Introduction to Algorithms 6.046J/18.401J

Lecture 16
Greedy Algorithms (and Graphs)

- Graph representation
- Minimum spanning trees
- Optimal substructure
- Greedy choice
- Prim's greedy MST algorithm

Prof. Charles E. Leiserson

Graphs (review)

Definition. A directed graph (digraph) $G=(V, E)$ is an ordered pair consisting of - a set V of vertices (singular: vertex),

- a set $E \subseteq V \times V$ of edges.

In an undirected graph $G=(V, E)$, the edge set E consists of unordered pairs of vertices.
In either case, we have $|E|=O\left(V^{2}\right)$. Moreover, if G is connected, then $|E| \geq|V|-1$, which implies that $\lg |E|=\Theta(\lg V)$.
(Review CLRS, Appendix B.)

Adjacency-matrix representation

The adjacency matrix of a graph $G=(V, E)$, where $V=\{1,2, \ldots, n\}$, is the matrix $A[1 \ldots n, 1 \ldots n]$ given by

$$
A[i, j]= \begin{cases}1 & \text { if }(i, j) \in \mathrm{E}, \\ 0 & \text { if }(i, j) \notin \mathrm{E} .\end{cases}
$$

Adjacency-matrix representation

The adjacency matrix of a graph $G=(V, E)$, where $V=\{1,2, \ldots, n\}$, is the matrix $A[1 \ldots n, 1 \ldots n]$ given by

$$
A[i, j]= \begin{cases}1 & \text { if }(i, j) \in \mathrm{E} \\ 0 & \text { if }(i, j) \notin \mathrm{E}\end{cases}
$$

A	1	2	3	4
1	0	1	1	0
2	0	0	1	0
3	0	0	0	0
4	0	0	1	0

$\Theta\left(V^{2}\right)$ storage \Rightarrow dense representation.

Adjacency-list representation

An adjacency list of a vertex $v \in V$ is the list $\operatorname{Adj}[v]$ of vertices adjacent to v.

$$
\begin{aligned}
& \operatorname{Adj}[1]=\{2,3\} \\
& \operatorname{Adj}[2]=\{3\} \\
& \operatorname{Adj}[3]=\{ \} \\
& \operatorname{Adj}[4]=\{3\}
\end{aligned}
$$

Adjacency-list representation

An adjacency list of a vertex $v \in V$ is the list $\operatorname{Adj}[v]$ of vertices adjacent to v.

$$
\begin{aligned}
\operatorname{Adj}[1] & =\{2,3\} \\
\operatorname{Adj}[2] & =\{3\} \\
\operatorname{Adj}[3] & =\{ \} \\
\operatorname{Adj}[4] & =\{3\}
\end{aligned}
$$

For undirected graphs, $|\operatorname{Adj}[v]|=\operatorname{degree}(v)$. For digraphs, \mid Adj $[v] \mid=$ out-degree(v).

Adjacency-list representation

An adjacency list of a vertex $v \in V$ is the list $\operatorname{Adj}[v]$ of vertices adjacent to v.

$$
\begin{aligned}
\operatorname{Adj}[1] & =\{2,3\} \\
\operatorname{Adj}[2] & =\{3\} \\
\operatorname{Adj}[3] & =\{ \} \\
\operatorname{Adj}[4] & =\{3\}
\end{aligned}
$$

For undirected graphs, $|\operatorname{Adj}[v]|=\operatorname{degree}(v)$. For digraphs, \mid Adj $[\nu] \mid=$ out-degree(v).

Handshaking Lemma: $\sum_{v \in V}=2|\mathrm{E}|$ for undirected graphs \Rightarrow adjacency lists use $\Theta(V+E)$ storage a sparse representation (for either type of graph).

Minimum spanning trees

Input: A connected, undirected graph $G=(V, E)$ with weight function $w: E \rightarrow \mathbb{R}$.

- For simplicity, assume that all edge weights are distinct. (CLRS covers the general case.)

Minimum spanning trees

Input: A connected, undirected graph $G=(V, E)$ with weight function $w: E \rightarrow \mathbb{R}$.

- For simplicity, assume that all edge weights are distinct. (CLRS covers the general case.)

Output: A spanning tree T - a tree that connects all vertices - of minimum weight:

$$
w(T)=\sum_{(u, v) \in T} w(u, v) .
$$

Optimal substructure

MST T :
(Other edges of G are not shown.)

Optimal substructure

MST T :
(Other edges of G are not shown.)

Remove any edge $(u, v) \in T$.

Optimal substructure

MST T :
(Other edges of G are not shown.)

Remove any edge $(u, v) \in T$.

Optimal substructure

MST T :
(Other edges of G are not shown.)

Remove any edge $(u, v) \in T$. Then, T is partitioned into two subtrees T_{1} and T_{2}.

Optimal substructure

MST T :
(Other edges of G are not shown.)

Remove any edge $(u, v) \in T$. Then, T is partitioned into two subtrees T_{1} and T_{2}. Theorem. The subtree T_{1} is an MST of $G_{1}=\left(V_{1}, E_{1}\right)$, the subgraph of G induced by the vertices of T_{1} :

$$
\begin{aligned}
& V_{1}=\text { vertices of } T_{1}, \\
& E_{1}=\left\{(x, y) \in E: x, y \in V_{1}\right\} .
\end{aligned}
$$

Similarly for T_{2}.

Proof of optimal substructure

 Proof. Cut and paste:$$
w(T)=w(u, v)+w\left(T_{1}\right)+w\left(T_{2}\right) .
$$

If $T_{1}{ }^{\prime}$ were a lower-weight spanning tree than T_{1} for G_{1}, then $T^{\prime}=\{(u, v)\} \cup T_{1}{ }^{\prime} \cup T_{2}$ would be a lower-weight spanning tree than T for G. \square

Proof of optimal substructure

 Proof. Cut and paste:$$
w(T)=w(u, v)+w\left(T_{1}\right)+w\left(T_{2}\right) .
$$

If $T_{1}{ }^{\prime}$ were a lower-weight spanning tree than T_{1} for G_{1}, then $T^{\prime}=\{(u, v)\} \cup T_{1}^{\prime} \cup T_{2}$ would be a lower-weight spanning tree than T for G. \square
Do we also have overlapping subproblems?

