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Undirected Graphs

Undirected graph.  G = (V, E)
 V = nodes.
 E = edges between pairs of nodes.
 Captures pairwise relationship between objects.
 Graph size parameters:  n = |V|, m = |E|.

V = { 1, 2, 3, 4, 5, 6, 7, 8 }
E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 }
n = 8
m = 11
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Graph Representation:  Adjacency Matrix

Adjacency matrix.  n-by-n matrix with Auv = 1 if (u, v) is an edge.
 Two representations of each edge.
 Space proportional to n2.
 Checking if (u, v) is an edge takes Θ(1) time.
 Identifying all edges takes Θ(n2) time.

  1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 1 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0
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Graph Representation:  Adjacency List

Adjacency list.  Node indexed array of lists.
 Two representations of each edge.
 Space proportional to m + n.
 Checking if (u, v) is an edge takes O(deg(u)) time.
 Identifying all edges takes Θ(m + n) time.

1 2 3

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

1 2 5 87

2 3 4 6

5

degree = number of neighbors of u

3 7
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Paths and Connectivity

Def.  A path in an undirected graph G = (V, E) is a sequence P of nodes
v1, v2, …, vk-1, vk with the property that each consecutive pair vi, vi+1 is
joined by an edge in E.

Def.  A path is simple if all nodes are distinct.

Def.  An undirected graph is connected if for every pair of nodes u and
v, there is a path between u and v.
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Cycles

Def.  A cycle is a path v1, v2, …, vk-1, vk in which v1 = vk, k > 2, and the
first k-1 nodes are all distinct.

cycle C = 1-2-4-5-3-1
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Trees

Def.  An undirected graph is a tree if it is connected and does not
contain a cycle.

Theorem.  Let G be an undirected graph on n nodes. Any two of the
following statements imply the third.

 G is connected.
 G does not contain a cycle.
 G has n-1 edges.
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Rooted Trees

Rooted tree.  Given a tree T, choose a root node r and orient each edge
away from r.

Importance.  Models hierarchical structure.

a tree the same tree, rooted at 1

v

parent of v

child of v

root r
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Connectivity

s-t connectivity problem.  Given two node s and t, is there a path
between s and t?

s-t shortest path problem.  Given two node s and t, what is the length
of the shortest path between s and t?

Applications.
 Friendster.
 Maze traversal.
 Kevin Bacon number.
 Fewest number of hops in a communication network.
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Breadth First Search

BFS intuition.  Explore outward from s in all possible directions, adding
nodes one "layer" at a time.

BFS algorithm.
 L0 = { s }.
 L1 = all neighbors of L0.
 L2 = all nodes that do not belong to L0 or L1, and that have an edge

to a node in L1.
 Li+1 = all nodes that do not belong to an earlier layer, and that have

an edge to a node in Li.

Theorem.  For each i, Li consists of all nodes at distance exactly i
from s.  There is a path from s to t iff t appears in some layer.

s L1 L2 L n-1
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Breadth First Search

Property.  Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of
G. Then the level of x and y differ by at most 1.

L0

L1

L2

L3
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Breadth First Search:  Analysis

Theorem.  The above implementation of BFS runs in O(m + n) time if
the graph is given by its adjacency representation.

Pf.
 Easy to prove O(n2) running time:

– at most n lists L[i]
– each node occurs on at most one list; for loop runs ≤ n times
– when we consider node u, there are ≤ n incident edges (u, v),

and we spend O(1) processing each edge

 Actually runs in O(m + n) time:
– when we consider node u, there are deg(u) incident edges (u, v)
– total time processing edges is Σu∈V deg(u) = 2m     ▪

each edge (u, v) is counted exactly twice
in sum: once in deg(u) and once in deg(v)
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Connected Component

Connected component.  Find all nodes reachable from s.

Connected component containing node 1 = { 1, 2, 3, 4, 5, 6, 7, 8 }.
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Connected Component

Connected component.  Find all nodes reachable from s.

Theorem.  Upon termination, R is the connected component containing s.
 BFS = explore in order of distance from s.
 DFS = explore in a different way.

s

u v

R

it's safe to add v
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Bipartite Graphs

Def.  An undirected graph G = (V, E) is bipartite if the nodes can be
colored red or blue such that every edge has one red and one blue end.

