CS483 Design and Analysis of Algorithms
 Lectures 2-3 Algorithms with Numbers

Instructor: Fei Li
lifei@cs.gmu.edu with subject: CS483
Office hours: STII, Room 443, Friday 4:00pm - 6:00pm or by appointments

Course web-site:
http://www.cs.gmu.edu/~lifei/teaching/cs483_fall08/
Figures unclaimed are from books "Algorithms" and "Introduction to Algorithms".

Chapter 1 of DPV - Algorithms with Numbers

- Foundations

1. Basic Arithmetic
2. Modular Arithmetic
3. Primality Testing

- Applications

1. Cryptography
2. Universal Hashing

Basic Arithmetic - Addition

Theorem

The sum of any three single-digit numbers is at most two digits long, no matter what the base is

$$
\begin{aligned}
& 9+9+9=27, \quad \text { in decimal } \\
& 1+1+1=11, \quad \text { in binary }
\end{aligned}
$$

Proof.

?

Basic Arithmetic - Addition

Remark

Each individual sum is a two-digit number, the carry is always a single digit, and so at any given step, three single-digit numbers are added

$53+35$ in binary.

Addition runs in linear $O(n)$, when two n-bits numbers are added

Basic Arithmetic - Multiplication

1. Is it correct?
2. Running time?

			1	1	0	1
		1	1	0	1	
		0	0	0	0	
+	1	1	0	1		

(1101 times 1)
(1101 times 1, shifted once)
(1101 times 0, shifted twice)

$$
\underbrace{O(n)+O(n)+\cdots+O(n)}_{n-1 \text { times }},
$$

Can we do better?

- Divide-and-Conquer: $\approx O\left(n^{1.59}\right)($ in Chapter 2)

Basic Arithmetic - Division

- Input: Two n-bit integers x and y, where $y \geq 1$
- Output: The quotient and remainder of x divided by y
function divide(x, y)

$$
\begin{aligned}
& \text { if (} \mathrm{x}=0 \text {) } \\
& \text { return (q, r) = (0, 0); } \\
& \text { (q, r) = divide(}\lfloor x / 2\rfloor, \mathrm{y}) \text {; } \\
& \mathrm{q}=2 \times \mathrm{q} ; \mathrm{r}=2 \times \mathrm{r} \text {; } \\
& \text { if (} x \text { is odd) } \\
& r=r+1 \text {; } \\
& \text { if (} r \geq y \text {) } \\
& r=r-y ; q=q+1 ; \\
& \text { return (q, r); }
\end{aligned}
$$

Chapter 1 of DPV - Algorithms with Numbers

- Foundations

1. Basic Arithmetic
2. Modular Arithmetic
3. Primality Testing

- Applications

1. Cryptography
2. Universal Hashing

Modular Arithmetic

Definition

Modular arithmetic is a system limiting numbers to a predefined range $[0,1, \ldots, N-1]$

$$
x \text { and } y \text { are congruent modulo } N \Leftrightarrow N \text { divides }(x-y)
$$

x modulo N is $r \Leftrightarrow x=q \cdot N+r \Leftrightarrow x \equiv r(\bmod N), \quad$ with $0 \leq r<N$

... plus 9 more

... equals 6.

Figure: http://www.mathworks.com

Modular Arithmetic

Modular arithmetic deals with all integers and divide them into N equivalence classes, each of the form $\{i+k \cdot N, k \in \mathbb{Z}\}$ for some i between 0 and $N-1$
For each class, i is the representative
Remark
Substitution rule. If $x \equiv x^{\prime}(\bmod N)$ and $y \equiv y^{\prime}(\bmod N)$, then,

$$
x+y \equiv x^{\prime}+y^{\prime}(\bmod N) \text { and } x \cdot y \equiv x^{\prime} \cdot y^{\prime}(\bmod N)
$$

$$
\begin{aligned}
x+(y+z) & \equiv(x+y)+z(\bmod N), \quad \text { Associativity } \\
x \cdot y & \equiv y \cdot x(\bmod N), \quad \text { Commutativity } \\
x \cdot(y+z) & \equiv x \cdot y+y \cdot z(\bmod N), \quad \text { Distributivity }
\end{aligned}
$$

