(CS483 Design and Analysis of Algorithms
Review: Chapters 4 - 8, DPV

Instructor: Fei Li
lifei@cs.gmu.edu with subject: CS483

Office hours: STII, Room 443, Friday 4:00pm - 6:00pm or by
appointments

Course web-site:
http://www.cs.gmu.edu/~1lifei/teaching/cs483_£all08/
Figures unclaimed are from books “Algorithms” and “Introduction
to Algorithms”



Announcements

©0 © 000

Pick up solutions of assignment 8.
| add office hours: 2:00pm - 6:00pm December 5th, Friday.

The final exam is scheduled on December 10th, Wednesday. 1:30pm - 4:15pm.
Innovation Hall 136 (this classroom). Wish you luck in all your finals!

You are allowed to have one-page cheat sheet (hand-written,
front-and /or-back). No calculator. Closed textbook.

I will bring scratch paper for use.

Please take 5-min to fill in the evaluation form and return it to the TA, Cynthia.

Thank you!
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Final Covers:

Q 42 44,46
Q51,52

@ 61,6263, 6.4
Q 71,7276

@ 81,8283
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Requirements:

@ Definitions: P, NP, NP-complete, flow, cut
@ Algorithms:

Dijkstra & Bellman-Ford (greedy)

Kruskal & Prim (greedy)

Huffman coding (greedy)

Dynamic programming, knapsack (using dynamic programming
approaches) (dynamic programming)

linear formulation, linear programming in geometric interpretation
maximum-flow min-cut (iterative approach)

proving NP-completeness (reduction)

©000 60000

(the simplex algorithms)

© If necessary, | will give some well-known NPC problems for your use in your
reduction.
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Chapter 4: Paths in Graphs

@ Breath-First Search
@ Dijkstra’s Algorithm
© Shortest path with negative edges
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Breath-First Search

procedure bfs(G,s)

Input: Graph G =(V,E), directed or undirected; vertex seV
Output: For all vertices u reachable from s, dist(u) is set
to the distance from s to u.

for all ueV:
dist(u) =00

dist(s) =0
Q = [s] (queue containing just s)
while Q is not empty:
u=-eject(Q)
for all edges (u.v) € E:
if dist(v) =o00:
inject(Q,v)
dist(v) =dist(u) +1



Breath-First Search
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Analysis of BFS

BFS runs in O(m + n) time if the graph is given by its adjacency representation, n is
the number of nodes and m is the number of edges

When we consider node u, there are deg(u) incident edges (u, v). Thus, the total
time processing edges is ) o\ deg(u) =2-m O
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Dijkstra's Algorithm

Annotate every edge e € E with a length le. If e = (u, V), let le = I(u,v) = luv
Input: Graph G = (V, E) whose edge lengths . are positive integers
Output: The shortest path from s to t

9—"@

Cost of path s-2-3-5-1
= 9+23+2+16
= 48.

from Wayne's slides on “Algorithm Design”
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Dijkstra’s Algorithm

@ Maintain a set of explored nodes S for which we have determined the shortest
path distance d(u) from s to u
@ Initialize S = {s}, d(s) =0

© Repeatedly choose unexplored node v which minimizes

w(v) =

min  d(u) + le
e=(u,v),ucS
@ Add vto S, and set d(v) = 7(v)

from Wayne's slides on “Algorithm Design”

Do
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Dijkstra's Algorithm

Dijkstra’s algorithm finds the shortest path from s to any node v: d(v) is the length
of the shortest s ~ v path

from Wayne's slides on “Algorithm Design”

Theorem

The overall running time of Dijkstra’s algorithm is O((|V| + |E|) - log |V])

Show the figure in the textbook.
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Shortest Paths in the Presence of Negative Edges

