Undirected Graphs

Undirected graph. G = (V, E)

- V = nodes.
- E = edges between pairs of nodes.
- Captures pairwise relationship between objects.
- Graph size parameters: n = |V|, m = |E|.

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge.

- Two representations of each edge.
- Space proportional to n².
- Checking if (u, v) is an edge takes $\Theta(1)$ time.
- Identifying all edges takes $\Theta(n^2)$ time.

Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.

- Two representations of each edge.
- Space proportional to m + n.

- degree = number of neighbors of u
- Checking if (u, v) is an edge takes O(deg(u)) time.
- Identifying all edges takes $\Theta(m + n)$ time.

Paths and Connectivity

Def. A path in an undirected graph G = (V, E) is a sequence P of nodes $v_1, v_2, ..., v_{k-1}, v_k$ with the property that each consecutive pair v_i, v_{i+1} is joined by an edge in E.

Def. A path is simple if all nodes are distinct.

Def. An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.

Cycles

Def. A cycle is a path v_1 , v_2 , ..., v_{k-1} , v_k in which $v_1 = v_k$, k > 2, and the first k-1 nodes are all distinct.

cycle *C* = 1-2-4-5-3-1

Def. An undirected graph is a tree if it is connected and does not contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the following statements imply the third.

- G is connected.
- G does not contain a cycle.
- G has n-1 edges.

Rooted Trees

Rooted tree. Given a tree T, choose a root node r and orient each edge away from r.

Importance. Models hierarchical structure.

the same tree, rooted at 1

Connectivity

s-t connectivity problem. Given two node s and t, is there a path between s and t?

s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?

Applications.

- Friendster.
- Maze traversal.
- Kevin Bacon number.
- Fewest number of hops in a communication network.

BFS intuition. Explore outward from s in all possible directions, adding nodes one "layer" at a time.

 L_1

 L_2

- L₀ = { s }.
- L_1 = all neighbors of L_0 .
- L_2 = all nodes that do not belong to L_0 or L_1 , and that have an edge to a node in L_1 .
- L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i.

Theorem. For each i, L_i consists of all nodes at distance exactly i from s. There is a path from s to t iff t appears in some layer.

Breadth First Search

Property. Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of G. Then the level of x and y differ by at most 1.

Breadth First Search: Analysis

Theorem. The above implementation of BFS runs in O(m + n) time if the graph is given by its adjacency representation.

Pf.

- Easy to prove O(n²) running time:
 - at most n lists L[i]
 - each node occurs on at most one list; for loop runs \leq n times
 - when we consider node u, there are ≤ n incident edges (u, v), and we spend O(1) processing each edge
- Actually runs in O(m + n) time:
 - when we consider node u, there are deg(u) incident edges (u, v)
 - total time processing edges is $\Sigma_{u \in V} \deg(u) = 2m$

each edge (u, v) is counted exactly twice in sum: once in deg(u) and once in deg(v) **Connected Component**

Connected component. Find all nodes reachable from s.

Connected component containing node 1 = { 1, 2, 3, 4, 5, 6, 7, 8 }.

Connected Component

Connected component. Find all nodes reachable from s.

R will consist of nodes to which s has a path Initially $R=\{s\}$ While there is an edge (u,v) where $u\in R$ and $v\not\in R$ Add v to R Endwhile

it's safe to add v

Theorem. Upon termination, R is the connected component containing s.

- BFS = explore in order of distance from s.
- DFS = explore in a different way.

Def. An undirected graph G = (V, E) is bipartite if the nodes can be colored red or blue such that every edge has one red and one blue end.

Applications.

- Stable marriage: men = red, women = blue.
- Scheduling: machines = red, jobs = blue.

a bipartite graph

Testing Bipartiteness

Testing bipartiteness. Given a graph G, is it bipartite?

- Many graph problems become:
 - easier if the underlying graph is bipartite (matching)
 - tractable if the underlying graph is bipartite (independent set)
- Before attempting to design an algorithm, we need to understand structure of bipartite graphs.

a bipartite graph G

another drawing of G

An Obstruction to Bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd length cycle.

Pf. Not possible to 2-color the odd cycle, let alone G.