Applications.
 Stable marriage:  men = red, women = blue.
 Scheduling:  machines = red, jobs = blue.

a bipartite graph
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Testing Bipartiteness

Testing bipartiteness.   Given a graph G, is it bipartite?
 Many graph problems become:

– easier if the underlying graph is bipartite (matching)
– tractable if the underlying graph is bipartite (independent set)

 Before attempting to design an algorithm, we need to understand
structure of bipartite graphs.

v1

v2 v3

v6 v5 v4

v7

v2

v4

v5

v7

v1

v3

v6

a bipartite graph G another drawing of G
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An Obstruction to Bipartiteness

Lemma.  If a graph G is bipartite, it cannot contain an odd length cycle.

Pf.  Not possible to 2-color the odd cycle, let alone G.

bipartite
(2-colorable)

not bipartite
(not 2-colorable)
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Bipartite Graphs

Lemma.  Let G be a connected graph, and let L0, …, Lk be the layers
produced by BFS starting at node s.  Exactly one of the following holds.
(i)   No edge of G joins two nodes of the same layer, and G is bipartite.
(ii)  An edge of G joins two nodes of the same layer, and G contains an

   odd-length cycle (and hence is not bipartite).

Case (i)

L1 L2 L3

Case (ii)

L1 L2 L3
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Bipartite Graphs

Lemma.  Let G be a connected graph, and let L0, …, Lk be the layers
produced by BFS starting at node s.  Exactly one of the following holds.
(i)   No edge of G joins two nodes of the same layer, and G is bipartite.
(ii)  An edge of G joins two nodes of the same layer, and G contains an

   odd-length cycle (and hence is not bipartite).

Pf.  (i)
 Suppose no edge joins two nodes in adjacent layers.
 By previous lemma, this implies all edges join nodes on same level.
 Bipartition:  red = nodes on odd levels, blue = nodes on even levels.

Case (i)

L1 L2 L3
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Bipartite Graphs

Lemma.  Let G be a connected graph, and let L0, …, Lk be the layers
produced by BFS starting at node s.  Exactly one of the following holds.
(i)   No edge of G joins two nodes of the same layer, and G is bipartite.
(ii)  An edge of G joins two nodes of the same layer, and G contains an

   odd-length cycle (and hence is not bipartite).

Pf.  (ii)
 Suppose (x, y) is an edge with x, y in same level Lj.
 Let z = lca(x, y) = lowest common ancestor.
 Let Li be level containing z.
 Consider cycle that takes edge from x to y,

then path from y to z, then path from z to x.
 Its length is  1  +   (j-i)  +  (j-i),  which is odd.  ▪

z = lca(x, y)

(x, y) path from
y to z

path from
z to x
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Obstruction to Bipartiteness

Corollary.  A graph G is bipartite iff it contain no odd length cycle.

5-cycle C

bipartite
(2-colorable)

not bipartite
(not 2-colorable)
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Directed Graphs

Directed graph.  G = (V, E)
 Edge (u, v) goes from node u to node v.

Ex.  Web graph - hyperlink points from one web page to another.
 Directedness of graph is crucial.
 Modern web search engines exploit hyperlink structure to rank web

pages by importance.
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Graph Search

Directed reachability.  Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem.  Given two node s and t, what is
the length of the shortest path between s and t?

Graph search.  BFS extends naturally to directed graphs.

Web crawler.  Start from web page s.  Find all web pages linked from s,
either directly or indirectly.
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Strong Connectivity

Def.  Node u and v are mutually reachable if there is a path from u to v
and also a path from v to u.

Def.  A graph is strongly connected if every pair of nodes is mutually
reachable.

Lemma.  Let s be any node.  G is strongly connected iff every node is
reachable from s, and s is reachable from every node.

Pf.  ⇒  Follows from definition.
Pf.  ⇐  Path from u to v: concatenate u-s path with s-v path.
            Path from v to u: concatenate v-s path with s-u path.   ▪

s

v

u

ok if paths overlap
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Strong Connectivity:  Algorithm

Theorem.  Can determine if G is strongly connected in O(m + n) time.
Pf.