Simply update all the edges, |V| — 1 times

Dijkstra’s algorithm will not work if there are negative edges

Tteration
Node| O | 1|2 |3 | 4|5 /|67
S 0] 0 0 0 0 0 010
A oo | 10 10| b b b 5 | b
B > |oo|oc |10 6|5 |55
C o |oo|oo|oo |11 7| 6|6
D x| o0 |oo ||| 14]10] 9
E co|loo |12 8 7 7 7|7
F ©|lecc| 91919999
G | 8 3 3 o) 3 8 | 8
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Chapter 5: Greedy Algorithms

@ Minimum Spanning Tree
@ Huffman Coding
© Horn Formulas
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Greedy Approach

Idea. Greedy algorithms build up a solution piece by piece, always choosing the next

piece that offers the most obvious and immediate benefit
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Minimum Spanning Tree

Definition

Minimum Spanning Tree (MST). Given a connected graph G = (V, E) with
real-valued edge weights c., an MST is a subset of the edges T C E such that T is a
spanning tree whose sum of edge weights is minimized

%w (6?\5 e
yf\jb dﬁﬁ/%{b

6=(V,E) e 1¢.=50

’ ecT

from Wayne's slides on “Algorithm Design”
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Greedy Algorithms

@ Kruskal’s algorithm
Start with T = (0. Consider edges in ascending order of cost. Insert edge e in T
unless doing so would create a cycle

@ Reverse-Delete algorithm
Start with T = E. Consider edges in descending order of cost. Delete edge e
from T unless doing so would disconnect T

© Prim’s algorithm
Start with some root node s and greedily grow a tree T from s outward. At
each step, add the cheapest edge e to T that has exactly one endpoint in T
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Kruskal’s Algorithm

Figure 5.1 The minimum spanning tree found by Kruskal’s algorithm.
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Kruskal’s Algorithm

Figure 5.1 The minimum spanning tree found by Kruskal’s algorithm.
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@ makeset(x): create a singleton set containing just x
@ find(x): to which set does x belong?

© union(x, y): merge the set containing x and y
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Kruskal’s Algorithm

procedure kruskal (G, w)

Input: A connected undirected graph G = (FE) with edge weights w;
output: A minimum spanning three defined by the edges X

for all uel:
makeset (u)

X=0
sort the edges E by weight

for all edges {w.v} € E, in increasing order of weight:
if find(w) £ find(v):
add edge {w, v} to X
union(u, v)

Running time = |V| makeset +2-|E| find + (]V|— 1) union
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Correctness of Greedy Algorithm

Definition

Cut. A cut is any partition of the vertices into two groups, S and V — S

Lemma

Let S be any subset of nodes, and let e be the min-cost edge with exactly one
endpoint in S. Then the MST contains e

Proof.

—h |

from Wayne's slides on “Algorithm Design”
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Correctness of Greedy Algorithm
Definition

Cycle. Set of edges the form (a, b), (b, ¢), (¢, d),...,(y,z),(z,a)

Lemma

Let C be any cycle in G, and let f be the max cost edge belonging to C. Then the
MST does not contain f

Proof.

_h |

from Wayne's slides on “Algorithm Design”
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Prim's Algorithm

@ Initialize S = any node
@ Apply cut property to S

© Add min-cost edge in cut-set corresponding to S to T, and add one new

explored node u to S

Figure 5.1 The minimum spanning tree found by Kruskal’s algorithm.
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Huffman Coding

Morse Code
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Image adapted from Wikipedia.
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Huffman Coding

Definition

Prefix-free. No codeword can be a prefix of another codeword
{0, 01, 11, 001} ?

Any prefix-free encoding can be represented by a full binary tree.
{0, 100, 101, 11} 7?