- Yes.

Proof of optimal substructure

Proof. Cut and paste:

$$
w(T)=w(u, v)+w\left(T_{1}\right)+w\left(T_{2}\right)
$$

If $T_{1}{ }^{\prime}$ were a lower-weight spanning tree than T_{1} for G_{1}, then $T^{\prime}=\{(u, v)\} \cup T_{1}{ }^{\prime} \cup T_{2}$ would be a lower-weight spanning tree than T for G. \square
Do we also have overlapping subproblems?

- Yes.

Great, then dynamic programming may work!

- Yes, but MST exhibits another powerful property which leads to an even more efficient algorithm.

Hallmark for "greedy" algorithms

 \title{
Hallmark for "greedy"
 \title{
Hallmark for "greedy" algorithms
}

Theorem. Let T be the MST of $G=(V, E)$, and let $A \subseteq V$. Suppose that $(u, v) \in E$ is the least-weight edge connecting A to $V-A$. Then, $(u, v) \in T$.

Proof of theorem

Proof. Suppose $(u, v) \notin T$. Cut and paste.
T :
$0 \in A$

- $\in V-A$

Proof of theorem

Proof. Suppose $(u, v) \notin T$. Cut and paste.
T :
$0 \in A$

- $\in V-A$
$(u, v)=$ least-weight edge connecting A to $V-A$
Consider the unique simple path from u to v in T.

Proof of theorem

Proof. Suppose $(u, v) \notin T$. Cut and paste.
T :
$0 \in A$

- $\in V-A$
$(u, v)=$ least-weight edge connecting A to $V-A$
Consider the unique simple path from u to v in T.
Swap (u, v) with the first edge on this path that connects a vertex in A to a vertex in $V-A$.

Proof of theorem

Proof. Suppose $(u, v) \notin T$. Cut and paste.
$T^{\prime}:$
$0 \in A$

- $\in V-A$

Consider the unique simple path from u to v in T.
Swap (u, v) with the first edge on this path that connects a vertex in A to a vertex in $V-A$.
A lighter-weight spanning tree than T results. \square

Prim's algorithm

Idea: Maintain $V-A$ as a priority queue Q. Key each vertex in Q with the weight of the leastweight edge connecting it to a vertex in A.
$Q \leftarrow V$
$k e y[\nu] \leftarrow \infty$ for all $v \in V$
$k e y[s] \leftarrow 0$ for some arbitrary $s \in V$
while $Q \neq \varnothing$
do $u \leftarrow \operatorname{EXTRACT}-\operatorname{Min}(Q)$
for each $v \in \operatorname{Adj}[u]$
do if $v \in Q$ and $w(u, v)<k e y[v]$ then $k e y[v] \leftarrow w(u, v) \quad \triangleright$ Decrease-Key

$$
\pi[v] \leftarrow u
$$

At the end, $\{(v, \pi[v])\}$ forms the MST.
November 9, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

Example of Prim's algorithm

Example of Prim's algorithm

Example of Prim's algorithm

Example of Prim's algorithm

$$
\begin{aligned}
& 0 \in A \\
& \bullet \in V-A
\end{aligned}
$$

Example of Prim's algorithm

$$
\begin{aligned}
& 0 \in A \\
& \bullet \in V-A
\end{aligned}
$$

Example of Prim's algorithm

Example of Prim's algorithm

$$
\begin{aligned}
& 0 \in A \\
& \bullet \in V V-A
\end{aligned}
$$

Example of Prim's algorithm

$$
\begin{aligned}
& 0 \in A \\
& \bullet \in V V-A
\end{aligned}
$$

Example of Prim's algorithm

$$
\begin{aligned}
& 0 \in A \\
& \bullet \in V-A
\end{aligned}
$$

Example of Prim's algorithm

$$
\begin{aligned}
& 0 \in A \\
& 0 \in V-A
\end{aligned}
$$

Analysis of Prim

$Q \leftarrow V$
$k e y[v] \leftarrow \infty$ for all $v \in V$
$k e y[s] \leftarrow 0$ for some arbitrary $s \in V$
while $Q \neq \varnothing$
do $u \leftarrow$ EXTRACT-MIN (Q) for each $v \in \operatorname{Adj}[u]$
do if $v \in Q$ and $w(u, v)<k e y[v]$ then $k e y[v] \leftarrow w(u, v)$

$$
\pi[v] \leftarrow u
$$

Analysis of Prim

Analysis of Prim

$\Theta(V)\left\{\begin{array}{l}Q \leftarrow V \\ \text { key }[v] \leftarrow \infty \text { for all } v \in V \\ \text { key }[s] \leftarrow 0 \text { for some arbitrary } s \in V \\ \text { while } Q \neq \varnothing \\ \text { do } u \leftarrow \operatorname{EXTRACT}-\operatorname{MIN}(Q) \\ \text { for each } v \in A d j[u] \\ \text { do if } v \in Q \text { and } w(u, v)<k e y[v] \\ \text { then } k e y[v] \leftarrow w(u, v) \\ \pi[v] \leftarrow u\end{array}\right.$
times $\left\{\begin{array}{r}|V|\end{array}\right.$

Analysis of Prim

Analysis of Prim

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit Decrease-Key's.

