
CS483 Design and Analysis of Algorithms

Lectures 2-3 Algorithms with Numbers

Instructor: Fei Li

lifei@cs.gmu.edu with subject: CS483

Office hours: STII, Room 443, Friday 4:00pm - 6:00pm or by
appointments

Course web-site:
http://www.cs.gmu.edu/∼lifei/teaching/cs483 fall08/

Figures unclaimed are from books “Algorithms” and “Introduction
to Algorithms”.



Chapter 1 of DPV — Algorithms with Numbers

I Foundations

1. Basic Arithmetic
2. Modular Arithmetic
3. Primality Testing

I Applications

1. Cryptography
2. Universal Hashing



Basic Arithmetic — Addition

Theorem
The sum of any three single-digit numbers is at most two digits
long, no matter what the base is

9 + 9 + 9 = 27, in decimal

1 + 1 + 1 = 11, in binary

Proof.
?



Basic Arithmetic — Addition

Remark
Each individual sum is a two-digit number, the carry is always a
single digit, and so at any given step, three single-digit numbers
are added

Addition runs in linear O(n), when two n-bits numbers are added



Basic Arithmetic — Multiplication

1. Is it correct?

2. Running time?

3. Can we do better?

I Divide-and-Conquer:
≈ O(n1.59) (in Chapter 2)



Basic Arithmetic — Division

I Input: Two n-bit integers x and y , where y ≥ 1

I Output: The quotient and remainder of x divided by y

function divide(x, y)

if (x = 0)
return (q, r) = (0, 0);

(q, r) = divide(b x / 2 c, y);
q = 2 × q; r = 2 × r;

if (x is odd)
r = r + 1;

if (r ≥ y)
r = r - y; q = q + 1;

return (q, r);



Chapter 1 of DPV — Algorithms with Numbers

I Foundations

1. Basic Arithmetic
2. Modular Arithmetic
3. Primality Testing

I Applications

1. Cryptography
2. Universal Hashing



Modular Arithmetic
Definition
Modular arithmetic is a system limiting numbers to a predefined range
[0, 1, . . . , N − 1]

x and y are congruent modulo N ⇔ N divides (x − y)

x modulo N is r ⇔ x = q · N + r ⇔ x ≡ r (mod N), with 0 ≤ r < N

Figure: http://www.mathworks.com



Modular Arithmetic

Modular arithmetic deals with all integers and divide them into N
equivalence classes, each of the form {i + k · N, k ∈ Z} for some i
between 0 and N − 1
For each class, i is the representative

Remark
Substitution rule. If x ≡ x ′ (mod N) and y ≡ y ′ (mod N), then,

x + y ≡ x ′ + y ′ (mod N) and x · y ≡ x ′ · y ′ (mod N)

x + (y + z) ≡ (x + y) + z (mod N), Associativity

x · y ≡ y · x (mod N), Commutativity

x · (y + z) ≡ x · y + y · z (mod N), Distributivity

2345 ≡? (mod 31)



Modular Addition and Multiplication

1. Modular addition

I A regular addition (0 ≤ x + y ≤ 2 · (N − 1)) and possibly a
subtraction

I Running time O(n), where n = dlog Ne

2. Modular multiplication

I A regular multiplication (0 ≤ x · y ≤ (N − 1)2) and divide it by
N

I Running time O(n3)

3. Modular exponentiation

I Algorithms for xy (mod N)?
I Running time?

4. Modular division

I Algorithms for a·? ≡ 1 (mod N)?
I Running time?



Modular Addition and Multiplication

1. Modular addition

I A regular addition (0 ≤ x + y ≤ 2 · (N − 1)) and possibly a
subtraction

I Running time O(n), where n = dlog Ne

2. Modular multiplication

I A regular multiplication (0 ≤ x · y ≤ (N − 1)2) and divide it by
N

I Running time O(n3)

3. Modular exponentiation

I Algorithms for xy (mod N)?
I Running time?

4. Modular division

I Algorithms for a·? ≡ 1 (mod N)?
I Running time?



Modular Addition and Multiplication

1. Modular addition

I A regular addition (0 ≤ x + y ≤ 2 · (N − 1)) and possibly a
subtraction

I Running time O(n), where n = dlog Ne

2. Modular multiplication

I A regular multiplication (0 ≤ x · y ≤ (N − 1)2) and divide it by
N

I Running time O(n3)

3. Modular exponentiation

I Algorithms for xy (mod N)?
I Running time?

4. Modular division

I Algorithms for a·? ≡ 1 (mod N)?
I Running time?



Modular Addition and Multiplication

1. Modular addition

I A regular addition (0 ≤ x + y ≤ 2 · (N − 1)) and possibly a
subtraction

I Running time O(n), where n = dlog Ne

2. Modular multiplication

I A regular multiplication (0 ≤ x · y ≤ (N − 1)2) and divide it by
N

I Running time O(n3)

3. Modular exponentiation

I Algorithms for xy (mod N)?
I Running time?