Figure 5.10 A prefix-free encoding. Frequencies are shown in square brackets

Symbol | Codeword
A 0
B 100
C 101
D 11

B [3] C [20]

n
cost of tree = Z f; - (depth of the ith symbol in tree)
i=1
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Huffman Coding

procedure Huffman(f)

Input: An array f[l---n] of frequencies
Output: An encoding tree with n leaves

let H be a priority queue of integers, ordered by f
for i=1 to n: insert(H,1)
for k=n+1 to 2n—1:

i =deletemin(H), j=deletemin(H)

create a node numbered k with children i,j

flkl = flil+ f[j]

insert(H, k)

u]
o)
I
i
it
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Huffman Coding

a(0.4) a(0.4)
b(0.35) b(0.35)

c(0.2) c(0.2) 0.25
d(0.05) d(0.0SJ

a(0.4) 0
a(0.4) 1

b(0.35)——— 056 0 |

cop o= [T

d(0.05) C(O'z)} 1
d(0.05) 1

1

http://rio.ecs.umass.edu/ gao/ece665_08/slides/Rance.ppt

26
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Horn Formula

The most primitive object in a Horn formula is a Boolean variable, taking value either
true or false

A literal is either a variable x or its negation x

There are two kinds of clauses in Horn's formulas

@ Implications

(zAw)=u

@ Pure negative clauses
avEVy

Questions. To determine whether there is a consistent explanation: an assignment of

true/false values to the variables that satisfies all the clauses
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Satisfying Assignment

Input: A Horn formula
Output: A satisfying assignment, if one exists

function horn
set all variables to false;

while (there is an implication that is not satisfied)
set the right-hand variable of the implication to true;

if (all pure negative clauses are satisfied)
return the assignment;

else
return ‘‘formula is not satisfiable’’;

(WAyAZ)=x,(xN2)=>w,x=>y,=x,(xANy)=>w,(WVXVYy),Z
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Chapter 6: Dynamic Programming

@ Shortest Path

@ Longest Increasing Subsequences
© Edit Distance

@ Knapsack
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Algorithmic Paradigms

o
2]

Greed

Build up a solution incrementally, optimizing some local criterion in each step
Divide-and-conquer

Break up a problem into two sub-problems, solve each sub-problem

independently, and combine solution to sub-problems to form solution to
original problem

Dynamic programming

Identify a collection of subproblems and tackling them one by one, smallest first,
using the answers to smaller problems to help figure out larger ones, until the
whole lot of them is solved

30
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Shortest Paths in Directed Acyclic Graphs (DAG)

Remark

The special distinguishing feature of a DAG is that its node can be linearized.

Figure 6.1 A dag and its linearization (topological ordering).

initialize all dist() values to o

dist(s) =0

for each ve V\{s}, in linearized order:
dist(v) = ming,mee{dist(u) +1(u, v)}

dist(D) = min{dist(B) + 1, dist(C) + 3}.

This algorithm is solving a collection of subproblems, {dist(u) : u € V'}. We start with

the smallest of them, dist(s) = 0.
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Some Thoughts on Dynamic Programming

Remark
@ /n dynamic programming, we are not given a DAG; the DAG is implicit.

@ Its nodes are the subproblems we define, and its edges are the dependencies
between the subproblems: If to solve subproblem B we need to answer the
subproblem A, then there is a (conceptual) edge from A to B. In this case, A is
thought of as a smaller subproblems than B — and it will always be smaller, in
an obvious sense.

Problem

How to solve/calculate above subproblems’ values in Dynamic Programming?

?
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Longest Increasing Subsequences

Definition

The input is a sequence of numbers a1, ..., a,. A subsequence is any subset of these
numbers taken in order, of the form aji, ajp,...,ajx where 1 < i1 < i <...<ix <n,
and an increasing subsequence is one in which the numbers are getting strictly larger.
The task is to find the increasing subsequence of greatest length.

5,2,8,6,3,6,9,71is 2,3,6,9:
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Longest Increasing Subsequences
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Longest Increasing Subsequences

Figure 6.2 The dag of increasing subsequences.
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Longest Increasing Subsequences

Figure 6.2 The dag of increasing subsequences.

for j=1,2, ... n
1

L(j) = 1 + maxL(i): (i, j) € E;

return max _j L(j);
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Longest Increasing Subsequences

Remark

There is an ordering on the subproblems, and a relation that shows how to solve a
subproblem given the answers to “smaller” subproblems, that is, subproblems that
appear earlier in the ordering.