Analysis of Prim

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit Decrease-Key's.
Time $=\Theta(V) \cdot T_{\text {Extract-Min }}+\Theta(E) \cdot T_{\text {Decrease-Key }}$

Analysis of Prim (continued)

Time $=\Theta(V) \cdot T_{\text {Extract-Min }}+\Theta(E) \cdot T_{\text {Decrease-Key }}$

Analysis of Prim (continued)

Time $=\Theta(V) \cdot T_{\text {Extract-Min }}+\Theta(E) \cdot T_{\text {Decrease-Key }}$

$Q \quad T_{\text {Extract-Min }} T_{\text {Decrease-Key }}$ Total

Analysis of Prim (continued)

Time $=\Theta(V) \cdot T_{\text {Extract-Min }}+\Theta(E) \cdot T_{\text {Decrease-Key }}$

$Q \quad T_{\text {Extract-Min }} T_{\text {Decrease-Key }}$ Total

array
$O(V)$
$O(1)$
$O\left(V^{2}\right)$

Analysis of Prim (continued)

Time $=\Theta(V) \cdot T_{\text {Extract-Min }}+\Theta(E) \cdot T_{\text {Decrease-Key }}$

$Q \quad T_{\text {Extract-Min }} T_{\text {Decrease-Key }}$ Total

array
$O(V)$
$O(1)$
$O\left(V^{2}\right)$
binary
heap
$O(\lg V)$
$O(\lg V)$
$O(E \lg V)$

Analysis of Prim (continued)

Time $=\Theta(V) \cdot T_{\text {Extract-Min }}+\Theta(E) \cdot T_{\text {Decrease-Key }}$

$Q \quad T_{\text {Extract-Min }} T_{\text {Decrease-Key }}$ Total

array
$O(V)$
binary
heap
$O(\lg V)$
Fibonacci $\quad O(\lg V)$
heap amortized
$O(\lg V)$
$O(E \lg V)$

$$
O(1) \quad O\left(V^{2}\right)
$$

$O(1)$ amortized worst case

MST algorithms

Kruskal's algorithm (see CLRS):

- Uses the disjoint-set data structure (Lecture 10).
- Running time $=O(E \lg V)$.

MST algorithms

Kruskal's algorithm (see CLRS):

- Uses the disjoint-set data structure (Lecture 10).
- Running time $=O(E \lg V)$.

Best to date:

- Karger, Klein, and Tarjan [1993].
- Randomized algorithm.
- $O(V+E)$ expected time.

Introduction to Algorithms 6.046J/18.401J

Lecture 17

Shortest Paths I

- Properties of shortest paths
- Dijkstra's algorithm
- Correctness
- Analysis
- Breadth-first search

Prof. Erik Demaine

Paths in graphs

Consider a digraph $G=(V, E)$ with edge-weight function $w: E \rightarrow \mathbb{R}$. The weight of path $p=v_{1} \rightarrow$ $v_{2} \rightarrow \cdots \rightarrow v_{k}$ is defined to be

$$
w(p)=\sum_{i=1}^{k-1} w\left(v_{i}, v_{i+1}\right) .
$$

Paths in graphs

Consider a digraph $G=(V, E)$ with edge-weight function $w: E \rightarrow \mathbb{R}$. The weight of path $p=v_{1} \rightarrow$ $v_{2} \rightarrow \cdots \rightarrow v_{k}$ is defined to be

$$
w(p)=\sum_{i=1}^{k-1} w\left(v_{i}, v_{i+1}\right) .
$$

Example:

Shortest paths

A shortest path from u to v is a path of minimum weight from u to v. The shortestpath weight from u to v is defined as
$\delta(u, v)=\min \{w(p): p$ is a path from u to $v\}$.
Note: $\delta(u, v)=\infty$ if no path from u to v exists.

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:

Theorem. For all $u, v, x \in V$, we have $\delta(u, v) \leq \delta(u, x)+\delta(x, v)$.

Theorem. For all $u, v, x \in V$, we have
 $$
\delta(u, v) \leq \delta(u, x)+\delta(x, v)
$$

Proof.

\square

Well-definedness of shortest paths

If a graph G contains a negative-weight cycle, then some shortest paths may not exist.

Well-definedness of shortest paths

If a graph G contains a negative-weight cycle, then some shortest paths may not exist.

Example:

Single-source shortest paths

Problem. From a given source vertex $s \in V$, find the shortest-path weights $\delta(s, v)$ for all $v \in V$.
If all edge weights $w(u, v)$ are nonnegative, all shortest-path weights must exist.

Idea: Greedy.

1. Maintain a set S of vertices whose shortestpath distances from s are known.
2. At each step add to S the vertex $v \in V-S$ whose distance estimate from s is minimal.
3. Update the distance estimates of vertices adjacent to v.

Dijkstra's algorithm

$d[s] \leftarrow 0$

for each $v \in V-\{s\}$
do $d[\nu] \leftarrow \infty$

$\triangleright Q$ is a priority queue maintaining $V-S$

Dijkstra's algorithm

$d[s] \leftarrow 0$
for each $v \in V-\{s\}$
do $d[\nu] \leftarrow \infty$

$Q \leftarrow V \quad \triangleright Q$ is a priority queue maintaining $V-S$
while $Q \neq \varnothing$
do $u \leftarrow$ Extract-Min (Q)
$S \leftarrow S \cup\{u\}$
for each $v \in \operatorname{Adj}[u]$
do if $d[v]>d[u]+w(u, v)$
then $d[v] \leftarrow d[u]+w(u, v)$

Dijkstra's algorithm

$d[s] \leftarrow 0$
for each $v \in V-\{s\}$
do $d[\nu] \leftarrow \infty$

$Q \leftarrow V \quad \triangleright Q$ is a priority queue maintaining $V-S$
while $Q \neq \varnothing$
do $u \leftarrow$ Extract-Min (Q)
$S \leftarrow S \cup\{u\}$
for each $v \in \operatorname{Adj}[u]$
do if $d[v]>d[u]+w(u, v)$
relaxation
then $d[v] \leftarrow d[u]+w(u, v) \quad$ step
Implicit DECREASE-KEY

, Example of Dijkstra's algorithm

Graph with nonnegative edge weights:

\therefore Example of Dijkstra's algorithm

Initialize:

Q: $A \quad B \quad C \quad D \quad E$
$0 \quad \infty \quad \infty \quad \infty \quad \infty$

$$
S:\{ \}
$$

$:$ Example of Dijkstra's algorithm

" A " \leftarrow Extract-Min (Q) :