 Pick any node s.
 Run BFS from s in G.
 Run BFS from s in Grev.
 Return true iff all nodes reached in both BFS executions.
 Correctness follows immediately from previous lemma.   ▪

reverse orientation of every edge in G

strongly connected not strongly connected
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Directed Acyclic Graphs

Def.  An DAG is a directed graph that contains no directed cycles.

Ex.  Precedence constraints:  edge (vi, vj) means vi must precede vj.

Def.  A topological order of a directed graph G = (V, E) is an ordering
of its nodes as v1, v2, …, vn so that for every edge (vi, vj) we have i < j.

a DAG a topological ordering

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7
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Precedence Constraints

Precedence constraints.  Edge (vi, vj) means task vi must occur before vj.

Applications.
 Course prerequisite graph:  course vi must be taken before vj.
 Compilation:  module vi must be compiled before vj. Pipeline of

computing jobs:  output of job vi needed to determine input of job vj.
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Directed Acyclic Graphs

Lemma.  If G has a topological order, then G is a DAG.

Pf.  (by contradiction)
 Suppose that G has a topological order v1, …, vn and that G also has a

directed cycle C.  Let's see what happens.
 Let vi be the lowest-indexed node in C, and let vj be the node just

before vi; thus (vj, vi) is an edge.
 By our choice of i, we have i < j.
 On the other hand, since (vj, vi) is an edge and v1, …, vn is a

topological order, we must have j < i, a contradiction.   ▪

v1 vi vj vn

the supposed topological order:  v1, …, vn

the directed cycle C
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Directed Acyclic Graphs

Lemma.  If G has a topological order, then G is a DAG.

Q.  Does every DAG have a topological ordering?

Q.  If so, how do we compute one?
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Directed Acyclic Graphs

Lemma.  If G is a DAG, then G has a node with no incoming edges.

Pf.  (by contradiction)
 Suppose that G is a DAG and every node has at least one incoming

edge.  Let's see what happens.
 Pick any node v, and begin following edges backward from v.  Since v

has at least one incoming edge (u, v) we can walk backward to u.
 Then, since u has at least one incoming edge (x, u), we can walk

backward to x.
 Repeat until we visit a node, say w, twice.
 Let C denote the sequence of nodes encountered between

successive visits to w.  C is a cycle.   ▪

w x u v
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Directed Acyclic Graphs

Lemma.  If G is a DAG, then G has a topological ordering.

Pf.  (by induction on n)
 Base case:  true if n = 1.
 Given DAG on n > 1 nodes, find a node v with no incoming edges.
 G - { v } is a DAG, since deleting v cannot create cycles.
 By inductive hypothesis, G - { v } has a topological ordering.
 Place v first in topological ordering; then append nodes of G - { v }
 in topological order. This is valid since v has no incoming edges.   ▪

DAG

v
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Topological Sorting Algorithm:  Running Time

Theorem.  Algorithm finds a topological order in O(m + n) time.

Pf.
 Maintain the following information:

– count[w] = remaining number of incoming edges
– S = set of remaining nodes with no incoming edges

 Initialization:  O(m + n) via single scan through graph.
 Update:  to delete v

– remove v from S
– decrement count[w] for all edges from v to w, and add w to S if c
count[w] hits 0

– this is O(1) per edge    ▪
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Shortest Path Problem

Shortest path network.
 Directed graph G = (V, E).
 Source s, destination t.
 Length le = length of edge e.

Shortest path problem:  find shortest directed path from s to t.

Cost of path s-2-3-5-t
     =  9 + 23 + 2 + 16
     = 50.

cost of path = sum of edge costs in path

s

3

t

2

6

7

4
5

23

18

2

9

14

15
5

30

20

44

16

11

6

19

6
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Dijkstra's Algorithm

Dijkstra's algorithm.
 Maintain a set of explored nodes S for which we have determined

the shortest path distance d(u) from s to u.
 Initialize S = { s }, d(s) = 0.
 Repeatedly choose unexplored node v which minimizes

add v to S, and set d(v) = π(v).