Theorem

The algorithm runs in polynomial time O(n?).

Proof.

L) =1+ max{L(i): (i,j) € E}.

|D

Problem

Why not using recursion? For example,

L(G) = 1+ max{L(1),L(2),...,L( — 1)}.

Solution
Bottom-up versus (top-down + divide-and-conquer).
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Edit Distance

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]
. Gap penalty 3; mismatch penalty op.
. Cost = sum of gap and mismatch penalties.

CCTACT .CTGACCTACT
CCTACT CCTGAC.TACT

Opc+ Ogr+ Qagt 20ca 28+ acp

from Wayne's slides on “Algorithm Design”

Problem

If we use the brute-force method, how many alignments do we have?

?
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Edit Distance

@ Goal. Given two strings X = x1x2...xm and Y = y1y» ... yn, find alignment of
minimum cost. Call this problem E(m, n).

@ Subproblem E(i, ).
Define diff (i,j) = 0 if x[i] = y[j] and diff(i,j) = 1 otherwise

function edit-distance(X, Y)

for i =0, 1, 2, ... m
E(i, 0) = i;

for j =1, 2, ... n
EC0, j) = j;

for i =1, 2, . m
for j =1, 2, ... n
E(i, j) =min { EG - 1, j) + 1, EG, j - 1) + 1,
E(i -1, j - 1) + diff (i, j) };

return E(m, n);
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Edit Distance

Figure 6.4 (a) The table of subproblems. Entries E( —1,j — 1), E(i — 1, j),
and E (i, j — 1) are needed to fill in E (i, j). (b) The final table of values found by
dynamic programming.

(a) (b)
i1 n P OLYNOMTIAL
0 1 2 3 4 5 6 7 8 9 10
E{1 1 2 3 4 5 6 7 8 9 10
X2 2 2 3 4 5 6 7 8 9 10
P|3 2 3 3 4 5 6 7 8 9 10
=it | Ol 4 3 2 3 4 5 5 6 7 8 9
s =V N|5 4 3 3 4 4 5 6 7 8 9
E{6 5 4 4 4 5 5 6 7 8 9
N|7 6 5 5 5 4 5 6 7 8 9
T8 7 6 6 6 5 5 6 7 8 9
Il9 8 7 7 7 6 6 6 6 7 8
— Al 9 8 8 8 7 7 7 7 6 7
" Ll1l 10 9 8 9 8 8 8 8 T 6

edit-distance runs in time O(m - n)
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The Underlying DAG

Remark

Every dynamic program has an underlying DAG structure: Think of each node as
representing a subproblem, and each edge as a precedence constraint on the order in
which the subproblems can be tackled.

Having nodes uy, ..., ux point to v means “subproblem v can only be solved once the
answers to uy, up, ..., U, are known”.

Remark

Finding the right subproblems takes creativity and experimentation.
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Solving Problems Using Dynamic Programming Approach

@ What is a subproblem?
Can you define it clearly?
@ What is the relation between a smaller-size subproblem and a larger-size
subproblem?
Can we get the solution of the larger one from the smaller one?
What is the dependency between them?
What is the “DAG"?
Is there a relationship between the optimality of a smaller subproblem and a
larger subproblem?
© How to solve this problem?
What is the running-time complexity?
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Knapsack

Knapsack Problem
Given n objects, each object i has weight w; and value v;, and a knapsack of capacity
W, find most valuable items that fit into the knapsack

http://en.wikipedia.org/wiki/Knapsack_problem
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Knapsack Problem

Subproblem:

K(w,j) = maximum value achievable using a knapsack of capacity w and items 1,2,...,;

Goal: K(W,n)
function knap-sack(W, S)
Initialize all K(O, j) = O and all K(w, 0) = O;
for j=1ton
forw=1to W
if (w_j > w)
K(w, j) = K@, j - 1);
else

K(w, j) = max{KGw, j - 1), K(w - w_j, j - 1) + v_j};

return K(W, n);
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Knapsack Algorithm
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from Wayne's slides on “Algorithm Design”
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Traveling Salesman Problems

Definition

(TSP). Start from his hometown, suitcase in hand, he will conduct a journey in which
each of his target cities is visited exactly once before he returned home. Given the
pairwise distance between cities, what is the best order in which to visit them, so as to
minimize the overall distance traveled?

