Assignment 3, Due on September 24th, Wednesday

1. (1.5 points.) Page 40 of DPV, 1.29. You do not need to answer how many bits are needed to choose a function from the family.
2. (1 point.) (CLSR page 98,5.2-4) Use indicator random variable to solve the following problem, which is known as the hat-check problem. Each of n customers gives a hat to a hat-checker persona at a restaurant. The hat-checker person gives the hats back to the customer in a random order. What is the expected number of customers that get back their own hat?
3. (1.5 points.) (CLSR page $98,5.2-5)$ Let $A[1, \ldots, n]$ be an array of n distinct numbers. If $i<j$ and $A[i]<A[j]$, then the pair (i, j) is called an inversion of A.
3.1 (0.5 point.) What array with elements from the set $\{1,2, \ldots, n\}$ has the most inversions? How many does it have?
3.2 (1 point.) Suppose that the elements of A form a uniform random permutation of $\langle 1,2, \ldots, n\rangle$. Use indicator random variables to compute the expected number of inversions.
4. (1 point.) (CLSR page $105,5.3-5$) Prove that in the array P in procedure permute-by-sorting, the probability that all elements are unique is at least $1-1 / n$.