Q | A | B | C | D | E |
| :--- | :--- | :--- | :--- | :--- |
| 0 | ∞ | ∞ | ∞ | ∞ |

Example of Dijkstra's algorithm

Relax all edges leaving A :

Q

A	B	C	D	E
0	∞	∞	∞	∞
	10	3	∞	∞

$$
S:\{A\}
$$

$:$ Example of Dijkstra's algorithm

Example of Dijkstra's algorithm

Relax all edges leaving C :

Q:

A	B	C	D	E
0	∞	∞	∞	∞
	10	3	∞	∞
	7		11	5

$$
S:\{A, C\}
$$

$:$ Example of Dijkstra's algorithm

\section*{${ }^{\prime} E " \leftarrow \operatorname{Extract}-\operatorname{Min}(Q):$
 Q:
 | A | B | C | D | E |
| :---: | :---: | :---: | :---: | :---: |
| 0 | ∞ | ∞ | ∞ | ∞ |
| | 10 | 3 | ∞ | ∞ |
| | 7 | | 11 | 5 |
 }

\therefore Example of Dijkstra's algorithm

Relax all edges leaving E :

Q:

A	B	C	D	E
0	∞	∞	∞	∞
	10	3	∞	∞
	7		11	5
	7		11	

Example of Dijkstra's algorithm

\therefore Example of Dijkstra's algorithm

Relax all edges leaving B :

Q:

A	B	C	D	E
0	∞	∞	∞	∞
	10	3	∞	∞
	7		11	5
	7		11	
			9	

$$
S:\{A, C, E, B\}
$$

9

, Example of Dijkstra's algorithm

Correctness - Part I

Lemma. Initializing $d[s] \leftarrow 0$ and $d[v] \leftarrow \infty$ for all

 $v \in V-\{s\}$ establishes $d[v] \geq \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps.
Correctness - Part I

Lemma. Initializing $d[s] \leftarrow 0$ and $d[v] \leftarrow \infty$ for all $v \in V-\{s\}$ establishes $d[v] \geq \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps.
Proof. Suppose not. Let v be the first vertex for which $d[v]<\delta(s, v)$, and let u be the vertex that caused $d[v]$ to change: $d[v]=d[u]+w(u, v)$. Then,

$$
\begin{aligned}
d[v] & <\delta(s, v) & & \text { supposition } \\
& \leq \delta(s, u)+\delta(u, v) & & \text { triangle inequality } \\
& \leq \delta(s, u)+w(u, v) & & \text { sh. path } \leq \text { specific path } \\
& \leq d[u]+w(u, v) & & v \text { is first violation }
\end{aligned}
$$

Contradiction.

Correctness - Part II

Lemma. Let u be v 's predecessor on a shortest path from s to v. Then, if $d[u]=\delta(s, u)$ and edge (u, v) is relaxed, we have $d[v]=\delta(s, v)$ after the relaxation.

Correctness - Part II

Lemma. Let u be v 's predecessor on a shortest path from s to v. Then, if $d[u]=\delta(s, u)$ and edge (u, v) is relaxed, we have $d[\nu]=\delta(s, v)$ after the relaxation.

Proof. Observe that $\delta(s, v)=\delta(s, u)+w(u, v)$. Suppose that $d[\nu]>\delta(s, v)$ before the relaxation. (Otherwise, we're done.) Then, the test $d[\nu]>$ $d[u]+w(u, v)$ succeeds, because $d[v]>\delta(s, v)=$ $\delta(s, u)+w(u, v)=d[u]+w(u, v)$, and the algorithm sets $d[v]=d[u]+w(u, v)=\delta(s, v)$.

Correctness - Part III

Theorem. Dijkstra's algorithm terminates with $d[v]=\delta(s, v)$ for all $v \in V$.

Correctness - Part III

Theorem. Dijkstra's algorithm terminates with $d[v]=\delta(s, v)$ for all $v \in V$.
Proof. It suffices to show that $d[\nu]=\delta(s, v)$ for every $v \in V$ when v is added to S. Suppose u is the first vertex added to S for which $d[u]>\delta(s, u)$. Let y be the first vertex in $V-S$ along a shortest path from s to u, and let x be its predecessor:

S, just before adding u.

Correctness - Part III (continued)

Since u is the first vertex violating the claimed invariant, we have $d[x]=\delta(s, x)$. When x was added to S, the edge (x, y) was relaxed, which implies that $d[y]=\delta(s, y) \leq \delta(s, u)<d[u]$. But, $d[u] \leq d[y]$ by our choice of u. Contradiction. \square

Analysis of Dijkstra

$$
\begin{aligned}
& \text { while } Q \neq \varnothing \\
& \text { do } u \leftarrow \text { EXTRACT-MiN }(Q) \\
& S \leftarrow S \cup\{u\} \\
& \quad \text { for each } v \in \operatorname{Adj}[u] \\
& \\
& \quad \text { do if } d[v]>d[u]+w(u, v)
\end{aligned}
$$

$$
\text { then } d[v] \leftarrow d[u]+w(u, v)
$$

Analysis of Dijkstra

$$
\begin{aligned}
& \text { while } Q \neq \varnothing \\
& \text { do } u \leftarrow \text { Extract-Min }(Q) \\
& S \leftarrow S \cup\{u\} \\
& \text { for each } v \in \operatorname{Adj}[u] \\
& \quad \text { do if } d[v]>d[u]+w(u, v)
\end{aligned}
$$

then $d[v] \leftarrow d[u]+w(u, v)$

Analysis of Dijkstra

Analysis of Dijkstra

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit Decrease-Key's.

Analysis of Dijkstra

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit Decrease-Key's.
Time $=\Theta\left(V \cdot T_{\text {Extract-Min }}+E \cdot T_{\text {Decrease-KeY }}\right)$
Note: Same formula as in the analysis of Prim's minimum spanning tree algorithm.

