
3

Undirected Graphs

Undirected graph. G = (V, E)
 V = nodes.
 E = edges between pairs of nodes.
 Captures pairwise relationship between objects.
 Graph size parameters: n = |V|, m = |E|.

V = { 1, 2, 3, 4, 5, 6, 7, 8 }
E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 }
n = 8
m = 11

8

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with Auv = 1 if (u, v) is an edge.
 Two representations of each edge.
 Space proportional to n2.
 Checking if (u, v) is an edge takes Θ(1) time.
 Identifying all edges takes Θ(n2) time.

 1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 1 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0

9

Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.
 Two representations of each edge.
 Space proportional to m + n.
 Checking if (u, v) is an edge takes O(deg(u)) time.
 Identifying all edges takes Θ(m + n) time.

1 2 3

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

1 2 5 87

2 3 4 6

5

degree = number of neighbors of u

3 7

10

Paths and Connectivity

Def. A path in an undirected graph G = (V, E) is a sequence P of nodes
v1, v2, …, vk-1, vk with the property that each consecutive pair vi, vi+1 is
joined by an edge in E.

Def. A path is simple if all nodes are distinct.

Def. An undirected graph is connected if for every pair of nodes u and
v, there is a path between u and v.

11

Cycles

Def. A cycle is a path v1, v2, …, vk-1, vk in which v1 = vk, k > 2, and the
first k-1 nodes are all distinct.

cycle C = 1-2-4-5-3-1

12

Trees

Def. An undirected graph is a tree if it is connected and does not
contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the
following statements imply the third.

 G is connected.
 G does not contain a cycle.
 G has n-1 edges.

13

Rooted Trees

Rooted tree. Given a tree T, choose a root node r and orient each edge
away from r.

Importance. Models hierarchical structure.

a tree the same tree, rooted at 1

v

parent of v

child of v

root r

17

Connectivity

s-t connectivity problem. Given two node s and t, is there a path
between s and t?

s-t shortest path problem. Given two node s and t, what is the length
of the shortest path between s and t?

Applications.
 Friendster.
 Maze traversal.
 Kevin Bacon number.
 Fewest number of hops in a communication network.

18

Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding
nodes one "layer" at a time.

BFS algorithm.
 L0 = { s }.
 L1 = all neighbors of L0.
 L2 = all nodes that do not belong to L0 or L1, and that have an edge

to a node in L1.
 Li+1 = all nodes that do not belong to an earlier layer, and that have

an edge to a node in Li.

Theorem. For each i, Li consists of all nodes at distance exactly i
from s. There is a path from s to t iff t appears in some layer.

s L1 L2 L n-1

19

Breadth First Search

Property. Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of
G. Then the level of x and y differ by at most 1.

L0

L1

L2

L3

20

Breadth First Search: Analysis

Theorem. The above implementation of BFS runs in O(m + n) time if
the graph is given by its adjacency representation.

Pf.
 Easy to prove O(n2) running time:

– at most n lists L[i]
– each node occurs on at most one list; for loop runs ≤ n times
– when we consider node u, there are ≤ n incident edges (u, v),

and we spend O(1) processing each edge

 Actually runs in O(m + n) time:
– when we consider node u, there are deg(u) incident edges (u, v)
– total time processing edges is Σu∈V deg(u) = 2m ▪

each edge (u, v) is counted exactly twice
in sum: once in deg(u) and once in deg(v)

21

Connected Component

Connected component. Find all nodes reachable from s.

Connected component containing node 1 = { 1, 2, 3, 4, 5, 6, 7, 8 }.

24

Connected Component

Connected component. Find all nodes reachable from s.

Theorem. Upon termination, R is the connected component containing s.
 BFS = explore in order of distance from s.
 DFS = explore in a different way.

s

u v

R

it's safe to add v

26

Bipartite Graphs

Def. An undirected graph G = (V, E) is bipartite if the nodes can be
colored red or blue such that every edge has one red and one blue end.