,)(min)(
:),(

e
Suvue

udv l+=
!=

"

s

v

u
d(u)

S

le

shortest path to some u in explored
part, followed by a single edge (u, v)
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Dijkstra's Algorithm

Dijkstra's algorithm.
 Maintain a set of explored nodes S for which we have determined

the shortest path distance d(u) from s to u.
 Initialize S = { s }, d(s) = 0.
 Repeatedly choose unexplored node v which minimizes

add v to S, and set d(v) = π(v).

,)(min)(
:),(

e
Suvue

udv l+=
!=

"

s

v

u
d(u)

shortest path to some u in explored
part, followed by a single edge (u, v)

S

le
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Dijkstra's Algorithm:  Proof of Correctness

Invariant.  For each node u ∈ S, d(u) is the length of the shortest s-u path.
Pf.  (by induction on |S|)
Base case:  |S| = 1 is trivial.
Inductive hypothesis:  Assume true for |S| = k  ≥  1.

 Let v be next node added to S, and let u-v be the chosen edge.
 The shortest s-u path plus (u, v) is an s-v path of length π(v).
 Consider any s-v path P. We'll see that it's no shorter than π(v).
 Let x-y be the first edge in P that leaves S,

and let P' be the subpath to x.
 P is already too long as soon as it leaves S.

 l (P)  ≥ l (P') + l (x,y)  ≥  d(x) + l (x, y)  ≥  π(y)  ≥  π(v)

nonnegative
weights

inductive
hypothesis

defn of π(y) Dijkstra chose v
instead of y

S

s

y

v

x

P

u

P'
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Minimum Spanning Tree

Minimum spanning tree.  Given a connected graph G = (V, E) with real-
valued edge weights ce, an MST is a subset of the edges T ⊆ E such
that T is a spanning tree whose sum of edge weights is minimized.

Cayley's Theorem.  There are nn-2 spanning trees of Kn.

 5

23

10
21

 14

24

 16

 6

 4

18
9

7

11
 8

 5

 6

 4

9

7

11
 8

G = (V, E) T,  Σe∈T ce = 50

can't solve by brute force
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Greedy Algorithms

Kruskal's algorithm.  Start with T = φ. Consider edges in ascending
order of cost. Insert edge e in T unless doing so would create a cycle.

Reverse-Delete algorithm.  Start with T = E.  Consider edges in
descending order of cost. Delete edge e from T unless doing so would
disconnect T.

Prim's algorithm.  Start with some root node s and greedily grow a tree
T from s outward.  At each step, add the cheapest edge e to T that has
exactly one endpoint in T.

Remark.  All three algorithms produce an MST.
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Greedy Algorithms

Simplifying assumption.  All edge costs ce are distinct.

Cut property.  Let S be any subset of nodes, and let e be the min cost
edge with exactly one endpoint in S.  Then the MST contains e.

Cycle property.  Let C be any cycle, and let f be the max cost edge
belonging to C.  Then the MST does not contain f.

f
C

S

e is in the MST

e

f is not in the MST
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Cycles and Cuts

Cycle.  Set of edges the form a-b, b-c, c-d, …, y-z, z-a.

Cutset.  A cut is a subset of nodes S.  The corresponding cutset D is
the subset of edges with exactly one endpoint in S.

Cycle C  =  1-2, 2-3, 3-4, 4-5, 5-6, 6-1

1
3

8

2

6

7

4

5

Cut S       =  { 4, 5, 8 }
Cutset  D =  5-6, 5-7, 3-4, 3-5, 7-8

1
3

8

2

6

7

4

5
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Cycle-Cut Intersection

Claim.  A cycle and a cutset intersect in an even number of edges.

Pf.  (by picture)

1
3

8

2

6

7

4

5

S

V - S

C

Cycle  C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8
Intersection = 3-4, 5-6
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Greedy Algorithms

Simplifying assumption.  All edge costs ce are distinct.

Cut property.  Let S be any subset of nodes, and let e be the min cost
edge with exactly one endpoint in S. Then the MST T* contains e.

Pf.  (exchange argument)
 Suppose e does not belong to T*, and let's see what happens.
 Adding e to T* creates a cycle C in T*.
 Edge e is both in the cycle C and in the cutset D corresponding to S
⇒  there exists another edge, say f, that is in both C and D.

