CS483 Design and Analysis of Algorithms
 Lecture 1 Introduction and Prologue

Instructor: Fei Li
lifei@cs.gmu.edu with subject: CS483
Office hours:

STII, Room 443, Friday 4:00pm - 6:00pm or by appointments
Course web-site:
http://www.cs.gmu.edu/~lifei/teaching/cs483_fall08/
Figures unclaimed are from books "Algorithms" and "Introduction to Algorithms"

About this Course

- About this Course (From 2007-2008 University Catalog) Analyze computational resources for important problem types by alternative algorithms and their associated data structures, using mathematically rigorous techniques. Specific algorithms analyzed and improved
- Prerequisites

CS310 (Data Structures) and CS330 (Formal Methods and Models) and MATH125 (Discrete Mathematics I), or permission of the instructor

- Weekly Schedule
- When: Monday \& Wednesday 1:30pm - 2:45pm
- Where: Innovation Hall 136

Required Textbooks

1. Algorithms by Sanjoy Dasgupta (UCSD), Christos Papadimitriou and Umesh Vazirani (UC-Berkeley). A draft of the book can be found at http://www.cs.berkeley.edu/ vazirani/algorithms.html
2. Introduction to Algorithms by Thomas H. Cormen (Dartmouth), Charles E. Leiserson and Ronald L. Rivest (MIT), Clifford Stein (Columbia), 2nd Edition (Highly recommended)

How to Reach Me and the TA

1. Instructor: Fei Li
2. Email: lifei@cs.gmu.edu
3. Office: Room 443, Science \& Technology II
4. Office hours: Friday 4:00pm

- 6:00pm or make an appointment

1. Teaching Assist.: Cynthia Zhang
2. Email: zzhang8@gmu.edu
3. Office: Room 330, Science \& Technology II
4. Office hours: Tuesday 5:00pm - 7:00pm

Making the Grade

1. Your grade will be determined 45% by the take-home assignments, 20% by a midterm exam, and 35% by a final exam
2. Probably there will be 9 assignments; each assignment deserves 5 points
3. Hand in hard copies of assignments in class. No grace days for late assignment. All course work is to be done independently. Plagiarizing the homework will be penalized by maximum negative credit and cheating on the exam will earn you an F in the course
4. Tentative grading system:

A $(\geq 90), \mathrm{B}(\in[80,90)), \mathrm{C}(\in[70,80)), \mathrm{D}(\in[60,70))$, and $\mathrm{F}(<60)$

Any Questions?

Chapter 0 of DPV - Prologue

1. What are algorithms?
2. What are asymptotic notations?

Algorithms

Computers + Networks $=$ Hardware (microelectronics) + Software (algorithms)

- Typography versus algorithms http://en.wikipedia.org/wiki/Typography: "Typography with moveable type was separately invented in 11th-century China, and modular moveable metal type began in 13th-century China and Korea, was developed again in mid-15th century Europe with the development of specialized techniques for casting and combining cheap copies of letter punches in the vast quantities required to print multiple copies of texts."

Decimal Systems and Algorithms

Conrighthat Maserial
Hyg Numburn
In the shy, the fat in the sea, or grain of and on the beath uere
 becomes simply timiny

from "One Two Three . . . Infinity: Facts and Speculations of Science" by George Gamow, Dover, 1988

- Decimal system is invented in India around AD 600. With only 10 symbols, arithmetic could be done efficiently by following elementary steps
- Al Khwarizmi (780-850) wrote a book on basic methods for adding, multiplying, and dividing numbers, even extracting square roots and calculating digits of π. The term Algorithm derives from his name and is coined after him and the decimal system

Algorithms and Their Asymptotic Notations

1. Algorithm example - Enter Fibonacci
2. Running time - asymptotic notation

Fibonacci Series and Numbers

http://www.rosicrucian.org \& http://thelifeportfolio.wordpress.com

$$
0,1,1,2,3,5,8,13,21,34, \ldots,
$$

The Fibonacci numbers F_{n} is generated by

$$
F_{n}= \begin{cases}F_{n-1}+F_{n-2}, & \text { if } n>1, \\ 1, & \text { if } n=1, \\ 0, & \text { if } n=0\end{cases}
$$