$2^{345} \equiv ?(\bmod 31)$

Modular Addition and Multiplication

Modular Addition and Multiplication

1. Modular addition

- A regular addition $(0 \leq x+y \leq 2 \cdot(N-1))$ and possibly a subtraction
- Running time $O(n)$, where $n=\lceil\log N\rceil$

Modular Addition and Multiplication

1. Modular addition

- A regular addition $(0 \leq x+y \leq 2 \cdot(N-1))$ and possibly a subtraction
- Running time $O(n)$, where $n=\lceil\log N\rceil$

2. Modular multiplication

- A regular multiplication $\left(0 \leq x \cdot y \leq(N-1)^{2}\right)$ and divide it by N
- Running time $O\left(n^{3}\right)$

Modular Addition and Multiplication

1. Modular addition

- A regular addition $(0 \leq x+y \leq 2 \cdot(N-1))$ and possibly a subtraction
- Running time $O(n)$, where $n=\lceil\log N\rceil$

2. Modular multiplication

- A regular multiplication $\left(0 \leq x \cdot y \leq(N-1)^{2}\right)$ and divide it by N
- Running time $O\left(n^{3}\right)$

3. Modular exponentiation

- Algorithms for $x^{y}(\bmod N)$?
- Running time?

4. Modular division

- Algorithms for $a \cdot ? \equiv 1(\bmod N)$?
- Running time?

Module Exponentiation $\left(x^{y} \bmod N=\right.$?)

1. Worst approach

- Calculate x^{y}, then calculate $x^{y} \bmod N$
- $\left(2^{19}\right)^{2^{19}}=2^{19 \cdot 524288}$

Module Exponentiation $\left(x^{y} \bmod N=\right.$? $)$

1. Worst approach

- Calculate x^{y}, then calculate $x^{y} \bmod N$
- $\left(2^{19}\right)^{2^{19}}=2^{19.524288}$

2. Bad approach

- Calculate $x^{y} \bmod N$ by repeatedly multiplying by x modulo N

$$
x \bmod N \rightarrow x^{2} \bmod N \rightarrow x^{3} \bmod N \rightarrow \ldots, \rightarrow x^{y} \bmod N
$$

- $y-1 \approx 2^{500}$ multiplications, if y has 500 bits

Module Exponentiation $\left(x^{y} \bmod N=\right.$?)

1. Worst approach

- Calculate x^{y}, then calculate $x^{y} \bmod N$
- $\left(2^{19}\right)^{2^{19}}=2^{19 \cdot 524288}$

2. Bad approach

- Calculate $x^{y} \bmod N$ by repeatedly multiplying by x modulo N

$$
x \bmod N \rightarrow x^{2} \bmod N \rightarrow x^{3} \bmod N \rightarrow \ldots, \rightarrow x^{y} \bmod N
$$

- $y-1 \approx 2^{500}$ multiplications, if y has 500 bits

3. Best approach (geometrically calculate the product)

$$
x \bmod N \rightarrow x^{2} \bmod N \rightarrow x^{4} \bmod N \rightarrow \ldots, \rightarrow x^{2\lfloor\log y\rfloor} \bmod N
$$

$$
\begin{gathered}
x^{y}=\left\{\begin{array}{cl}
\left(x^{\lfloor y / 2\rfloor}\right)^{2} & \text { if } y \text { is even } \\
x \cdot\left(x^{\lfloor y / 2\rfloor}\right)^{2} & \text { if } y \text { is odd. }
\end{array}\right. \\
x^{25}=x^{11001_{2}}=x^{10000_{2}} \cdot x^{1000_{2}} \cdot x^{1_{2}}=x^{16} \cdot x^{8} \cdot x^{1} .
\end{gathered}
$$

Euclid Algorithm $(\operatorname{gcd}(a, b))$

Given two integers a and b, what is the largest integer that divides both - greatest common divisor?