 T' = T* ∪ { e } - { f } is also a spanning tree.
 Since ce < cf, cost(T') < cost(T*).
 This is a contradiction.   ▪

f

 T*
e

S
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Greedy Algorithms

Simplifying assumption.  All edge costs ce are distinct.

Cycle property.  Let C be any cycle in G, and let f be the max cost edge
belonging to C. Then the MST T* does not contain f.

Pf.  (exchange argument)
 Suppose f belongs to T*, and let's see what happens.
 Deleting f from T* creates a cut S in T*.
 Edge f is both in the cycle C and in the cutset D corresponding to S
⇒  there exists another edge, say e, that is in both C and D.

 T' = T* ∪ { e } - { f } is also a spanning tree.
 Since ce < cf, cost(T') < cost(T*).
 This is a contradiction.   ▪

f

 T*
e

S
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Prim's Algorithm:  Proof of Correctness

Prim's algorithm.  [Jarník 1930, Dijkstra 1957, Prim 1959]
 Initialize S = any node.
 Apply cut property to S.
 Add min cost edge in cutset corresponding to S to T, and add one

new explored node u to S.

S
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Kruskal's Algorithm:  Proof of Correctness

Kruskal's algorithm.  [Kruskal, 1956]
 Consider edges in ascending order of weight.
 Case 1:  If adding e to T creates a cycle, discard e according to

cycle property.
 Case 2:  Otherwise, insert e = (u, v) into T according to cut

property where S = set of nodes in u's connected component.

Case 1

v

u

Case 2

e

e
S
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Shortest Paths

Shortest path problem.  Given a directed graph G = (V, E), with edge
weights cvw, find shortest path from node s to node t.

Ex.  Nodes represent agents in a financial setting and cvw is cost of
transaction in which we buy from agent v and sell immediately to w.

s

3

t

2

6

7

4
5

10

18
 -16

9

 6

15  -8

 30

 20

44

16

11

6

19

6

allow negative weights
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Shortest Paths:  Failed Attempts

Dijkstra.  Can fail if negative edge costs.

Re-weighting.  Adding a constant to every edge weight can fail.

u

t

s v

2

 1

3

-6

s t

2

 3

2

-3

3

5 5

66

0
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Shortest Paths:  Negative Cost Cycles

Negative cost cycle.

Observation.  If some path from s to t contains a negative cost cycle,
there does not exist a shortest s-t path; otherwise, there exists one
that is simple.

s t
W

c(W) < 0

 -6

 7

 -4
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Shortest Paths:  Dynamic Programming

Def.  OPT(i, v) = length of shortest v-t path P using at most i edges.

 Case 1:  P uses at most i-1 edges.
– OPT(i, v) = OPT(i-1, v)

 Case 2:  P uses exactly i edges.
– if (v, w) is first edge, then OPT uses (v, w), and then selects best

w-t path using at most i-1 edges

Remark.  By previous observation, if no negative cycles, then
OPT(n-1, v) = length of shortest v-t path.

  

! 

OPT(i, v) =

 0 if  i = 0

  min OPT(i "1, v) ,
(v, w)# E

min OPT(i "1, w)+ c
vw{ }

$ 
% 
& 

' 
( 
) 

otherwise

$ 

% 
* 

& * 



7

Shortest Paths:  Implementation

Analysis.  Θ(mn) time, Θ(n2) space.

Finding the shortest paths.  Maintain a "successor" for each table
entry.

Shortest-Path(G, t) {
   foreach node v ∈ V
      M[0, v] ← ∞
   M[0, t] ← 0

   for i = 1 to n-1
      foreach node v ∈ V
         M[i, v] ← M[i-1, v]
      foreach edge (v, w) ∈ E
         M[i, v] ← min { M[i, v], M[i-1, w] + cvw }
}
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Shortest Paths:  Practical Improvements

Practical improvements.
 Maintain only one array M[v] = shortest v-t path that we have

found so far.
 No need to check edges of the form (v, w) unless M[w] changed

in previous iteration.

Theorem.  Throughout the algorithm, M[v] is length of some v-t path,
and after i rounds of updates, the value M[v] is no larger than the length
of shortest v-t path using ≤ i edges.