Analysis of Dijkstra (continued)

Time $=\Theta(V) \cdot T_{\text {Extract-Min }}+\Theta(E) \cdot T_{\text {Decrease-Key }}$
$Q \quad T_{\text {Extract-Min }} T_{\text {Decrease-Key }}$ Total

Analysis of Dijkstra (continued)

Time $=\Theta(V) \cdot T_{\text {Extract-Min }}+\Theta(E) \cdot T_{\text {Decrease-Key }}$

Q $\quad T_{\text {Extract-Min }} \quad T_{\text {Decrease-Key }} \quad$ Total
array
$O(V)$
$O(1)$
$O\left(V^{2}\right)$

Analysis of Dijkstra (continued)

Time $=\Theta(V) \cdot T_{\text {Extract-Min }}+\Theta(E) \cdot T_{\text {Decrease-Key }}$
$Q \quad T_{\text {Extract-Min }} T_{\text {Decrease-Key }}$ Total
array
$O(V)$
$O(1)$
$O\left(V^{2}\right)$
binary
heap
$O(\lg V)$
$O(\lg V)$
$O(E \lg V)$

Analysis of Dijkstra (continued)

Time $=\Theta(V) \cdot T_{\text {Extract-Min }}+\Theta(E) \cdot T_{\text {Decrease-Key }}$

Q $T_{\text {Extract-Min }}$ $T_{\text {Decrease-Key }}$ Total

$O(\lg V)$
$O(\lg V)$
$O(E \lg V)$
$O(1)$
$O(E+V \lg V)$
amortized worst case

Unweighted graphs

Suppose that $w(u, v)=1$ for all $(u, v) \in E$. Can Dijkstra's algorithm be improved?

Unweighted graphs

Suppose that $w(u, v)=1$ for all $(u, v) \in E$. Can Dijkstra's algorithm be improved?

- Use a simple FIFO queue instead of a priority queue.

Unweighted graphs

Suppose that $w(u, v)=1$ for all $(u, v) \in E$.
Can Dijkstra's algorithm be improved?

- Use a simple FIFO queue instead of a priority queue.
Breadth-first search while $Q \neq \varnothing$
do $u \leftarrow \operatorname{Dequeve}(Q)$
for each $v \in \operatorname{Adj}[u]$ do if $d[v]=\infty$
then $d[v] \leftarrow d[u]+1$
Enqueue (Q, v)

Unweighted graphs

Suppose that $w(u, v)=1$ for all $(u, v) \in E$.
Can Dijkstra's algorithm be improved?

- Use a simple FIFO queue instead of a priority queue.
Breadth-first search

```
while }Q\not=
    do }u\leftarrow\operatorname{Dequeve(Q)
    for each v A Adj[u]
        do if d[v]=\infty
```

 then \(d[v] \leftarrow d[u]+1\)
 Enqueue \((Q, v)\)
 Analysis: Time $=O(V+E)$.

Example of breadth-first search

$Q:$

Example of breadth-first search

\therefore Example of breadth-first search

\therefore Example of breadth-first search

ALGORITHMS
 Example of breadth-first search

ALGORITHMS
 Example of breadth-first search

ALGORITHMS
 Example of breadth-first search

Example of breadth-first search

ALGORITHMS
 Example of breadth-first search

Correctness of BFS

$$
\begin{aligned}
& \text { while } Q \neq \varnothing \\
& \text { do } u \leftarrow \operatorname{DEQUEUE}(Q) \\
& \text { for each } v \in \operatorname{Adj}[u] \\
& \text { do if } d[v]=\infty
\end{aligned}
$$

$$
\text { then } d[v] \leftarrow d[u]+1
$$

Enqueue (Q, v)

Key idea:

The FIFO Q in breadth-first search mimics the priority queue Q in Dijkstra.

- Invariant: v comes after u in Q implies that $d[\nu]=d[u]$ or $d[\nu]=d[u]+1$.

Introduction to Algorithms 6.046J/18.401J

Lecture 18
Shortest Paths II

- Bellman-Ford algorithm
- Linear programming and difference constraints
- VLSI layout compaction

Prof. Erik Demaine

Negative-weight cycles

Recall: If a graph $G=(V, E)$ contains a negativeweight cycle, then some shortest paths may not exist. Example:

Negative-weight cycles

Recall: If a graph $G=(V, E)$ contains a negativeweight cycle, then some shortest paths may not exist. Example:

Bellman-Ford algorithm: Finds all shortest-path lengths from a source $s \in V$ to all $v \in V$ or determines that a negative-weight cycle exists.

Bellman-Ford algorithm

$d[s] \leftarrow 0$
for each $v \in V-\{s\}\}$ initialization
for $i \leftarrow 1$ to $|V|-1$
do for each edge $(u, v) \in E$

$$
\left.\begin{array}{rl}
\text { do if } d[v]>d[u]+w(u, v) \\
\text { then } d[v] & \leftarrow d[u]+w(u, v)
\end{array}\right\} \begin{aligned}
& \text { relaxation } \\
& \text { step }
\end{aligned}
$$

for each edge $(u, v) \in E$
do if $d[v]>d[u]+w(u, v)$
then report that a negative-weight cycle exists
At the end, $d[v]=\delta(s, v)$, if no negative-weight cycles. Time $=O(V E)$.

Example of Bellman-Ford

Initialization.

Example of Bellman-Ford

Order of edge relaxation.

Example of Bellman-Ford

Example of Bellman-Ford

Example of Bellman-Ford

End of pass 1 .

Example of Bellman-Ford

Example of Bellman-Ford

Example of Bellman-Ford

Example of Bellman-Ford

End of pass 2 (and 3 and 4).

Correctness

Theorem. If $G=(V, E)$ contains no negativeweight cycles, then after the Bellman-Ford algorithm executes, $d[v]=\delta(s, v)$ for all $v \in V$.