. wwew beansholidoy com -
PREVIEWS MARCH 24 & 25 IN CINEMAS MARCH 30

A

Figure:

http://watching-movies-online.blogspot.com/2008/09/watch-mr-beans-holiday~hindi-dubbed.html
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Traveling Salesman Problems

Definition

(TSP). Start from his hometown, suitcase in hand, he will conduct a journey in which
each of his target cities is visited exactly once before he returned home. Given the
pairwise distance between cities, what is the best order in which to visit them, so as to
minimize the overall distance traveled?

Subproblem.
Let C(S,)) be the length of the shortest path visiting each node in S exactly once,
starting at 1 and ending at j.

Relation.
C(S,)) = in C(S—{},i dj;.
(S.J) = min, C(S =} )+ dj
c({1,1) =0
for s=2 to n:
for all subsets Sc{l.2,...,n} of size s and containing 1:

C(S, 1) =00
for all jeS j#1:
C(S, /) =min{C(S —{j}. D) +dj:ieSi#]j}
return min; C({1, ..., n}, j) +dj

There are at most 2™ - n subproblems, and each one takes linear time to solve. The
total running time is therefore O (n?2%).
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One of the Top 10 Algorithms in the 20th Century!

© Formulate a problem using a linear program (Section 7.1)
@ Solve a linear program using the simplex algorithm (Section 7.6)

© Applications: flows in networks; bipartite matching; zero-sum games (Sections

7.2-75)

FlgU F€. Father of Linear Programming and Simplex Algorithm: George Dantzig (1914 - 2005)

from http://en.wikipedia.org/wiki/George Dantzig
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Warm Up

Definition

Linear programming deals with satisfiability and optimization problems for linear
constraints.

Definition

A linear constraint is a relation of the form

31-X1<|>...+an~X,-,=b7

or
ar-x1+...+an-xp<b or ay-x1+...4+ap xa > b,

where the a; and b are constants and the x; are the unknown variables.

Definition

Satisfiability: Given a set of linear constraints, is there a value (xi, ..., xs) that
satisfies them all?

Definition

Optimization: Given a set of linear constraints, assuming there is a value (x1, ..., Xn)
that satisfies them all, find one which maximizes (or minimizes)

€1-X1+ ...+ Cn- Xn. 49 /81



A Toy Example without Necessity of Calculation — som eric schosts

Slides

Problem

You are allowed to share your time between two companies
@ company C; pays 1 dollar per hour;
@ company C, pays 10 dollars per hour.
Knowing that you can only work up to 8 hours per day, what schedule should you go
for?
Of course, work full-time at company C,.
@ Linear formulation:
x1 is the time spent at C; and x» the time spent at G,.
@ Constraints:
x1 >0, x0>0, x1 +x <8.

© Objective function:
max x1 + 10 xp.

@ Solution:
x1 =0, xp =8.
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Another Example With Geometrical Solution

Problem

Two products are produced: A and B. Per day, we make x; of A with a profit of 1
each, we make x» of B with profit 6.

x1 < 200 and x» < 300, and the total A and B is no more than 400. What is the best
choice of x; and xo at maximizing the profit?

Objective: max x; + 6-x
Subject to:  x; < 200
x < 300
x1+x2 < 400
x1,x2 > 0

Definition

The points that satisfy a single inequality are in a half-space.