4. Modular division

I Algorithms for a·? ≡ 1 (mod N)?
I Running time?



Module Exponentiation (xy mod N =?)
1. Worst approach

I Calculate xy , then calculate xy mod N
I (219)219

= 219·524288

2. Bad approach
I Calculate xy mod N by repeatedly multiplying by x modulo N

x mod N → x2 mod N → x3 mod N → . . . ,→ xy mod N

I y − 1 ≈ 2500 multiplications, if y has 500 bits

3. Best approach (geometrically calculate the product)

x mod N → x2 mod N → x4 mod N → . . . ,→ x2blog yc
mod N.



Module Exponentiation (xy mod N =?)
1. Worst approach

I Calculate xy , then calculate xy mod N
I (219)219

= 219·524288

2. Bad approach
I Calculate xy mod N by repeatedly multiplying by x modulo N

x mod N → x2 mod N → x3 mod N → . . . ,→ xy mod N

I y − 1 ≈ 2500 multiplications, if y has 500 bits

3. Best approach (geometrically calculate the product)

x mod N → x2 mod N → x4 mod N → . . . ,→ x2blog yc
mod N.



Module Exponentiation (xy mod N =?)
1. Worst approach

I Calculate xy , then calculate xy mod N
I (219)219

= 219·524288

2. Bad approach
I Calculate xy mod N by repeatedly multiplying by x modulo N

x mod N → x2 mod N → x3 mod N → . . . ,→ xy mod N

I y − 1 ≈ 2500 multiplications, if y has 500 bits

3. Best approach (geometrically calculate the product)

x mod N → x2 mod N → x4 mod N → . . . ,→ x2blog yc
mod N.



Euclid Algorithm (gcd(a, b))

Given two integers a and b, what is the largest integer that divides
both — greatest common divisor?

Theorem
Let a ≥ b. gcd(a, b) = gcd(b, a mod b) = gcd(a− b, b).

Proof.
?

gcd(25, 11) =?



Extension of Euclid’s Algorithm

Assume d is the greatest common divisor of a and b, how can we
check this?

Lemma
If d divides both a and b, and d = a · x + b · y for some integers of
x and y, then necessarily d = gcd(a, b).

Proof.
?

1. gcd(65, 40) =?

2. 65 · x + 40 · y = gcd(65, 40)

3. gcd(1239, 735) =?

4. 1239 · x + 735 · y = gcd(65, 40)



Modular Division — a · x ≡ 1 (mod N)

Definition
x is the multiplicative inverse of a modulo N if a · x ≡ 1 (mod N)

Lemma
x, if it exists, is unique.

Proof.
?

Lemma
If gcd(a,N) = 1, x must exist.

Proof.
?



Chapter 1 of DPV — Algorithms with Numbers

I Foundations

1. Basic Arithmetic
2. Modular Arithmetic
3. Primality Testing

I Applications

1. Cryptography
2. Universal Hashing



Primality Testing
Tell whether a number is a prime without factoring it.

Theorem
Fermat’s little theorem. If p is prime, then for every 1 ≤ a < p,

ap−1 ≡ 1 (mod p)

Lemma

(S = {1, 2, . . . , p − 1} · a) mod p = S

(p − 1)! ≡ ap−1 · (p − 1)! (mod p)



Fermat’s Last Theorem

Figure:
http://jeff560.tripod.com

Figure:
http://eskesthai.blogspot.com

Figure: http://www.fafamonge.com/images



Generate Random Primes

Theorem
Langange’s prime number theorem. Let π(x) be the number of
primes ≤ x. Then π(x) ≈ x

ln x , or more precisely,

lim
x→+∞

π(x)

(x/ ln x)
= 1

function random-prime(n)

while()
Pick a random n-bit number N;

Run a primality test on N;

if (test is passed)
return N;



Chapter 1 of DPV — Algorithms with Numbers

I Foundations

1. Basic Arithmetic
2. Modular Arithmetic
3. Primality Testing

I Applications

1. Cryptography
2. Universal Hashing



Rivest-Shamir-Adelman (RSA) — Public Key System

1. Anybody can send a message to anybody else using publicly
available information

2. Each person has a public key known to the whole world and a
secret key known only to him- or herself

3. When Alice wants to send message x to Bob, she encodes it
using Bobs public key. Bob decrypts it using his secret key

4. Approach
Think of messages from Alice to Bob as numbers (mod N)



Rivest-Shamir-Adelman (RSA) — Public Key System

1. Anybody can send a message to anybody else using publicly
available information

2. Each person has a public key known to the whole world and a
secret key known only to him- or herself

3. When Alice wants to send message x to Bob, she encodes it
using Bobs public key. Bob decrypts it using his secret key

4. Approach
Think of messages from Alice to Bob as numbers (mod N)



Public Key Cryptography

Pick any 2 primes p and q. Let N = p · q
For any e ≡ 1 (mod (p − 1) · (q − 1)):