Theorem
Let $a \geq b . \operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)=\operatorname{gcd}(a-b, b)$.
Proof.
?
$\operatorname{gcd}(25,11)=?$

Extension of Euclid's Algorithm

Assume d is the greatest common divisor of a and b, how can we check this?

Lemma

If d divides both a and b, and $d=a \cdot x+b \cdot y$ for some integers of x and y, then necessarily $d=\operatorname{gcd}(a, b)$.

Proof.

?

1. $\operatorname{gcd}(65,40)=$?
2. $65 \cdot x+40 \cdot y=\operatorname{gcd}(65,40)$
3. $\operatorname{gcd}(1239,735)=$?
4. $1239 \cdot x+735 \cdot y=\operatorname{gcd}(65,40)$

Modular Division $-a \cdot x \equiv 1(\bmod N)$

Definition

x is the multiplicative inverse of a modulo N if $a \cdot x \equiv 1(\bmod N)$
Lemma
x, if it exists, is unique.
Proof.
?
Lemma
If $\operatorname{gcd}(a, N)=1, x$ must exist.
Proof.
?

Chapter 1 of DPV - Algorithms with Numbers

- Foundations

1. Basic Arithmetic
2. Modular Arithmetic
3. Primality Testing

- Applications

1. Cryptography
2. Universal Hashing

Primality Testing

Tell whether a number is a prime without factoring it.

Theorem

Fermat's little theorem. If p is prime, then for every $1 \leq a<p$,

$$
a^{p-1} \equiv 1(\bmod p)
$$

Lemma

$$
\begin{aligned}
(S=\{1,2, \ldots, p-1\} \cdot a) \bmod p & =S \\
(p-1)! & \equiv a^{p-1} \cdot(p-1)!(\bmod p)
\end{aligned}
$$

Fermat's test

Fermat's Last Theorem

Figure:
http://jeff560.tripod.com

Figure: http://www.fafamonge.com/images

Generate Random Primes

Theorem
Langange's prime number theorem. Let $\pi(x)$ be the number of primes $\leq x$. Then $\pi(x) \approx \frac{x}{\ln x}$, or more precisely,

$$
\lim _{x \rightarrow+\infty} \frac{\pi(x)}{(x / \ln x)}=1
$$

function random-prime(n)

```
while()
    Pick a random n-bit number N;
    Run a primality test on N;
    if (test is passed)
        return N;
```


Chapter 1 of DPV - Algorithms with Numbers

- Foundations

1. Basic Arithmetic
2. Modular Arithmetic
3. Primality Testing

- Applications

1. Cryptography
2. Universal Hashing

Rivest-Shamir-Adelman (RSA) — Public Key System

1. Anybody can send a message to anybody else using publicly available information
2. Each person has a public key known to the whole world and a secret key known only to him- or herself
3. When Alice wants to send message x to Bob, she encodes it using Bobs public key. Bob decrypts it using his secret key

Rivest-Shamir-Adelman (RSA) — Public Key System

1. Anybody can send a message to anybody else using publicly available information
2. Each person has a public key known to the whole world and a secret key known only to him- or herself
3. When Alice wants to send message x to Bob, she encodes it using Bobs public key. Bob decrypts it using his secret key
4. Approach

Think of messages from Alice to Bob as numbers $(\bmod N)$

Public Key Cryptography

Pick any 2 primes p and q. Let $N=p \cdot q$
For any $e \equiv 1(\bmod (p-1) \cdot(q-1))$:

Public Key Cryptography

Pick any 2 primes p and q. Let $N=p \cdot q$
For any $e \equiv 1(\bmod (p-1) \cdot(q-1))$:

1. The mapping $x \rightarrow x^{e} \bmod N$ is a bijection on $\{0,1, \ldots, N-1\}$.

- A reasonable way to encode x

Public Key Cryptography

Pick any 2 primes p and q. Let $N=p \cdot q$
For any $e \equiv 1(\bmod (p-1) \cdot(q-1))$:

1. The mapping $x \rightarrow x^{e} \bmod N$ is a bijection on $\{0,1, \ldots, N-1\}$.

- A reasonable way to encode x

2. Let d be the inverse of $e \bmod (p-1) \cdot(q-1)$. Then, $\forall x \in\{0,1, \ldots, N-1\}:$

$$
\left(x^{e}\right)^{d} \equiv x(\bmod N)
$$

- A reasonable way to decode x

Proof of RSA

1. (2.) implies (1.) since the mapping is invertible
2. e is invertible module $(p-1) \cdot(q-1)$ because e is relatively prime to this number
3. $e \cdot d \equiv 1 \bmod (p-1) \cdot(q-1)$, then,
$e \cdot d=1+k \cdot(p-1) \cdot(q-1)$ for some k. Show

$$
x^{e \cdot d}-x=x^{1+k \cdot(p-1) \cdot(q-1)}-x
$$

is always $0(\bmod N)$

RSA: R Rivest, A. Shamir and L. Adleman (MIT)

1. Bob picks up 2 large prime numbers p and q. His public key is ($N=p \cdot q, e$).
$e \equiv 1(\bmod (p-1) \cdot(q-1))$
Bob's secret key is d, $d \cdot e \equiv 1(\bmod (p-1) \cdot(q-1))$
2. Alice sends Bob $y=x^{e} \bmod N$
3. Bob decodes x by computing $y^{d} \bmod N$
4. Given N, e, and $y=x^{e} \bmod N$, it is computational intractable to determine x
5. FACTORING is HARD

Chapter 1 of DPV - Algorithms with Numbers

- Foundations

1. Basic Arithmetic
2. Modular Arithmetic
3. Primality Testing

- Applications

1. Cryptography
2. Universal Hashing

Hashing Table

- Dictionary

Given a universe U of possible elements, maintain a subset $S \subseteq U$ so that inserting, deleting, and searching in S is efficient

- Challenge

Universe U can be extremely large so defining an array of size $|U|$ is infeasible

- Applications

File systems, databases, Google, compilers, checksums P2P networks, associative arrays, cryptography, web caching, etc

Hashing Table

fast access + efficient storage random function + consistent function distribution is unknown

Hashing

1. Hash function

$$
h: U \rightarrow\{0,1, \ldots, n-1\}
$$

2. Hashing

Create an array H of size n. When processing element $u \in U$, access array element $H[h(u)$]
3. Collision

When $h(u)=h(v)$ but $u \neq v$

- A collision is expected after $\Omega(\sqrt{n})$ random insertions Why? birthday paradox - next Lecture
- Separate chaining $H[i]$ stores linked list of elements u with $h(u)=i$

Hashing Performance

1. Idealistic hash function

Maps m elements uniformly at random to n hash slots
a. Running time depends on length of chains
b. Average length of chain $=m / n$
c. Choose $n \approx m \Rightarrow$ on average $O(1)$ per insert, lookup, or delete
2. Universal hashing
a. For any pair of elements $u, v \in U$

$$
\operatorname{Pr}_{h \in H}[h(u)=h(v)] \leq \frac{1}{n}
$$

b. Can select random h efficiently
c. Can compute $h(u)$ efficiently

Universal Hashing

Theorem
Universal hashing property. Assume H be a universal class of hash functions. Let $h \in H$ be chosen uniformly at random from H; and let $u \in U$.
Then, for any subset $S \subseteq U$ of size at most n, the expected number of items in S that collide with u is at most 1

Proof.
?

A Universal Hashing

For any 4 coefficients $a_{1}, a_{2}, a_{3}, a_{4} \in\{0,1, \ldots, n-1\}$, write $a=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ and define

$$
h_{a}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum_{i=1}^{4}\left(a_{i} \cdot x_{i} \bmod n\right)
$$

Theorem
Consider any pair of distinct IP addresses $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ and $y=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$. If the coefficients $a=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ are chosen uniformly at random from $\{0,1, \ldots, n-1\}$, then

$$
\operatorname{Pr}\left\{h_{a}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=h_{a}\left(y_{1}, y_{2}, y_{3}, y_{4}\right)\right\}=\frac{1}{n}
$$

Proof.
?