Overall impact.
 Memory:  O(m + n).
 Running time:  O(mn) worst case, but substantially faster in practice.
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Bellman-Ford:  Efficient Implementation

Push-Based-Shortest-Path(G, s, t) {
   foreach node v ∈ V {
      M[v] ← ∞
      successor[v] ← φ
   }

   M[t] = 0
   for i = 1 to n-1 {
      foreach node w ∈ V {
      if (M[w] has been updated in previous iteration) {
         foreach node v such that (v, w) ∈ E {
            if (M[v] > M[w] + cvw) {
               M[v] ← M[w] + cvw
               successor[v] ← w
            }
         }
      }
      If no M[w] value changed in iteration i, stop.
   }
}
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Flow network.
 Abstraction for material flowing through the edges.
 G = (V, E) = directed graph, no parallel edges.
 Two distinguished nodes:  s = source, t = sink.
 c(e) = capacity of edge e.

Minimum Cut Problem

s

2

3

4

5

6

7

t

 15

 5

 30

 15

   10

 8

 15

 9

 6  10

 10

   10 15 4

 4
capacity

source sink
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Def.  An s-t cut is a partition (A, B) of V with s ∈ A and t ∈ B.

Def. The capacity of a cut (A, B) is:

Cuts

s

2

3

4

5

6

7

t

 15

 5

 30

 15

   10

 8

 15

 9

 6  10

 10

   10 15 4

 4

 Capacity = 10 + 5 + 15
              = 30

   A

  

! 

cap( A, B)  =  c(e)
e out of A

"
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s

2

3

4

5

6

7

t

 15

 5

 30

 15

   10

 8

 15

 9

 6  10

 10

   10 15 4

 4
   A

Cuts

Def.  An s-t cut is a partition (A, B) of V with s ∈ A and t ∈ B.

Def. The capacity of a cut (A, B) is:
  

! 

cap( A, B)  =  c(e)
e out of A

"

 Capacity = 9 + 15 + 8 + 30
              = 62
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Min s-t cut problem.  Find an s-t cut of minimum capacity.

Minimum Cut Problem

s

2

3

4

5

6

7

t

 15

 5

 30
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 8
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 6  10
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   10 15 4

 4   A

 Capacity = 10 + 8 + 10
              = 28



8

Def.  An s-t flow is a function that satisfies:
 For each e ∈ E:  [capacity]
 For each v ∈ V – {s, t}: [conservation]

Def.  The value of a flow f is:

Flows

4

0

0

0

0 0
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Def.  An s-t flow is a function that satisfies:
 For each e ∈ E:  [capacity]
 For each v ∈ V – {s, t}: [conservation]

Def.  The value of a flow f is:

Flows
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Max flow problem.  Find s-t flow of maximum value.

Maximum Flow Problem
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Flow value lemma.  Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts
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Flow value lemma.  Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts

10

6

6

1 10

3 8 8

0
0

0

11

s

2

3

4

5

6

7

t

 15

 5

 30

 15

   10

 8

 15

 9

 6  10

 10

   10 15 4

 4 0

! 

f (e)
e out of A

" # f (e)
e in to A

"  =  v( f )

 Value = 6 + 0 + 8 - 1 + 11
          = 24
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Flow value lemma.  Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts
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          = 24
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Flows and Cuts

Flow value lemma.  Let f be any flow, and let (A, B) be any s-t cut.  Then

Pf.

  

! 

f (e)
e out of A

" # f (e) = v( f )
e in to A

" .

! 

v( f ) = f (e)
e out of s

"

=
v #A

" f (e)
e out of v

"  $ f (e)
e in to v

"
% 

& 
' 

( 

) 
* 

= f (e)
e out of A

"  $ f (e).
e in to A

"

by flow conservation, all terms
except v = s are 0
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Flows and Cuts

Weak duality.  Let f be any flow, and let (A, B) be any s-t cut.  Then the
value of the flow is at most the capacity of the cut.

Cut capacity = 30   ⇒    Flow value ≤ 30 
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Weak duality.  Let f be any flow.  Then, for any s-t cut (A, B) we have
v(f) ≤ cap(A, B).

Pf.

