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Chapter 1 of DPV — Algorithms with Numbers

I Foundations

1. Basic Arithmetic
2. Modular Arithmetic
3. Primality Testing

I Applications

1. Cryptography
2. Universal Hashing



Basic Arithmetic — Addition

Theorem
The sum of any three single-digit numbers is at most two digits
long, no matter what the base is

9 + 9 + 9 = 27, in decimal

1 + 1 + 1 = 11, in binary

Proof.
?



Basic Arithmetic — Addition

Remark
Each individual sum is a two-digit number, the carry is always a
single digit, and so at any given step, three single-digit numbers
are added

Addition runs in linear O(n), when two n-bits numbers are added



Basic Arithmetic — Multiplication

1. Is it correct?

2. Running time?

3. Can we do better?

I Divide-and-Conquer:
≈ O(n1.59) (in Chapter 2)



Basic Arithmetic — Division

I Input: Two n-bit integers x and y , where y ≥ 1

I Output: The quotient and remainder of x divided by y

function divide(x, y)

if (x = 0)
return (q, r) = (0, 0);

(q, r) = divide(b x / 2 c, y);
q = 2 × q; r = 2 × r;

if (x is odd)
r = r + 1;

if (r ≥ y)
r = r - y; q = q + 1;

return (q, r);
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Modular Arithmetic
Definition
Modular arithmetic is a system limiting numbers to a predefined range
[0, 1, . . . , N − 1]

x and y are congruent modulo N ⇔ N divides (x − y)

x modulo N is r ⇔ x = q · N + r ⇔ x ≡ r (mod N), with 0 ≤ r < N

Figure: http://www.mathworks.com



Modular Arithmetic

Modular arithmetic deals with all integers and divide them into N
equivalence classes, each of the form {i + k · N, k ∈ Z} for some i
between 0 and N − 1
For each class, i is the representative

Remark
Substitution rule. If x ≡ x ′ (mod N) and y ≡ y ′ (mod N), then,

x + y ≡ x ′ + y ′ (mod N) and x · y ≡ x ′ · y ′ (mod N)

x + (y + z) ≡ (x + y) + z (mod N), Associativity

x · y ≡ y · x (mod N), Commutativity

x · (y + z) ≡ x · y + y · z (mod N), Distributivity

2345 ≡? (mod 31)



Modular Addition and Multiplication

1. Modular addition

I A regular addition (0 ≤ x + y ≤ 2 · (N − 1)) and possibly a
subtraction

I Running time O(n), where n = dlog Ne

2. Modular multiplication

I A regular multiplication (0 ≤ x · y ≤ (N − 1)2) and divide it by
N

I Running time O(n3)

3. Modular exponentiation

I Algorithms for xy (mod N)?
I Running time?

4. Modular division

I Algorithms for a·? ≡ 1 (mod N)?
I Running time?
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Module Exponentiation (xy mod N =?)
1. Worst approach

I Calculate xy , then calculate xy mod N
I (219)219

= 219·524288

2. Bad approach
I Calculate xy mod N by repeatedly multiplying by x modulo N

x mod N → x2 mod N → x3 mod N → . . . ,→ xy mod N

I y − 1 ≈ 2500 multiplications, if y has 500 bits

3. Best approach (geometrically calculate the product)

x mod N → x2 mod N → x4 mod N → . . . ,→ x2blog yc
mod N.
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Euclid Algorithm (gcd(a, b))

Given two integers a and b, what is the largest integer that divides
both — greatest common divisor?

Theorem
Let a ≥ b. gcd(a, b) = gcd(b, a mod b) = gcd(a− b, b).

Proof.
?

gcd(25, 11) =?



Extension of Euclid’s Algorithm

Assume d is the greatest common divisor of a and b, how can we
check this?

Lemma
If d divides both a and b, and d = a · x + b · y for some integers of
x and y, then necessarily d = gcd(a, b).

Proof.
?

1. gcd(65, 40) =?

2. 65 · x + 40 · y = gcd(65, 40)

3. gcd(1239, 735) =?

4. 1239 · x + 735 · y = gcd(65, 40)



Modular Division — a · x ≡ 1 (mod N)

Definition
x is the multiplicative inverse of a modulo N if a · x ≡ 1 (mod N)

Lemma
x, if it exists, is unique.

Proof.
?

Lemma
If gcd(a,N) = 1, x must exist.

Proof.
?
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Primality Testing
Tell whether a number is a prime without factoring it.