Lemma. Let G be a connected graph, and let L_0 , ..., L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

- (i) No edge of G joins two nodes of the same layer, and G is bipartite.
- (ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Lemma. Let G be a connected graph, and let L_0 , ..., L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

- (i) No edge of G joins two nodes of the same layer, and G is bipartite.
- (ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (i)

- Suppose no edge joins two nodes in adjacent layers.
- By previous lemma, this implies all edges join nodes on same level.
- Bipartition: red = nodes on odd levels, blue = nodes on even levels.

Lemma. Let G be a connected graph, and let L_0 , ..., L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

- (i) No edge of G joins two nodes of the same layer, and G is bipartite.
- (ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (ii)

- Suppose (x, y) is an edge with x, y in same level L_j .
- Let z = lca(x, y) = lowest common ancestor.
- Let L_i be level containing z.
- Consider cycle that takes edge from x to y, then path from y to z, then path from z to x.
- Its length is 1 + (j-i) + (j-i), which is odd. •

(x, y) path from path from y to z z to x

Obstruction to Bipartiteness

Corollary. A graph G is bipartite iff it contain no odd length cycle.

Directed Graphs

Directed graph. G = (V, E)

Edge (u, v) goes from node u to node v.

Ex. Web graph - hyperlink points from one web page to another.

- Directedness of graph is crucial.
- Modern web search engines exploit hyperlink structure to rank web pages by importance.

Graph Search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web pages. Find all web pages linked from s, either directly or indirectly.

Strong Connectivity

Def. Node u and v are mutually reachable if there is a path from u to v and also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually reachable.

Lemma. Let s be any node. G is strongly connected iff every node is reachable from s, and s is reachable from every node.

- Pf. \Rightarrow Follows from definition.
- Pf. ← Path from u to v: concatenate u-s path with s-v path.
 Path from v to u: concatenate v-s path with s-u path.

ok if paths overlap

Strong Connectivity: Algorithm

Theorem. Can determine if G is strongly connected in O(m + n) time. Pf.

- Pick any node s.
- Run BFS from s in G. _____ reverse orientation of every edge in G
- Run BFS from s in G^{rev}.
- Return true iff all nodes reached in both BFS executions.
- Correctness follows immediately from previous lemma.

strongly connected

not strongly connected

Def. An DAG is a directed graph that contains no directed cycles.

- Ex. Precedence constraints: edge (v_i, v_j) means v_i must precede v_j .
- Def. A topological order of a directed graph G = (V, E) is an ordering of its nodes as $v_1, v_2, ..., v_n$ so that for every edge (v_i, v_j) we have i < j.

a topological ordering

Precedence Constraints

Precedence constraints. Edge (v_i, v_j) means task v_i must occur before v_j .

Applications.

- Course prerequisite graph: course v_i must be taken before v_j.
- Compilation: module v_i must be compiled before v_j. Pipeline of computing jobs: output of job v_i needed to determine input of job v_j.

Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)

- Suppose that G has a topological order v₁, ..., v_n and that G also has a directed cycle C. Let's see what happens.
- Let v_i be the lowest-indexed node in C, and let v_j be the node just before v_i; thus (v_i, v_i) is an edge.
- By our choice of i, we have i < j.
- On the other hand, since (v_j, v_i) is an edge and v₁, ..., v_n is a topological order, we must have j < i, a contradiction.

the directed cycle
$$C$$

 v_1 v_i v_n v_n

the supposed topological order: $v_1, ..., v_n$

Lemma. If G has a topological order, then G is a DAG.

- Q. Does every DAG have a topological ordering?
- Q. If so, how do we compute one?

Lemma. If G is a DAG, then G has a node with no incoming edges.

Pf. (by contradiction)

- Suppose that G is a DAG and every node has at least one incoming edge. Let's see what happens.
- Pick any node v, and begin following edges backward from v. Since v has at least one incoming edge (u, v) we can walk backward to u.
- Then, since u has at least one incoming edge (x, u), we can walk backward to x.
- Repeat until we visit a node, say w, twice.
- Let C denote the sequence of nodes encountered between successive visits to w. C is a cycle.

Lemma. If G is a DAG, then G has a topological ordering.