Correctness

Theorem. If $G=(V, E)$ contains no negativeweight cycles, then after the Bellman-Ford algorithm executes, $d[v]=\delta(s, v)$ for all $v \in V$.
Proof. Let $v \in V$ be any vertex, and consider a shortest path p from s to v with the minimum number of edges.

Since p is a shortest path, we have

$$
\delta\left(s, v_{i}\right)=\delta\left(s, v_{i-1}\right)+w\left(v_{i-1}, v_{i}\right) .
$$

Correctness (continued)

Initially, $d\left[v_{0}\right]=0=\delta\left(s, v_{0}\right)$, and $d\left[v_{0}\right]$ is unchanged by subsequent relaxations (because of the lemma from Lecture 14 that $d[\nu] \geq \delta(s, v))$.

- After 1 pass through E, we have $d\left[v_{1}\right]=\delta\left(s, v_{1}\right)$.
- After 2 passes through E, we have $d\left[v_{2}\right]=\delta\left(s, v_{2}\right)$. !
- After k passes through E, we have $d\left[v_{k}\right]=\delta\left(s, v_{k}\right)$. Since G contains no negative-weight cycles, p is simple. Longest simple path has $\leq|V|-1$ edges. \square

Detection of negative-weight cycles

Corollary. If a value $d[\nu]$ fails to converge after $|V|-1$ passes, there exists a negative-weight cycle in G reachable from $s . \square$

Linear programming

Let A be an $m \times n$ matrix, b be an m-vector, and c be an n-vector. Find an n-vector x that maximizes $c^{\mathrm{T}} x$ subject to $A x \leq b$, or determine that no such solution exists.

Linear-programming algorithms

Algorithms for the general problem

- Simplex methods - practical, but worst-case exponential time.
- Interior-point methods - polynomial time and competes with simplex.

Linear-programming algorithms

Algorithms for the general problem

- Simplex methods - practical, but worst-case exponential time.
- Interior-point methods - polynomial time and competes with simplex.

Feasibility problem: No optimization criterion.
Just find x such that $A x \leq b$.

- In general, just as hard as ordinary LP.

Solving a system of difference constraints

Linear programming where each row of A contains exactly one 1 , one -1 , and the rest 0 's. Example:

$$
\left.\begin{array}{l}
x_{1}-x_{2} \leq 3 \\
x_{2}-x_{3} \leq-2 \\
r
\end{array}\right\} \quad x_{j}-x_{i} \leq w_{i j}
$$

Solving a system of difference constraints

Linear programming where each row of A contains exactly one 1 , one -1 , and the rest 0 's. Example:

Solution:

$$
\left.\begin{array}{l}
x_{1}-x_{2} \leq 3 \\
x_{2}-x_{3} \leq-2
\end{array}\right\} \quad x_{j}-x_{i} \leq w_{i j}
$$

$$
\begin{aligned}
& x_{1}=3 \\
& x_{2}=0 \\
& x_{3}=2
\end{aligned}
$$

Solving a system of difference constraints

Linear programming where each row of A contains exactly one 1 , one -1 , and the rest 0 's.

Example:

$$
\left.\begin{array}{l}
x_{1}-x_{2} \leq 3 \\
x_{2}-x_{3} \leq-2 \\
x_{1}-x_{3} \leq 2
\end{array}\right\} x_{j}-x_{i} \leq w_{i j}
$$

Constraint graph:

$$
x_{j}-x_{i} \leq w_{i j}
$$

Solution:

$$
\begin{aligned}
& x_{1}=3 \\
& x_{2}=0 \\
& x_{3}=2
\end{aligned}
$$

(The " A " matrix has dimensions $|E| \times|V|$.)

Unsatisfiable constraints

Theorem. If the constraint graph contains a negative-weight cycle, then the system of differences is unsatisfiable.

Unsatisfiable constraints

Theorem. If the constraint graph contains a negative-weight cycle, then the system of differences is unsatisfiable.
Proof. Suppose that the negative-weight cycle is $v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k} \rightarrow v_{1}$. Then, we have

$$
\begin{aligned}
x_{2}-x_{1} & \leq w_{12} \\
x_{3}-x_{2} & \leq w_{23} \\
& \vdots \\
x_{k}-x_{k-1} & \leq w_{k-1, k} \\
x_{1}-x_{k} & \leq w_{k 1}
\end{aligned}
$$

Unsatisfiable constraints

Theorem. If the constraint graph contains a negative-weight cycle, then the system of differences is unsatisfiable.
Proof. Suppose that the negative-weight cycle is $v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k} \rightarrow v_{1}$. Then, we have

$$
\begin{aligned}
& x_{2}-x_{1} \leq w_{12} \\
& x_{3}-x_{2} \leq w_{23} \\
& \vdots \\
& x_{k}-x_{k-1} \leq w_{k-1, k} \\
& x_{1}-x_{k} \leq w_{k 1} \\
& \hline
\end{aligned}
$$

$0 \leq$ weight of cycle <0

Satisfying the constraints

Theorem. Suppose no negative-weight cycle exists in the constraint graph. Then, the constraints are satisfiable.

Satisfying the constraints

Theorem. Suppose no negative-weight cycle exists in the constraint graph. Then, the constraints are satisfiable.
Proof. Add a new vertex s to V with a 0 -weight edge to each vertex $v_{i} \in V$.

Satisfying the constraints

Theorem. Suppose no negative-weight cycle exists in the constraint graph. Then, the constraints are satisfiable.
Proof. Add a new vertex s to V with a 0 -weight edge to each vertex $v_{i} \in V$.

Note:
 No negative-weight

 cycles introduced \Rightarrow shortest paths exist.
Proof (continued)

Claim: The assignment $x_{i}=\delta\left(s, v_{i}\right)$ solves the constraints. Consider any constraint $x_{j}-x_{i} \leq w_{i j}$, and consider the shortest paths from s to v_{j} and v_{i} :

The triangle inequality gives us $\delta\left(s, v_{j}\right) \leq \delta\left(s, v_{i}\right)+w_{i j}$. Since $x_{i}=\delta\left(s, v_{i}\right)$ and $x_{j}=\delta\left(s, v_{j}\right)$, the constraint $x_{j}-x_{i}$ $\leq w_{i j}$ is satisfied.