Theorem
Fermat’s little theorem. If p is prime, then for every 1 ≤ a < p,

ap−1 ≡ 1 (mod p)

Lemma

(S = {1, 2, . . . , p − 1} · a) mod p = S

(p − 1)! ≡ ap−1 · (p − 1)! (mod p)



Fermat’s Last Theorem

Figure:
http://jeff560.tripod.com

Figure:
http://eskesthai.blogspot.com

Figure: http://www.fafamonge.com/images



Generate Random Primes

Theorem
Langange’s prime number theorem. Let π(x) be the number of
primes ≤ x. Then π(x) ≈ x

ln x , or more precisely,

lim
x→+∞

π(x)

(x/ ln x)
= 1

function random-prime(n)

while()
Pick a random n-bit number N;

Run a primality test on N;

if (test is passed)
return N;
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Rivest-Shamir-Adelman (RSA) — Public Key System

1. Anybody can send a message to anybody else using publicly
available information

2. Each person has a public key known to the whole world and a
secret key known only to him- or herself

3. When Alice wants to send message x to Bob, she encodes it
using Bobs public key. Bob decrypts it using his secret key

4. Approach
Think of messages from Alice to Bob as numbers (mod N)
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Public Key Cryptography

Pick any 2 primes p and q. Let N = p · q
For any e ≡ 1 (mod (p − 1) · (q − 1)):

1. The mapping x → xe mod N is a bijection on
{0, 1, . . . ,N − 1}.

I A reasonable way to encode x

2. Let d be the inverse of e mod (p − 1) · (q − 1). Then,
∀x ∈ {0, 1, . . . ,N − 1}:

(xe)d ≡ x (mod N)

I A reasonable way to decode x
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Proof of RSA

1. (2.) implies (1.) since the mapping is invertible

2. e is invertible module (p − 1) · (q − 1) because e is relatively
prime to this number

3. e · d ≡ 1 mod (p − 1) · (q − 1), then,
e · d = 1 + k · (p − 1) · (q − 1) for some k . Show

xe·d − x = x1+k·(p−1)·(q−1) − x

is always 0 (mod N)



RSA: R Rivest, A. Shamir and L. Adleman (MIT)

http://www.usc.edu/dept/molecular-science/pictures

1. Bob picks up 2 large prime
numbers p and q. His public key is
(N = p · q, e).
e ≡ 1 (mod (p − 1) · (q − 1))
Bob’s secret key is d ,
d · e ≡ 1 (mod (p − 1) · (q − 1))

2. Alice sends Bob y = xe mod N

3. Bob decodes x by computing
yd mod N

1. Given N, e, and
y = xe mod N, it is
computational
intractable to
determine x

2. FACTORING is
HARD
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Hashing Table

I Dictionary
Given a universe U of possible elements, maintain a subset
S ⊆ U so that inserting, deleting, and searching in S is
efficient

I Challenge
Universe U can be extremely large so defining an array of size
|U| is infeasible

I Applications
File systems, databases, Google, compilers, checksums P2P
networks, associative arrays, cryptography, web caching, etc



Hashing Table

fast access + efficient storage
random function + consistent function
distribution is unknown



Hashing

1. Hash function

h : U → {0, 1, . . . , n − 1}

2. Hashing
Create an array H of size n. When processing element u ∈ U,
access array element H[h(u)]

3. Collision
When h(u) = h(v) but u 6= v

I A collision is expected after Ω(
√

n) random insertions
Why? birthday paradox — next Lecture

I Separate chaining
H[i ] stores linked list of elements u with h(u) = i



Hashing Performance

1. Idealistic hash function
Maps m elements uniformly at random to n hash slots

a. Running time depends on length of chains
b. Average length of chain = m/n
c. Choose n ≈ m⇒ on average O(1) per insert, lookup, or delete

2. Universal hashing

a. For any pair of elements u, v ∈ U

Pr
h∈H

[h(u) = h(v)] ≤ 1

n

b. Can select random h efficiently
c. Can compute h(u) efficiently



Universal Hashing

Theorem
Universal hashing property. Assume H be a universal class of
hash functions. Let h ∈ H be chosen uniformly at random from H;
and let u ∈ U.
Then, for any subset S ⊆ U of size at most n, the expected
number of items in S that collide with u is at most 1

Proof.
?



A Universal Hashing

For any 4 coefficients a1, a2, a3, a4 ∈ {0, 1, . . . , n − 1}, write
a = (a1, a2, a3, a4) and define

ha(x1, x2, x3, x4) =
4∑

i=1

(ai · xi mod n)

Theorem
Consider any pair of distinct IP addresses x = (x1, x2, x3, x4) and
y = (y1, y2, y3, y4). If the coefficients a = (a1, a2, a3, a4) are chosen
uniformly at random from {0, 1, . . . , n − 1}, then

Pr{ha(x1, x2, x3, x4) = ha(y1, y2, y3, y4)} =
1

n

Proof.
?