Pf. (by induction on n)

- Base case: true if n = 1.
- Given DAG on n > 1 nodes, find a node v with no incoming edges.
- G { v } is a DAG, since deleting v cannot create cycles.
- By inductive hypothesis, G { v } has a topological ordering.
- Place v first in topological ordering; then append nodes of G { v }
- in topological order. This is valid since v has no incoming edges.

```
To compute a topological ordering of G:

Find a node v with no incoming edges and order it first

Delete v from G

Recursively compute a topological ordering of G - \{v\}

and append this order after v
```


Topological Sorting Algorithm: Running Time

Theorem. Algorithm finds a topological order in O(m + n) time.

Pf.

- Maintain the following information:
 - count[w] = remaining number of incoming edges
 - S = set of remaining nodes with no incoming edges
- Initialization: O(m + n) via single scan through graph.
- Update: to delete v
 - remove v from S
 - decrement count[w] for all edges from v to w, and add w to S if c
 count[w] hits 0
 - this is O(1) per edge

Shortest Path Problem

Shortest path network.

- Directed graph G = (V, E).
- Source s, destination t.
- Length l_e = length of edge e.

Shortest path problem: find shortest directed path from s to t.

cost of path = sum of edge costs in path

Cost of path s-2-3-5-t = 9 + 23 + 2 + 16 = 50.

Dijkstra's Algorithm

Dijkstra's algorithm.

- Maintain a set of explored nodes S for which we have determined the shortest path distance d(u) from s to u.
- Initialize $S = \{s\}, d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$

add v to S, and set $d(v) = \pi(v)$.

shortest path to some u in explored part, followed by a single edge (u, v)

Dijkstra's Algorithm

Dijkstra's algorithm.

- Maintain a set of explored nodes S for which we have determined the shortest path distance d(u) from s to u.
- Initialize $S = \{s\}, d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$

add v to S, and set $d(v) = \pi(v)$.

shortest path to some u in explored part, followed by a single edge (u, v)

Dijkstra's Algorithm: Proof of Correctness

Invariant. For each node $u \in S$, d(u) is the length of the shortest s-u path. Pf. (by induction on |S|)

Base case: |S| = 1 is trivial.

Inductive hypothesis: Assume true for $|S| = k \ge 1$.

- Let v be next node added to S, and let u-v be the chosen edge.
- The shortest s-u path plus (u, v) is an s-v path of length $\pi(v)$.
- Consider any s-v path P. We'll see that it's no shorter than $\pi(v)$.
- Let x-y be the first edge in P that leaves S, and let P' be the subpath to x.
- P is already too long as soon as it leaves S.

$$\ell(P) \ge \ell(P') + \ell(x,y) \ge d(x) + \ell(x,y) \ge \pi(y) \ge \pi(v)$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$
nonnegative inductive defn of $\pi(y)$ Dijkstra chose v
weights hypothesis instead of y

Ρ

P'

S

(S

Minimum Spanning Tree

Minimum spanning tree. Given a connected graph G = (V, E) with realvalued edge weights c_e , an MST is a subset of the edges $T \subseteq E$ such that T is a spanning tree whose sum of edge weights is minimized.

Cayley's Theorem. There are nⁿ⁻² spanning trees of K_n.
Greedy Algorithms

Kruskal's algorithm. Start with $T = \phi$. Consider edges in ascending order of cost. Insert edge e in T unless doing so would create a cycle.

Reverse-Delete algorithm. Start with T = E. Consider edges in descending order of cost. Delete edge e from T unless doing so would disconnect T.

Prim's algorithm. Start with some root node s and greedily grow a tree T from s outward. At each step, add the cheapest edge e to T that has exactly one endpoint in T.

Remark. All three algorithms produce an MST.

Greedy Algorithms

Simplifying assumption. All edge costs c_e are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST contains e.

Cycle property. Let C be any cycle, and let f be the max cost edge belonging to C. Then the MST does not contain f.

Cycles and Cuts

Cycle. Set of edges the form a-b, b-c, c-d, ..., y-z, z-a.

Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1

Cutset. A cut is a subset of nodes S. The corresponding cutset D is the subset of edges with exactly one endpoint in S.

Cut S = { 4, 5, 8 } Cutset D = 5-6, 5-7, 3-4, 3-5, 7-8 Claim. A cycle and a cutset intersect in an even number of edges.

Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1 Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8 Intersection = 3-4, 5-6

Pf. (by picture)

Greedy Algorithms

Simplifying assumption. All edge costs c_e are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST T* contains e.

Pf. (exchange argument)

- Suppose e does not belong to T*, and let's see what happens.
- Adding e to T* creates a cycle C in T*.
- Edge e is both in the cycle C and in the cutset D corresponding to S
 ⇒ there exists another edge, say f, that is in both C and D.
- $T' = T^* \cup \{e\} \{f\}$ is also a spanning tree.
- Since $c_e < c_f$, $cost(T') < cost(T^*)$.
- This is a contradiction.

Simplifying assumption. All edge costs c_e are distinct.

Cycle property. Let C be any cycle in G, and let f be the max cost edge belonging to C. Then the MST T* does not contain f.

Pf. (exchange argument)

- Suppose f belongs to T*, and let's see what happens.
- Deleting f from T* creates a cut S in T*.
- Edge f is both in the cycle C and in the cutset D corresponding to S
 ⇒ there exists another edge, say e, that is in both C and D.
- $T' = T^* \cup \{e\} \{f\}$ is also a spanning tree.
- Since $c_e < c_f$, $cost(T') < cost(T^*)$.
- This is a contradiction.

Prim's Algorithm: Proof of Correctness

Prim's algorithm. [Jarník 1930, Dijkstra 1957, Prim 1959]

- Initialize S = any node.
- Apply cut property to S.
- Add min cost edge in cutset corresponding to S to T, and add one new explored node u to S.

Kruskal's Algorithm: Proof of Correctness

Kruskal's algorithm. [Kruskal, 1956]

- Consider edges in ascending order of weight.
- Case 1: If adding e to T creates a cycle, discard e according to cycle property.
- Case 2: Otherwise, insert e = (u, v) into T according to cut property where S = set of nodes in u's connected component.

Case 1

Shortest Paths

Shortest path problem. Given a directed graph G = (V, E), with edge weights c_{vw} , find shortest path from node s to node t. Allow negative weights

Ex. Nodes represent agents in a financial setting and c_{vw} is cost of transaction in which we buy from agent v and sell immediately to w.

Shortest Paths: Failed Attempts

Dijkstra. Can fail if negative edge costs.

Re-weighting. Adding a constant to every edge weight can fail.

Negative cost cycle.

Observation. If some path from s to t contains a negative cost cycle, there does not exist a shortest s-t path; otherwise, there exists one that is simple.

Shortest Paths: Dynamic Programming

Def. OPT(i, v) = length of shortest v-t path P using at most i edges.

- Case 1: P uses at most i-1 edges.
 - OPT(i, v) = OPT(i-1, v)
- Case 2: P uses exactly i edges.
 - if (v, w) is first edge, then OPT uses (v, w), and then selects best
 w-t path using at most i-1 edges

$$OPT(i,v) = \begin{cases} 0 & \text{if } i = 0\\ \min\left\{OPT(i-1, v), \min_{(v,w) \in E} \left\{OPT(i-1, w) + c_{vw}\right\}\right\} & \text{otherwise} \end{cases}$$

Remark. By previous observation, if no negative cycles, then OPT(n-1, v) = length of shortest v-t path.

Shortest Paths: Implementation

```
Shortest-Path(G, t) {

foreach node v \in V

M[0, v] \leftarrow \infty

M[0, t] \leftarrow 0

for i = 1 to n-1

foreach node v \in V

M[i, v] \leftarrow M[i-1, v]

foreach edge (v, w) \in E

M[i, v] \leftarrow min \{ M[i, v], M[i-1, w] + c_{vw} \}

}
```

Analysis. $\Theta(mn)$ time, $\Theta(n^2)$ space.

Finding the shortest paths. Maintain a "successor" for each table entry.

Shortest Paths: Practical Improvements

Practical improvements.

- Maintain only one array M[v] = shortest v-t path that we have found so far.
- No need to check edges of the form (v, w) unless M[w] changed in previous iteration.

Theorem. Throughout the algorithm, M[v] is length of some v-t path, and after i rounds of updates, the value M[v] is no larger than the length of shortest v-t path using \leq i edges.