Bellman-Ford and linear programming

Corollary. The Bellman-Ford algorithm can solve a system of m difference constraints on n variables in $O(m n)$ time. \square
Single-source shortest paths is a simple LP problem.
In fact, Bellman-Ford maximizes $x_{1}+x_{2}+\cdots+x_{n}$ subject to the constraints $x_{j}-x_{i} \leq w_{i j}$ and $x_{i} \leq 0$ (exercise).
Bellman-Ford also minimizes $\max _{i}\left\{x_{i}\right\}-\min _{i}\left\{x_{i}\right\}$ (exercise).

анбойтнмі
 Application to VLSI layout compaction

Integrated
-circuit
features:

minimum separation λ

Problem: Compact (in one dimension) the space between the features of a VLSI layout without bringing any features too close together.

VLSI layout compaction

Constraint: $\quad x_{2}-x_{1} \geq d_{1}+\lambda$
Bellman-Ford minimizes $\max _{i}\left\{x_{i}\right\}-\min _{i}\left\{x_{i}\right\}$, which compacts the layout in the x-dimension.

Introduction to Algorithms 6.046J/18.401J

Lecture 19

Shortest Paths III

- All-pairs shortest paths
- Matrix-multiplication algorithm
- Floyd-Warshall algorithm
- Johnson's algorithm

Prof. Charles E. Leiserson

Shortest paths

Single-source shortest paths

- Nonnegative edge weights
- Dijkstra's algorithm: $O(E+V \lg V)$
- General
- Bellman-Ford algorithm: $O(V E)$
- DAG
- One pass of Bellman-Ford: $O(V+E)$

Shortest paths

Single-source shortest paths

- Nonnegative edge weights
- Dijkstra's algorithm: $O(E+V \lg V)$
- General
- Bellman-Ford: $O(V E)$
- DAG
- One pass of Bellman-Ford: $O(V+E)$

All-pairs shortest paths

- Nonnegative edge weights
- Dijkstra's algorithm $|V|$ times: $O\left(V E+V^{2} \lg V\right)$
- General
- Three algorithms today.

All-pairs shortest paths

Input: Digraph $G=(V, E)$, where $V=\{1,2$, $\ldots, n\}$, with edge-weight function $w: E \rightarrow \mathbb{R}$. Output: $n \times n$ matrix of shortest-path lengths $\delta(i, j)$ for all $i, j \in V$.

All-pairs shortest paths

Input: Digraph $G=(V, E)$, where $V=\{1,2$,
$\ldots, n\}$, with edge-weight function $w: E \rightarrow \mathbb{R}$.
Output: $n \times n$ matrix of shortest-path lengths
$\delta(i, j)$ for all $i, j \in V$.
Idea:

- Run Bellman-Ford once from each vertex.
- Time $=\mathrm{O}\left(V^{2} E\right)$.
- Dense graph (n^{2} edges $) \Rightarrow \Theta\left(n^{4}\right)$ time in the worst case.
Good first try!

Dynamic programming

Consider the $n \times n$ adjacency matrix $A=\left(a_{i j}\right)$ of the digraph, and define
$d_{i j}^{(m)}=$ weight of a shortest path from i to j that uses at most m edges.
Claim: We have

$$
\begin{gathered}
d_{i j}^{(0)}= \begin{cases}0 & \text { if } i=j, \\
\infty & \text { if } i \neq j ;\end{cases} \\
\text { and for } m=1,2, \ldots, n-1, \\
d_{i j}^{(m)}=\min _{k}\left\{d_{i k}^{(m-1)}+a_{k j}\right\} .
\end{gathered}
$$

Proof of claim

$$
d_{i j}^{(m)}=\min _{k}\left\{d_{i k}{ }^{(m-1)}+a_{k j}\right\}
$$

Proof of claim

$d_{i j}^{(m)}=\min _{k}\left\{d_{i k}{ }^{(m-1)}+a_{k j}\right\}$

Relaxation!
for $k \leftarrow 1$ to n

do if $d_{i j}>d_{i k}+a_{k j}$

then $d_{i j} \leftarrow d_{i k}+a_{k j}$

Proof of claim

$d_{i j}{ }^{(m)}=\min _{k}\left\{d_{i k}{ }^{(m-1)}+a_{k j}\right\}$

Relaxation!
for $k \leftarrow 1$ to n
do if $d_{i j}>d_{i k}+a_{k j}$ then $d_{i j} \leftarrow d_{i k}+a_{k j}$
$\leq m-1$ edges
Note: No negative-weight cycles implies

$$
\delta(i, j)=d_{i j}{ }^{(n-1)}=d_{i j}^{(n)}=d_{i j}^{(n+1)}=\ldots
$$

Matrix multiplication

Compute $C=A \cdot B$, where C, A, and B are $n \times n$ matrices:

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} .
$$

Time $=\Theta\left(n^{3}\right)$ using the standard algorithm.

Matrix multiplication

Compute $C=A \cdot B$, where C, A, and B are $n \times n$ matrices:

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} .
$$

Time $=\Theta\left(n^{3}\right)$ using the standard algorithm.
What if we map "+" \rightarrow "min" and "." \rightarrow "+"?

Matrix multiplication

Compute $C=A \cdot B$, where C, A, and B are $n \times n$ matrices:

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

Time $=\Theta\left(n^{3}\right)$ using the standard algorithm.
What if we map "+" \rightarrow "min" and "." \rightarrow "+"?

$$
c_{i j}=\min _{k}\left\{a_{i k}+b_{k j}\right\}
$$

Thus, $D^{(m)}=D^{(m-1) " ~} \times$ " A.
Identity matrix $=\mathrm{I}=\left(\begin{array}{cccc}0 & \infty & \infty & \infty \\ \infty & 0 & \infty & \infty \\ \infty & \infty & 0 & \infty \\ \infty & \infty & \infty & 0\end{array}\right)=D^{0}=\left(d_{i j}{ }^{(0)}\right)$.