Definition

The points that satisfy several inequalities are in the intersection of half-spaces. The
intersection of (finitely many) half-spaces is a convex polygon (2D) — the feasible
region.
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Any Algorithmic Observation?

An extreme point p is impossible to be expressed as a convex combination of two
other distinct points in the convex polygon.

The optimal solution, if it exists, is at some extreme point p.

© A naive algorithm (expensive!):

@ List all the possible vertices.

@ Find the optimal vertex (the one with the maximal value of the objective
function).

© Try to figure out whether it is a global maximum.

@ Our approach (the simplex algorithm):
@ Start at some extreme point.

@ Pivot from one extreme point to a neighboring one.

© Repeat until optimal.
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The Simplex Algorithm — Sketch

@ Start at some extreme point vi.

@ Pivot from one extreme point v; to a neighboring one vs.

@ v; should increase the value of the objective function.
@ Several strategies are available to select v;.

@ Repeat until optimal — reach a vertex where no improvement is possible.

Correctness?

Complexity analysis?
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The Simplex Algorithm

Consider a generic LP

—>T—
c X
—
b
0

1
IV IA

One each iteration, simplex has two tasks:

@ Check whether the current vertex is optimal (and if so, halt).
@ Determine where to move next.

@ Move from the origin by increasing some x; for which ¢; > 0. Until we hit
some other constraint.

That is, we release the tight constraint x; > 0 and increase x; until some other

inequality, previously loose, now become tight. At that point, we are at a new
vertex.

Both tasks are easy if the vertex happens to be at the origin. That is, if the vertex is
elsewhere, we will transform the coordinate system to move it to the origin.

Theorem

The objective is optimal when the coordinates of the local cost vector are all zero or
negatives.
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Simplex in Action

Initial LP: Current vertex: {@.®} (origin).
Objective value: 0.
max 2r; + 5x2
25 —z9 < 4 a Mo_ve: increase xa. )
1422 <9 @ (8) 18 released, (3) becomes tight. Stop at z; = 3.
—ni+r2 £ 3 @ New vertex {@. @} has local coordinates (yy,y2):
ry = 0 @ 3
s > 0 ® Y1 =71, Y2 = 35+x —r2
Rewritten LP: Current vertex: {3).3}.

max 15+ Ty — Sy2

Y+ Y2
3 — 2y
Yz

v

-y +yz2

IV IA 1A

"2

IA

W oo W=~

[CRCRCHCRE]

Objective value: 15.

Move: increase yi.
(@ 1s released, (2) becomes tight. Stop at y; = 1.

New vertex {@+ @] has local coordinates (zy,22):

21 = 3-3y+2p 2=

o = = = = 9ac
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Rewritten LP: Current vertex: {®.®}.
Objective value: 15.
max 15 + Ty — 5u2
yity < 7 0] Move: increase y.
m-2p <3 @ @ is released, (2) becomes tight. Stop at y, = L.
220 @ New vertex { @@} has local coordinates (zq,23):
vi =20 @
21 = 3-13 2y, 20 =
Syt <3 ® 1 h+2ys 2=
Rewritten LP: Current vertex: {@.D}.
Objective value: 22.
max 22 — %zl - ézg
In+dn < @ Optimal: all ¢; < 0.
n 20 @ Solve @), @ (in original LP) to get optimal solution
220 @ (x1,x2) = (1°4).
tau-3n <1 @
rtdn <4 ®
. @}
Increase,
w
@@}
(@.@)
Increase
Ta
@, ®} (@, ®}

DA
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Complexity of the Simplex

@ Worst case.
One can construct examples where the simplex algorithm visits all vertices
(which can be exponential in the dimension and the number of constraints).
@ Most cases.
The simplex algorithm works very well.
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Flows in Networks

Soviet Rail Network, 1955

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.
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Flows in Networks

Figure 7.4 (a) A network with edge capacities. (b) A flow in the network.
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Consider a directed graph G = (V, E); two specific nodes s, t € V. s is the source
and t is the sink. The capacity ce > 0 of an edge e.