Overall impact.

- Memory: O(m + n).
- Running time: O(mn) worst case, but substantially faster in practice.

Bellman-Ford: Efficient Implementation

```
Push-Based-Shortest-Path(G, s, t) {
   foreach node v \in V {
      M[v] \leftarrow \infty
       successor[v] \leftarrow \phi
   }
   M[t] = 0
   for i = 1 to n-1 {
       foreach node w \in V {
       if (M[w] has been updated in previous iteration) {
          foreach node v such that (v, w) \in E {
              if (M[v] > M[w] + c_{vw}) {
                 M[v] \leftarrow M[w] + c_{vw}
                 successor[v] \leftarrow w
              }
           }
       If no M[w] value changed in iteration i, stop.
   }
}
```

Minimum Cut Problem

Flow network.

- Abstraction for material flowing through the edges.
- G = (V, E) = directed graph, no parallel edges.
- Two distinguished nodes: s = source, t = sink.
- c(e) = capacity of edge e.

Cuts

Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

Def. The capacity of a cut (A, B) is: $cap(A, B) = \sum_{e \text{ out of } A} c(e)$

Cuts

Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

Def. The capacity of a cut (A, B) is: $cap(A, B) = \sum_{e \text{ out of } A} c(e)$

Minimum Cut Problem

Min s-t cut problem. Find an s-t cut of minimum capacity.

Flows

Def. An s-t flow is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$ [capacity]
- For each $v \in V \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ [conservation]

[capacity] [conservation]

Def. The value of a flow f is: $v(f) = \sum_{e \text{ out of } s} f(e)$.

Flows

Def. An s-t flow is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$ [capacity]
- For each $v \in V \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ [conservation]

[capacity] [conservation]

Def. The value of a flow f is: $v(f) = \sum_{e \text{ out of } s} f(e)$.

Maximum Flow Problem

Max flow problem. Find s-t flow of maximum value.

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

 $\sum f(e) - \sum f(e) = v(f)$ e out of A *e* in to A 15 0 (6) († S Α 15 0 Value = 24

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

 $\sum f(e) - \sum f(e) = v(f)$ e out of A e in to A 15 0 (ร (†) Α 4 0 15 0 Value = 6 + 0 + 8 - 1 + 11 = 24

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

 $\sum f(e) - \sum f(e) = v(f)$ e in to A *e* out of *A* 15 0 (5 Α 15 0 4 0 Value = 10 - 4 + 8 - 0 + 10 = 24

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f).$$

Pf.
$$v(f) = \sum_{e \text{ out of } s} f(e)$$

by flow conservation, all terms
$$\longrightarrow = \sum_{v \in A} \left(\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ in to } v} f(e) \right)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e).$$

Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the value of the flow is at most the capacity of the cut.

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have $v(f) \le cap(A, B)$.

Pf.

Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut. If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

> Value of flow = 28 Cut capacity = 28 \Rightarrow Flow value \leq 28

Towards a Max Flow Algorithm

Greedy algorithm.

- Start with f(e) = 0 for all edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

Towards a Max Flow Algorithm

Greedy algorithm.

- Start with f(e) = 0 for all edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

Towards a Max Flow Algorithm

Greedy algorithm.

- Start with f(e) = 0 for all edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

Nocally optimality ⇒ global optimality

Residual Graph

Residual graph: $G_f = (V, E_f)$.

- Residual edges with positive residual capacity.
- $E_f = \{e : f(e) < c(e)\} \cup \{e^R : f(e) > 0\}.$

Ford-Fulkerson Algorithm

Augmenting Path Algorithm

```
Augment(f, c, P) {
    b ← bottleneck(P)
    foreach e ∈ P {
        if (e ∈ E) f(e) ← f(e) + b for
        else f(e<sup>R</sup>) ← f(e<sup>R</sup>) - b rev
    }
    return f
}
```

forward edge reverse edge

```
Ford-Fulkerson(G, s, t, c) {
   foreach e ∈ E f(e) ← 0
   G<sub>f</sub> ← residual graph
   while (there exists augmenting path P) {
     f ← Augment(f, c, P)
     update G<sub>f</sub>
   }
   return f
}
```

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no augmenting paths.