Matrix multiplication (continued)

The (min, +) multiplication is associative, and with the real numbers, it forms an algebraic structure called a closed semiring.
Consequently, we can compute

$$
\begin{gathered}
D^{(1)}=D^{(0)} \cdot A=A^{1} \\
D^{(2)}=D^{(1)} \cdot A=A^{2} \\
\vdots \\
D^{(n-1)}=D^{(n-2)} \cdot A=A^{n-1},
\end{gathered}
$$

yielding $D^{(n-1)}=(\delta(i, j))$.
Time $=\Theta\left(n \cdot n^{3}\right)=\Theta\left(n^{4}\right)$. No better than $n \times \mathrm{B}-\mathrm{F}$.

Improved matrix multiplication algorithm

Repeated squaring: $A^{2 k}=A^{k} \times A^{k}$.
Compute $\underbrace{A^{2}, A^{4}, \ldots, A^{2 \lg (n-1)}}_{O(\lg n) \text { squarings }}$
Note: $A^{n-1}=A^{n}=A^{n+1}=\cdots$.
Time $=\Theta\left(n^{3} \lg n\right)$.
To detect negative-weight cycles, check the diagonal for negative values in $O(n)$ additional time.

Floyd-Warshall algorithm

Also dynamic programming, but faster!
Define $c_{i j}{ }^{(k)}=$ weight of a shortest path from i to j with intermediate vertices belonging to the set $\{1,2, \ldots, k\}$.

Thus, $\delta(i, j)=c_{i j}{ }^{(n)}$. Also, $c_{i j}{ }^{(0)}=a_{i j}$.

Floyd-Warshall recurrence
$c_{i j}{ }^{(k)}=\min _{k}\left\{c_{i j}{ }^{(k-1)}, c_{i k}^{(k-1)}+c_{k j}{ }^{(k-1)}\right\}$

intermediate vertices in $\{1,2, \ldots, k\}$

Pseudocode for FloydWarshall

for $k \leftarrow 1$ to n
do for $i \leftarrow 1$ to n do for $j \leftarrow 1$ to n $\left.\begin{array}{l}\text { do if } c_{i j}>c_{i k}+c_{k j} \\ \text { then } c_{i j} \leftarrow c_{i k}+c_{k j}\end{array}\right\}$ relaxation

Notes:

- Okay to omit superscripts, since extra relaxations can't hurt.
- Runs in $\Theta\left(n^{3}\right)$ time.
- Simple to code.
- Efficient in practice.

Transitive closure of a directed graph

Compute $t_{i j}= \begin{cases}1 & \text { if there exists a path from } i \text { to } j, \\ 0 & \text { otherise }\end{cases}$
Compute $t_{i j}=\left\{\begin{array}{l}1 \text { otherwise }\end{array}\right.$
Idea: Use Floyd-Warshall, but with (\vee, \wedge) instead of (min, +):

$$
t_{i j}^{(k)}=t_{i j}^{(k-1)} \vee\left(t_{i k}^{(k-1)} \wedge t_{k j}^{(k-1)}\right) .
$$

Time $=\Theta\left(n^{3}\right)$.

Graph reweighting

Theorem. Given a function $h: V \rightarrow \mathbb{R}$, reweight each edge $(u, v) \in E$ by $w_{h}(u, v)=w(u, v)+h(u)-h(v)$. Then, for any two vertices, all paths between them are reweighted by the same amount.

Graph reweighting

Theorem. Given a function $h: V \rightarrow \mathbb{R}$, reweight each edge $(u, v) \in E$ by $w_{h}(u, v)=w(u, v)+h(u)-h(v)$. Then, for any two vertices, all paths between them are reweighted by the same amount.
Proof. Let $p=v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k}$ be a path in G. We have

$$
\begin{aligned}
w_{h}(p) & =\sum_{i=1}^{k-1} w_{h}\left(v_{i}, v_{i+1}\right) \\
& =\sum_{i=1}^{k-1}\left(w\left(v_{i}, v_{i+1}\right)+h\left(v_{i}\right)-h\left(v_{i+1}\right)\right) \\
& =\sum_{i=1}^{k-1} w\left(v_{i}, v_{i+1}\right)+h\left(v_{1}\right)-h\left(v_{k}\right) \quad \text { Same } \\
& =w(p)+h\left(v_{1}\right)-h\left(v_{k}\right) . \square \text { amount! }
\end{aligned}
$$

Corollary. $\delta_{h}(u, v)=\delta(u, v)+h(u)-h(v) . \square$

Shortest paths in reweighted graphs

Corollary. $\delta_{h}(u, v)=\delta(u, v)+h(u)-h(v)$. \square

Idea: Find a function $h: V \rightarrow \mathbb{R}$ such that $w_{h}(u, v) \geq 0$ for all $(u, v) \in E$. Then, run Dijkstra's algorithm from each vertex on the reweighted graph.
Note: $w_{h}(u, v) \geq 0$ iff $h(v)-h(u) \leq w(u, v)$.

Johnson's algorithm

1. Find a function $h: V \rightarrow \mathbb{R}$ such that $w_{h}(u, v) \geq 0$ for all $(u, v) \in E$ by using Bellman-Ford to solve the difference constraints $h(v)-h(u) \leq w(u, v)$, or determine that a negative-weight cycle exists.

- Time $=O(V E)$.

2. Run Dijkstra's algorithm using w_{h} from each vertex $u \in V$ to compute $\delta_{h}(u, v)$ for all $v \in V$.

- Time $=O\left(V E+V^{2} \lg V\right)$.

3. For each $(u, v) \in V \times V$, compute

$$
\delta(u, v)=\delta_{h}(u, v)-h(u)+h(v) .
$$

- Time $=O\left(V^{2}\right)$.

Total time $=O\left(V E+V^{2} \lg V\right)$.