▪

Flows and Cuts

! 

v( f ) = f (e)
e out of A

" # f (e)
e in to A

"

$ f (e)
e out of A

"

$ c(e)
e out of A

"

= cap(A,B)
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t

A B
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4



17

Certificate of Optimality

Corollary.  Let f be any flow, and let (A, B) be any cut.
If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Value of flow = 28
Cut capacity  = 28   ⇒    Flow value ≤ 28
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Towards a Max Flow Algorithm

Greedy algorithm.
 Start with f(e) = 0 for all edge e ∈ E.
 Find an s-t path P where each edge has f(e) < c(e).
 Augment flow along path P.
 Repeat until you get stuck.

s
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t

10

10

0 0

0 0

0

20
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30

Flow value = 0
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Towards a Max Flow Algorithm

Greedy algorithm.
 Start with f(e) = 0 for all edge e ∈ E.
 Find an s-t path P where each edge has f(e) < c(e).
 Augment flow along path P.
 Repeat until you get stuck.

s
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2

t

20

Flow value = 20
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X

X
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Towards a Max Flow Algorithm

Greedy algorithm.
 Start with f(e) = 0 for all edge e ∈ E.
 Find an s-t path P where each edge has f(e) < c(e).
 Augment flow along path P.
 Repeat until you get stuck.

greedy = 20

s

1

2

t

20 10

10 20

30

20 0

0

20

20

opt = 30

s
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2

t

20 10

10 20

30

20 10

10
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20

locally optimality ⇒ global optimality
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Residual Graph

Original edge:  e = (u, v)  ∈ E.
 Flow f(e), capacity c(e).

Residual edge.
 "Undo" flow sent.
 e = (u, v) and eR = (v, u).
 Residual capacity:

Residual graph:  Gf = (V, Ef ).
 Residual edges with positive residual capacity.
 Ef = {e : f(e) < c(e)}  ∪  {eR : f(e) > 0}.

u v 17

6

capacity

u v 11

residual capacity

 6
residual capacity

flow

! 

c f (e) =
c(e)" f (e) if  e # E

f (e) if  e
R # E

$ 
% 
& 
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Ford-Fulkerson Algorithm

s
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capacity
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Augmenting Path Algorithm

Augment(f, c, P) {
   b ← bottleneck(P)
   foreach e ∈ P {
      if (e ∈ E) f(e) ← f(e) + b
      else       f(eR)← f(eR) - b
   }
   return f
}

Ford-Fulkerson(G, s, t, c) {
   foreach e ∈ E  f(e) ← 0
   Gf ← residual graph

   while (there exists augmenting path P) {
      f ← Augment(f, c, P)
      update Gf
   }
   return f
}

forward edge
reverse edge
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Max-Flow Min-Cut Theorem

Augmenting path theorem.  Flow f is a max flow iff there are no
augmenting paths.

Max-flow min-cut theorem.  [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956]

The value of the max flow is equal to the value of the min cut.

Pf.  We prove both simultaneously by showing TFAE:
    (i) There exists a cut (A, B) such that v(f) = cap(A, B).
   (ii) Flow f is a max flow.
  (iii) There is no augmenting path relative to f.

(i)  ⇒ (ii)  This was the corollary to weak duality lemma.

(ii)  ⇒ (iii)  We show contrapositive.
 Let f be a flow. If there exists an augmenting path, then we can

improve f by sending flow along path.
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Proof of Max-Flow Min-Cut Theorem

(iii)  ⇒ (i)
 Let f be a flow with no augmenting paths.
 Let A be set of vertices reachable from s in residual graph.
 By definition of A, s ∈ A.
 By definition of f, t ∉ A.

! 

v( f ) = f (e)
e out of A

" # f (e)
e in to A

"

= c(e)
e out of A

"

= cap(A,B)

original network

s

t

A B
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Matching.
 Input:  undirected graph G = (V, E).
 M ⊆ E is a matching if each node appears in at most edge in M.
 Max matching:  find a max cardinality matching.

Matching
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Bipartite Matching

Bipartite matching.
 Input:  undirected, bipartite graph G = (L ∪ R, E).
 M ⊆ E is a matching if each node appears in at most edge in M.
 Max matching:  find a max cardinality matching.

1

3

5

1'

3'

5'

2

4

2'

4'

matching

1-2', 3-1', 4-5'

RL
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Bipartite Matching

Bipartite matching.
 Input:  undirected, bipartite graph G = (L ∪ R, E).
 M ⊆ E is a matching if each node appears in at most edge in M.
 Max matching:  find a max cardinality matching.