Max-flow min-cut theorem. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] The value of the max flow is equal to the value of the min cut.

Pf. We prove both simultaneously by showing TFAE:

- (i) There exists a cut (A, B) such that v(f) = cap(A, B).
- (ii) Flow f is a max flow.
- (iii) There is no augmenting path relative to f.

(i) \Rightarrow (ii) This was the corollary to weak duality lemma.

(ii) \Rightarrow (iii) We show contrapositive.

 Let f be a flow. If there exists an augmenting path, then we can improve f by sending flow along path.
Proof of Max-Flow Min-Cut Theorem

(iii) \Rightarrow (i)

- Let f be a flow with no augmenting paths.
- Let A be set of vertices reachable from s in residual graph.
- By definition of $A, s \in A$.
- By definition of f, $t \notin A$.

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$
$$= \sum_{e \text{ out of } A} c(e)$$
$$= cap(A, B) \bullet$$

original network

Matching

Matching.

- Input: undirected graph G = (V, E).
- $M \subseteq E$ is a matching if each node appears in at most edge in M.
- Max matching: find a max cardinality matching.

Bipartite Matching

Bipartite matching.

- Input: undirected, bipartite graph $G = (L \cup R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most edge in M.
- Max matching: find a max cardinality matching.

Bipartite Matching

Bipartite matching.

- Input: undirected, bipartite graph $G = (L \cup R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most edge in M.
- Max matching: find a max cardinality matching.

Bipartite Matching

Max flow formulation.

- Create digraph G' = (L \cup R \cup {s, t}, E').
- Direct all edges from L to R, and assign infinite (or unit) capacity.
- Add source s, and unit capacity edges from s to each node in L.
- Add sink t, and unit capacity edges from each node in R to t.

Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G'. Pf. \leq

- Given max matching M of cardinality k.
- Consider flow f that sends 1 unit along each of k paths.
- f is a flow, and has cardinality k.

Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G'. Pf. \geq

- Let f be a max flow in G' of value k.
- Integrality theorem \Rightarrow k is integral and can assume f is 0-1.
- Consider M = set of edges from L to R with f(e) = 1.
 - each node in L and R participates in at most one edge in M
 - |M| = k: consider cut $(L \cup s, R \cup t)$ =

Disjoint path problem. Given a digraph G = (V, E) and two nodes s and t, find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.

Disjoint path problem. Given a digraph G = (V, E) and two nodes s and t, find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.

Max flow formulation: assign unit capacity to every edge.

Theorem. Max number edge-disjoint s-t paths equals max flow value. Pf. ≤

- Suppose there are k edge-disjoint paths P_1, \ldots, P_k .
- Set f(e) = 1 if e participates in some path P_i ; else set f(e) = 0.
- Since paths are edge-disjoint, f is a flow of value k.

Max flow formulation: assign unit capacity to every edge.

Theorem. Max number edge-disjoint s-t paths equals max flow value. Pf. \geq

- Suppose max flow value is k.
- Integrality theorem \Rightarrow there exists 0-1 flow f of value k.
- Consider edge (s, u) with f(s, u) = 1.
 - by conservation, there exists an edge (u, v) with f(u, v) = 1
 - continue until reach t, always choosing a new edge
- Produces k (not necessarily simple) edge-disjoint paths.

can eliminate cycles to get simple paths if desired

Network Connectivity

Network connectivity. Given a digraph G = (V, E) and two nodes s and t, find min number of edges whose removal disconnects t from s.

Def. A set of edges $F \subseteq E$ disconnects t from s if every s-t path uses at least one edge in F.

Edge Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t paths is equal to the min number of edges whose removal disconnects t from s.

Pf. ≤

- Suppose the removal of $F \subseteq E$ disconnects t from s, and |F| = k.
- Every s-t path uses at least one edge in F.
 Hence, the number of edge-disjoint paths is at most k.

Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t paths is equal to the min number of edges whose removal disconnects t from s.

Pf. ≥

- Suppose max number of edge-disjoint paths is k.
- Then max flow value is k.
- Max-flow min-cut \Rightarrow cut (A, B) of capacity k.
- Let F be set of edges going from A to B.
- |F| = k and disconnects t from s.