1. The mapping x → xe mod N is a bijection on
{0, 1, . . . ,N − 1}.

I A reasonable way to encode x

2. Let d be the inverse of e mod (p − 1) · (q − 1). Then,
∀x ∈ {0, 1, . . . ,N − 1}:

(xe)d ≡ x (mod N)

I A reasonable way to decode x



Public Key Cryptography

Pick any 2 primes p and q. Let N = p · q
For any e ≡ 1 (mod (p − 1) · (q − 1)):

1. The mapping x → xe mod N is a bijection on
{0, 1, . . . ,N − 1}.

I A reasonable way to encode x

2. Let d be the inverse of e mod (p − 1) · (q − 1). Then,
∀x ∈ {0, 1, . . . ,N − 1}:

(xe)d ≡ x (mod N)

I A reasonable way to decode x



Public Key Cryptography

Pick any 2 primes p and q. Let N = p · q
For any e ≡ 1 (mod (p − 1) · (q − 1)):

1. The mapping x → xe mod N is a bijection on
{0, 1, . . . ,N − 1}.

I A reasonable way to encode x

2. Let d be the inverse of e mod (p − 1) · (q − 1). Then,
∀x ∈ {0, 1, . . . ,N − 1}:

(xe)d ≡ x (mod N)

I A reasonable way to decode x



Proof of RSA

1. (2.) implies (1.) since the mapping is invertible

2. e is invertible module (p − 1) · (q − 1) because e is relatively
prime to this number

3. e · d ≡ 1 mod (p − 1) · (q − 1), then,
e · d = 1 + k · (p − 1) · (q − 1) for some k . Show

xe·d − x = x1+k·(p−1)·(q−1) − x

is always 0 (mod N)



RSA: R Rivest, A. Shamir and L. Adleman (MIT)

http://www.usc.edu/dept/molecular-science/pictures

1. Bob picks up 2 large prime
numbers p and q. His public key is
(N = p · q, e).
e ≡ 1 (mod (p − 1) · (q − 1))
Bob’s secret key is d ,
d · e ≡ 1 (mod (p − 1) · (q − 1))

2. Alice sends Bob y = xe mod N

3. Bob decodes x by computing
yd mod N

1. Given N, e, and
y = xe mod N, it is
computational
intractable to
determine x

2. FACTORING is
HARD



Chapter 1 of DPV — Algorithms with Numbers

I Foundations

1. Basic Arithmetic
2. Modular Arithmetic
3. Primality Testing

I Applications

1. Cryptography
2. Universal Hashing



Hashing Table

I Dictionary
Given a universe U of possible elements, maintain a subset
S ⊆ U so that inserting, deleting, and searching in S is
efficient

I Challenge
Universe U can be extremely large so defining an array of size
|U| is infeasible

I Applications
File systems, databases, Google, compilers, checksums P2P
networks, associative arrays, cryptography, web caching, etc



Hashing Table

fast access + efficient storage
random function + consistent function
distribution is unknown



Hashing

1. Hash function

h : U → {0, 1, . . . , n − 1}

2. Hashing
Create an array H of size n. When processing element u ∈ U,
access array element H[h(u)]

3. Collision
When h(u) = h(v) but u 6= v

I A collision is expected after Ω(
√

n) random insertions
Why? birthday paradox — next Lecture

I Separate chaining
H[i ] stores linked list of elements u with h(u) = i



Hashing Performance

1. Idealistic hash function
Maps m elements uniformly at random to n hash slots

a. Running time depends on length of chains
b. Average length of chain = m/n
c. Choose n ≈ m⇒ on average O(1) per insert, lookup, or delete

2. Universal hashing

a. For any pair of elements u, v ∈ U

Pr
h∈H

[h(u) = h(v)] ≤ 1

n

b. Can select random h efficiently
c. Can compute h(u) efficiently



Universal Hashing

Theorem
Universal hashing property. Assume H be a universal class of
hash functions. Let h ∈ H be chosen uniformly at random from H;
and let u ∈ U.
Then, for any subset S ⊆ U of size at most n, the expected
number of items in S that collide with u is at most 1

Proof.
?



A Universal Hashing

For any 4 coefficients a1, a2, a3, a4 ∈ {0, 1, . . . , n − 1}, write
a = (a1, a2, a3, a4) and define

ha(x1, x2, x3, x4) =
4∑

i=1

(ai · xi mod n)

Theorem
Consider any pair of distinct IP addresses x = (x1, x2, x3, x4) and
y = (y1, y2, y3, y4). If the coefficients a = (a1, a2, a3, a4) are chosen
uniformly at random from {0, 1, . . . , n − 1}, then

Pr{ha(x1, x2, x3, x4) = ha(y1, y2, y3, y4)} =
1

n

Proof.
?