1

3

5

1'

3'

5'

2

4

2'

4'

RL

max matching

1-1', 2-2', 3-3' 4-4'
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Max flow formulation.
 Create digraph G' = (L ∪ R ∪ {s, t},  E' ).
 Direct all edges from L to R, and assign infinite (or unit) capacity.
 Add source s, and unit capacity edges from s to each node in L.
 Add sink t, and unit capacity edges from each node in R to t.

Bipartite Matching

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

∞

RL

G'
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Theorem.  Max cardinality matching in G = value of max flow in G'.
Pf.  ≤

 Given max matching M of cardinality k.
 Consider flow f that sends 1 unit along each of k paths.
 f is a flow, and has cardinality k.   ▪

Bipartite Matching:  Proof of Correctness

s
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Theorem.  Max cardinality matching in G = value of max flow in G'.
Pf.  ≥

 Let f be a max flow in G' of value k.
 Integrality theorem  ⇒  k is integral and can assume f is 0-1.
 Consider M = set of edges from L to R with f(e) = 1.

– each node in L and R participates in at most one edge in M
– |M| = k:  consider cut (L ∪ s, R ∪ t)   ▪

Bipartite Matching:  Proof of Correctness
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Disjoint path problem.  Given a digraph G = (V, E) and two nodes s and t,
find the max number of edge-disjoint s-t paths.

Def.  Two paths are edge-disjoint if they have no edge in common.

Ex:  communication networks.

s
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4

Edge Disjoint Paths
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t
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Disjoint path problem.  Given a digraph G = (V, E) and two nodes s and t,
find the max number of edge-disjoint s-t paths.

Def.  Two paths are edge-disjoint if they have no edge in common.

Ex:  communication networks.

s
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Edge Disjoint Paths

5
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t
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Max flow formulation:  assign unit capacity to every edge.

Theorem.  Max number edge-disjoint s-t paths equals max flow value.
Pf.   ≤

 Suppose there are k edge-disjoint paths P1, . . . , Pk.
 Set f(e) = 1 if e participates in some path Pi ;  else set f(e) = 0.
 Since paths are edge-disjoint, f is a flow of value k.   ▪

Edge Disjoint Paths

s t

1

1

1

1

1

1

1
1

1

1

1

1

1

1
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Max flow formulation:  assign unit capacity to every edge.

Theorem.  Max number edge-disjoint s-t paths equals max flow value.
Pf.   ≥

 Suppose max flow value is k.
 Integrality theorem  ⇒  there exists 0-1 flow f of value k.
 Consider edge (s, u) with f(s, u) = 1.

– by conservation, there exists an edge (u, v) with f(u, v) = 1
– continue until reach t, always choosing a new edge

 Produces k (not necessarily simple) edge-disjoint paths.   ▪

Edge Disjoint Paths

s t
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1

1

1

1

1
1

1

1

1

1

1

1

can eliminate cycles to get simple paths if desired
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Network connectivity.  Given a digraph G = (V, E) and two nodes s and t,
find min number of edges whose removal disconnects t from s.

Def.  A set of edges F ⊆ E disconnects t from s if every s-t path uses
at least one edge in F.

Network Connectivity

s

2

3

4

5

6

7

t
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Edge Disjoint Paths and Network Connectivity

Theorem.  [Menger 1927]  The max number of edge-disjoint s-t paths is
equal to the min number of edges whose removal disconnects t from s.

Pf.  ≤
 Suppose the removal of F ⊆ E disconnects t from s, and |F| = k.
 Every s-t path uses at least one edge in F.

Hence, the number of edge-disjoint paths is at most k.  ▪
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Disjoint Paths and Network Connectivity

Theorem.  [Menger 1927]  The max number of edge-disjoint s-t paths is
equal to the min number of edges whose removal disconnects t from s.

Pf.  ≥
 Suppose max number of edge-disjoint paths is k.
 Then max flow value is k.
 Max-flow min-cut  ⇒  cut (A, B) of capacity k.
 Let F be set of edges going from A to B.
 |F| = k and disconnects t from s.   ▪
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