Applications.
 Stable marriage: men = red, women = blue.
 Scheduling: machines = red, jobs = blue.

a bipartite graph

27

Testing Bipartiteness

Testing bipartiteness. Given a graph G, is it bipartite?
 Many graph problems become:

– easier if the underlying graph is bipartite (matching)
– tractable if the underlying graph is bipartite (independent set)

 Before attempting to design an algorithm, we need to understand
structure of bipartite graphs.

v1

v2 v3

v6 v5 v4

v7

v2

v4

v5

v7

v1

v3

v6

a bipartite graph G another drawing of G

28

An Obstruction to Bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd length cycle.

Pf. Not possible to 2-color the odd cycle, let alone G.

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

29

Bipartite Graphs

Lemma. Let G be a connected graph, and let L0, …, Lk be the layers
produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an

 odd-length cycle (and hence is not bipartite).

Case (i)

L1 L2 L3

Case (ii)

L1 L2 L3

30

Bipartite Graphs

Lemma. Let G be a connected graph, and let L0, …, Lk be the layers
produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an

 odd-length cycle (and hence is not bipartite).

Pf. (i)
 Suppose no edge joins two nodes in adjacent layers.
 By previous lemma, this implies all edges join nodes on same level.
 Bipartition: red = nodes on odd levels, blue = nodes on even levels.

Case (i)

L1 L2 L3

31

Bipartite Graphs

Lemma. Let G be a connected graph, and let L0, …, Lk be the layers
produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an

 odd-length cycle (and hence is not bipartite).

Pf. (ii)
 Suppose (x, y) is an edge with x, y in same level Lj.
 Let z = lca(x, y) = lowest common ancestor.
 Let Li be level containing z.
 Consider cycle that takes edge from x to y,

then path from y to z, then path from z to x.
 Its length is 1 + (j-i) + (j-i), which is odd. ▪

z = lca(x, y)

(x, y) path from
y to z

path from
z to x

32

Obstruction to Bipartiteness

Corollary. A graph G is bipartite iff it contain no odd length cycle.

5-cycle C

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

34

Directed Graphs

Directed graph. G = (V, E)
 Edge (u, v) goes from node u to node v.

Ex. Web graph - hyperlink points from one web page to another.
 Directedness of graph is crucial.
 Modern web search engines exploit hyperlink structure to rank web

pages by importance.

35

Graph Search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem. Given two node s and t, what is
the length of the shortest path between s and t?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page s. Find all web pages linked from s,
either directly or indirectly.

36

Strong Connectivity

Def. Node u and v are mutually reachable if there is a path from u to v
and also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually
reachable.

Lemma. Let s be any node. G is strongly connected iff every node is
reachable from s, and s is reachable from every node.

Pf. ⇒ Follows from definition.
Pf. ⇐ Path from u to v: concatenate u-s path with s-v path.
 Path from v to u: concatenate v-s path with s-u path. ▪

s

v

u

ok if paths overlap

37

Strong Connectivity: Algorithm

Theorem. Can determine if G is strongly connected in O(m + n) time.
Pf.

 Pick any node s.
 Run BFS from s in G.
 Run BFS from s in Grev.
 Return true iff all nodes reached in both BFS executions.
 Correctness follows immediately from previous lemma. ▪

reverse orientation of every edge in G

strongly connected not strongly connected

39

Directed Acyclic Graphs

Def. An DAG is a directed graph that contains no directed cycles.

Ex. Precedence constraints: edge (vi, vj) means vi must precede vj.

Def. A topological order of a directed graph G = (V, E) is an ordering
of its nodes as v1, v2, …, vn so that for every edge (vi, vj) we have i < j.

a DAG a topological ordering

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

40

Precedence Constraints

Precedence constraints. Edge (vi, vj) means task vi must occur before vj.

Applications.
 Course prerequisite graph: course vi must be taken before vj.
 Compilation: module vi must be compiled before vj. Pipeline of

computing jobs: output of job vi needed to determine input of job vj.