The golden ratio $\phi=\frac{1+\sqrt{5}}{2}=1+\frac{1}{\phi} \approx 1.618=\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}$

Calculate F_{n} - First Approach

From the recursive definition

```
function fib1(n)
{
    if (n = 0)
    return 0;
    if (n = 1)
        return 1;
    return fib1(n - 1) + fib1(n - 2);
}
```


Calculate F_{n} - First Approach

From the recursive definition

```
function fib1(n)
{
    if (n = 0)
        return 0;
    if (n = 1)
        return 1;
    return fib1(n - 1) + fib1(n - 2);
}
```

- Correctness

Calculate F_{n} - First Approach

From the recursive definition

```
function fib1(n)
{
    if (n = 0)
        return 0;
    if (n = 1)
        return 1;
    return fib1(n - 1) + fib1(n - 2);
}
```

- Correctness
- Running time $T(n)=T(n-1)+T(n-2)+3, n>1$

$$
T(200) \geq F_{200} \geq 2^{138}
$$

Calculate F_{n} - Second Approach

```
function fib2(n)
{
\[
\begin{aligned}
& \text { if } \quad(\mathrm{n}=0) \\
& \text { return } 0 ;
\end{aligned}
\]
```

Figure 0.1 The proliferation of recursive calls in fib1.

$$
\begin{aligned}
& \text { create an array } f[0, \ldots, n] \text {; } \\
& f[0]=0 ; f[1]=1 ; \\
& \text { for }(i=2, \ldots, n) \\
& \quad f[i]=f[i-1]+f[i-2] ;
\end{aligned}
$$

return $f[n]$;
\}
fib2(n) is linear in n.

Big-O Notation

$\underline{\text { Figure } 0.2 \text { Which running time is better? }}$

Let $f(n)$ and $g(n)$ be functions from positive integers to positive reals. We say $f(n)=O(g)$ (which means that " f grows no faster than g ") if there is a constant $c>0$ such that $f(n) \leq c \cdot g(n)$

$$
\begin{aligned}
& f=O(g) \leftrightarrow f(n) \leq c \cdot g(n) \leftrightarrow g=\Omega(f) \\
& f=\Theta(g) \leftrightarrow f=O(g) \& f=\Omega(f)
\end{aligned}
$$

Exercises

$$
\begin{array}{rll}
14 \cdot n^{2} & ? & n^{2} \\
n^{a} & ? & n^{b}, \quad a>b \\
3^{n} & ? & n^{5} \\
n & ? & (\log n)^{3} \\
n! & ? & 2^{n}
\end{array}
$$

Establish Order of Growth

- L'Hopital's rule

If $\lim _{n \rightarrow \infty} f(n)=\lim _{n \rightarrow \infty} g(n)=\infty$ and the derivatives f^{\prime} and g^{\prime} exist, then

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{f^{\prime}(n)}{g^{\prime}(n)}
$$

- Stirling's formula

$$
n!\approx \sqrt{2 \pi n} \cdot\left(\frac{n}{e}\right)^{n}
$$

where e is the natural logarithm, $e \approx 2.718 . \pi \approx 3.1415$.

$$
\sqrt{2 \pi n} \cdot\left(\frac{n}{e}\right)^{n} \leq n!\leq \sqrt{2 \pi n} \cdot\left(\frac{n}{e}\right)^{n+\frac{1}{12 n}}
$$

Some Observations

1. All logarithmic functions $\log _{a} n$ belong to the same class $\Theta(\log n)$ no matter what the logarithmic base $a>1$ is
2. All polynomials of the same degree k belong to the same class

$$
a_{k} n^{k}+a_{k-1} n^{k-1}+\cdots+a_{1} n+a_{0} \in \Theta\left(n^{k}\right)
$$

3. Exponential functions a^{n} have different orders of growth for different a's, i.e., $2^{n} \notin \Theta\left(3^{n}\right)$

$$
\Theta(\log n)<\Theta\left(n^{a}\right)<\Theta\left(a^{n}\right)<\Theta(n!)<\Theta\left(n^{n}\right), \quad \text { where } a>1
$$

