}
E[S] & =E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} S(i, j)\right] \\
& =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[S(i, j)]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \operatorname{Pr}\{I(i, j)=1\} \\
& =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{2}=\frac{n \cdot(n-1)}{4}
\end{aligned}
$$

Prove that in the array P in procedure permute-by-sorting, the probability that all elements are unique is at least $1-1 / n$.

Proof.

We choose a range $\left[1, n^{3}\right]$ to select an element, $n \geq 2$. The probability that 2 or more elements are NOT selected from the same number is

$$
P=\frac{n^{3}}{n^{3}} \cdot \frac{n^{3}-1}{n^{3}} \cdot \frac{n^{3}-2}{n^{3}} \cdot \ldots \cdot \frac{n^{3}-(n-1)}{n^{3}} .
$$

Since $n \geq 2, n^{3}-i \geq n^{3}-n=n \cdot\left(n^{2}-1\right) \geq n \cdot n=n^{2}$, for all $0 \leq i<n$. Thus,

$$
\begin{aligned}
P & \geq\left(1-\frac{1}{n^{2}}\right) \cdot\left(1-\frac{1}{n^{2}}\right) \cdot \ldots \cdot\left(1-\frac{1}{n^{2}}\right)=\left(1-\frac{1}{n^{2}}\right)^{n}=\sum_{k=0}^{n}\binom{n}{k} 1^{k}\left(-\frac{1}{n^{2}}\right)^{n-k} \\
& =\sum_{k=0}^{n}\binom{n}{k}\left(-\frac{1}{n^{2}}\right)^{n-k} \\
& =1-n \cdot \frac{1}{n^{2}}+\ldots, \quad \text { Note }\binom{n}{k+1} \cdot\left(\frac{1}{n^{2}}\right)^{n-(k+1)} \geq\binom{ n}{k} \cdot\left(\frac{1}{n^{2}}\right)^{n-k}
\end{aligned}
$$

(That is, the remaining items are positive, if you pick two by two).

$$
\geq \quad 1-\frac{1}{n}
$$