Definition

Flow. A particular shipping scheme consisting a variable f. for each edge e of the
network, satisfying the following two properties:

Qo0<f<c,Ve€cE.

@ For all nodes u # s, t, the amount of flow entering u equals the amount leaving
u (i.e., flows are conservative):

Z fwu: Z f-LIZA

(w,u)€E (u,2)€E 59 /81



Flows in Networks

Figure 7.4 (a) A network with edge capacities. (b) A flow in the network.
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Definition
Size of a flow. The total quantity sent from s to t, i.e., the quantity leaving s:

size(f) = Y fu

(s,u)€EE

max size(f)

> fa

(s,u)€E

subject to
0 fe < ce, Ve€E

Z fwu = Z fuZ7 u 7é s, t
,z)

(w,u)€E (u,z)€EE
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Using the Interpretation of the Simplex Algorithm

@ Start with a zero flow.

@ Repeat: Choose an appropriate path from s to t, and increase flow
along the edges of this path as much as possible.
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Figure 7.5 An illustration of the max-flow algorithm. (a) A toy network.

(b) The first path chosen. (c) The second path chosen. (d) The final flow. (e) We
could have chosen this path first. (f) In which case, we would have to allow this
second path.

(a) (b)

(c) (d)

(a)
oo TN
\/V¥

(e) (63
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Using the Interpretation of the Simplex Algorithm

@ Start with a zero flow.

@ Repeat: Choose an appropriate path from s to t, and increase flow along the
edges of this path as much as possible. In each iteration, the simplex looks for
an s — t path whose edge (u, v) can be of two types:

@ (u,v) is in the original network, and is not yet at full capacity. If f is the
current flow, edge (u, v) can handle up to cuv — fuv additional units of
flow.

@ The reverse edge (v, u) is in the original network, and there is some flow
along it. Up to f,,, additional units (i.e., canceling all or part of the

existing flow on (v, u)).

Residual network G = (V, ET). G has exactly the two types of edges listed, with

residual capacity cf:

of cuw — fuv, if (u,v) € E and fyy < cuv (1)
T fuu, if (V7 u) € Eand f,, >0

Definition
Augmenting path. An augmenting path p is a simple path from s to t in the residual
network G*.
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Current flow Residual graph

(a) (E> <§>
® ® ®
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Flows in Networks

Definition

Cuts. A s — t cut partitions the vertices into two disjoint groups L and R such that
s€ L and t € R. lts capacity is the total capacity of the edges from L to R, and it is
an upper bound on any flow from s to t.

Theorem

Max-flow min-cut theorem. The size of the maximum flow in a network equals the
capacity of the smallest (s, t)-cut.

Proof.

Theorem

-~
O

The running time of the augmentation-flow algorithm is O(|V/| - |E|?) over an
integer-value graph.

Proof.

-~
O
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Chapter 8: Overview

Hard problems (NP-complete)

Easy problems (in P)

3SAT
TRAVELING SALESMAN PROBLEM
LONGEST PATH
3D MATCHING
KNAPSACK
INDEPENDENT SET
INTEGER LINEAR PROGRAMMING
RUDRATA PATH
BALANCED CUT

2SAT, HORN SAT
MINIMUM SPANNING TREE
SHORTEST PATH
BIPARTITE MATCHING
UNARY KNAPSACK
INDEPENDENT SET on trees
LINEAR PROGRAMMING
EULER PATH

MINIMUM CUT
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Some Typical Hard Problems

@ Satisfiability

@ Traveling Salesman Problem

© Independent Set, Vertex Cover, and Cliques
@ Knapsack and Subset Sum
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Satisfiability — SAT

Definition

Literal: a Boolean variable x or x

Definition

Disjunction: logical or, denoted A

Definition

Clause: e.g., Boolean formula in conjunctive normal form (CNF)
XAy AZ)(xAY) Y AZ)(zAX)(XAYAZ)

Definition

Satisfying truth assignment. An assignment of false or true to each variable so that
every clause it to evaluate is true

Lemma

For formulas with n variables, we can find the answer in time 2". In a particular case,
such assignment may not exist.