41

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)
 Suppose that G has a topological order v1, …, vn and that G also has a

directed cycle C. Let's see what happens.
 Let vi be the lowest-indexed node in C, and let vj be the node just

before vi; thus (vj, vi) is an edge.
 By our choice of i, we have i < j.
 On the other hand, since (vj, vi) is an edge and v1, …, vn is a

topological order, we must have j < i, a contradiction. ▪

v1 vi vj vn

the supposed topological order: v1, …, vn

the directed cycle C

42

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?

43

Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a node with no incoming edges.

Pf. (by contradiction)
 Suppose that G is a DAG and every node has at least one incoming

edge. Let's see what happens.
 Pick any node v, and begin following edges backward from v. Since v

has at least one incoming edge (u, v) we can walk backward to u.
 Then, since u has at least one incoming edge (x, u), we can walk

backward to x.
 Repeat until we visit a node, say w, twice.
 Let C denote the sequence of nodes encountered between

successive visits to w. C is a cycle. ▪

w x u v

44

Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a topological ordering.

Pf. (by induction on n)
 Base case: true if n = 1.
 Given DAG on n > 1 nodes, find a node v with no incoming edges.
 G - { v } is a DAG, since deleting v cannot create cycles.
 By inductive hypothesis, G - { v } has a topological ordering.
 Place v first in topological ordering; then append nodes of G - { v }
 in topological order. This is valid since v has no incoming edges. ▪

DAG

v

45

Topological Sorting Algorithm: Running Time

Theorem. Algorithm finds a topological order in O(m + n) time.

Pf.
 Maintain the following information:

– count[w] = remaining number of incoming edges
– S = set of remaining nodes with no incoming edges

 Initialization: O(m + n) via single scan through graph.
 Update: to delete v

– remove v from S
– decrement count[w] for all edges from v to w, and add w to S if c
count[w] hits 0

– this is O(1) per edge ▪

36

Shortest Path Problem

Shortest path network.
 Directed graph G = (V, E).
 Source s, destination t.
 Length le = length of edge e.

Shortest path problem: find shortest directed path from s to t.

Cost of path s-2-3-5-t
 = 9 + 23 + 2 + 16
 = 50.

cost of path = sum of edge costs in path

s

3

t

2

6

7

4
5

23

18

2

9

14

15
5

30

20

44

16

11

6

19

6

37

Dijkstra's Algorithm

Dijkstra's algorithm.
 Maintain a set of explored nodes S for which we have determined

the shortest path distance d(u) from s to u.
 Initialize S = { s }, d(s) = 0.
 Repeatedly choose unexplored node v which minimizes

add v to S, and set d(v) = π(v).

,)(min)(
:),(

e
Suvue

udv l+=
!=

"

s

v

u
d(u)

S

le

shortest path to some u in explored
part, followed by a single edge (u, v)

38

Dijkstra's Algorithm

Dijkstra's algorithm.
 Maintain a set of explored nodes S for which we have determined

the shortest path distance d(u) from s to u.
 Initialize S = { s }, d(s) = 0.
 Repeatedly choose unexplored node v which minimizes

add v to S, and set d(v) = π(v).

,)(min)(
:),(

e
Suvue

udv l+=
!=

"

s

v

u
d(u)

shortest path to some u in explored
part, followed by a single edge (u, v)

S

le

39

Dijkstra's Algorithm: Proof of Correctness

Invariant. For each node u ∈ S, d(u) is the length of the shortest s-u path.
Pf. (by induction on |S|)
Base case: |S| = 1 is trivial.
Inductive hypothesis: Assume true for |S| = k ≥ 1.

 Let v be next node added to S, and let u-v be the chosen edge.
 The shortest s-u path plus (u, v) is an s-v path of length π(v).
 Consider any s-v path P. We'll see that it's no shorter than π(v).
 Let x-y be the first edge in P that leaves S,

and let P' be the subpath to x.
 P is already too long as soon as it leaves S.

 l (P) ≥ l (P') + l (x,y) ≥ d(x) + l (x, y) ≥ π(y) ≥ π(v)

nonnegative
weights

inductive
hypothesis

defn of π(y) Dijkstra chose v
instead of y

S

s

y

v

x

P

u

P'

3

Minimum Spanning Tree

Minimum spanning tree. Given a connected graph G = (V, E) with real-
valued edge weights ce, an MST is a subset of the edges T ⊆ E such
that T is a spanning tree whose sum of edge weights is minimized.