Proof.
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Satisfiability — SAT

Definition

Literal: a Boolean variable x or x

Definition

Disjunction: logical or, denoted A

Definition

Clause: e.g., Boolean formula in conjunctive normal form (CNF)
XAy AZ)(xAY) Y AZ)(zAX)(XAYAZ)

Definition

Satisfying truth assignment. An assignment of false or true to each variable so that
every clause it to evaluate is true

Lemma

In a particular case — Horn formula, a satisfying truth assignment, if one exists, can
be found by (?) in polynomial time

Lemma

In a particular case (each clause has only two literals), SAT can be solved in
polynomial time (linear, quadratic, etc?) by (?) algorithm 70/81



The Traveling Salesman Problem — TSP

Definition

TSP. We are given n vertices 1,2,...,n and all (n-(n — 1))/2 distances between
them, as well as a budget b. We are asked to find a tour, a cycle that passes through
every vertex exactly once, of total cost b or less — or to report that no such tour exists

dr1),r@) T 9r@),73) t -+ dr(n),r@) < b

The optimal traveling salesman tour, shown in bold, has length 18
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Independent Set, Vertex Cover, and Clique

What is the size of the largest independent set in this graph?

Independent Set. Find g vertices that are independent, i.e., no two of them have an
edge between them

Definition

Vertex Cover. Find b vertices that cover every edge

Clique. Find a set of g vertices such that all possible edges between them are present
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Reduction

Problem A polynomial reduces to problem B if arbitrary instances of problem A can be
solved using

@ Polynomial number of standard computational steps, plus

@ Polynomial number of calls to oracle that solves problem B

Instance
1

Algorithm for A

Algorithm

]T\ Instance f(1)
L]

for B

Solution S of f(I) ’/—‘
L™ |

No solution to f(I)

Solution
h(S) of I

No solution to 7
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P, NP and NP-Complete

Definition

Search problems. Any proposed solution can be quickly (in polynomial time of the
input size) checked for correctness

Definition

P. The class of all search problems that can be solved in polynomial time

Definition

NP. The class of all search problems

Definition

NP-complete. A problem is NP-complete if all other search problems reduce to it. (A
hardest search NP problem.)

@

\ 2

N/

74 /81



Reduction

Figure 8.7 Reductions between search problems.

All of NP
J
SAT
J
3 SAT
/ \
INDEPENDENT SET 3D MATCHING
PN |
VERTEX COVER CLIQUE 70K

T

SUBSET SUM 1LP RUDRATA CYCLE

|

TSP
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3SAT — Independent Set
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3SAT — Independent Set

(xVyVvz)(xVyVz)(xVyAz)(xVYy)
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3SAT — Independent Set

(xVyVvz)(xVyVz)(xVyAz)(xVYy)

Figure 8.8 The graph correspondingto (X vyvZ) (xvyvz) (xvyvz) (XVY)
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SAT — 3SAT

(aaVaVv...Va) = (aaVaVvy)nVaVvy)i2VaVys) - (¥k-3Vak1Vak)

there is a setting of the y;’s for which
(@ \./Hp_ v o V) —llavavy) G vavy - T3 vaava)
is satisfied are all satisfied
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Set Cover — Vertex Cover

from Wayne's slides on “Algorithm Design”

«O0» «Fr « > <

i
-

Do
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Beyond NP-hard

Theorem

Any problem in NP — SAT

Proof.

Theorem

~
O

There exists algorithms running in exponential time for NP problems

function paradox(z: file)

1: if terminates(z, z)
go to 1;

Theorem

Some problems do not have algorithms
For example, find out x, y, z to satisfy

><3yz + 2y422 - 7xy52 = 6.
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