Cayley's Theorem. There are nn-2 spanning trees of Kn.

 5

23

10
21

 14

24

 16

 6

 4

18
9

7

11
 8

 5

 6

 4

9

7

11
 8

G = (V, E) T, Σe∈T ce = 50

can't solve by brute force

5

Greedy Algorithms

Kruskal's algorithm. Start with T = φ. Consider edges in ascending
order of cost. Insert edge e in T unless doing so would create a cycle.

Reverse-Delete algorithm. Start with T = E. Consider edges in
descending order of cost. Delete edge e from T unless doing so would
disconnect T.

Prim's algorithm. Start with some root node s and greedily grow a tree
T from s outward. At each step, add the cheapest edge e to T that has
exactly one endpoint in T.

Remark. All three algorithms produce an MST.

6

Greedy Algorithms

Simplifying assumption. All edge costs ce are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost
edge with exactly one endpoint in S. Then the MST contains e.

Cycle property. Let C be any cycle, and let f be the max cost edge
belonging to C. Then the MST does not contain f.

f
C

S

e is in the MST

e

f is not in the MST

7

Cycles and Cuts

Cycle. Set of edges the form a-b, b-c, c-d, …, y-z, z-a.

Cutset. A cut is a subset of nodes S. The corresponding cutset D is
the subset of edges with exactly one endpoint in S.

Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1

1
3

8

2

6

7

4

5

Cut S = { 4, 5, 8 }
Cutset D = 5-6, 5-7, 3-4, 3-5, 7-8

1
3

8

2

6

7

4

5

8

Cycle-Cut Intersection

Claim. A cycle and a cutset intersect in an even number of edges.

Pf. (by picture)

1
3

8

2

6

7

4

5

S

V - S

C

Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8
Intersection = 3-4, 5-6

9

Greedy Algorithms

Simplifying assumption. All edge costs ce are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost
edge with exactly one endpoint in S. Then the MST T* contains e.

Pf. (exchange argument)
 Suppose e does not belong to T*, and let's see what happens.
 Adding e to T* creates a cycle C in T*.
 Edge e is both in the cycle C and in the cutset D corresponding to S
⇒ there exists another edge, say f, that is in both C and D.

 T' = T* ∪ { e } - { f } is also a spanning tree.
 Since ce < cf, cost(T') < cost(T*).
 This is a contradiction. ▪

f

 T*
e

S

10

Greedy Algorithms

Simplifying assumption. All edge costs ce are distinct.

Cycle property. Let C be any cycle in G, and let f be the max cost edge
belonging to C. Then the MST T* does not contain f.

Pf. (exchange argument)
 Suppose f belongs to T*, and let's see what happens.
 Deleting f from T* creates a cut S in T*.
 Edge f is both in the cycle C and in the cutset D corresponding to S
⇒ there exists another edge, say e, that is in both C and D.

 T' = T* ∪ { e } - { f } is also a spanning tree.
 Since ce < cf, cost(T') < cost(T*).
 This is a contradiction. ▪

f

 T*
e

S

11

Prim's Algorithm: Proof of Correctness

Prim's algorithm. [Jarník 1930, Dijkstra 1957, Prim 1959]
 Initialize S = any node.
 Apply cut property to S.
 Add min cost edge in cutset corresponding to S to T, and add one

new explored node u to S.

S

13

Kruskal's Algorithm: Proof of Correctness

Kruskal's algorithm. [Kruskal, 1956]
 Consider edges in ascending order of weight.
 Case 1: If adding e to T creates a cycle, discard e according to

cycle property.
 Case 2: Otherwise, insert e = (u, v) into T according to cut

property where S = set of nodes in u's connected component.

Case 1

v

u

Case 2

e

e
S

3

Shortest Paths

Shortest path problem. Given a directed graph G = (V, E), with edge
weights cvw, find shortest path from node s to node t.

Ex. Nodes represent agents in a financial setting and cvw is cost of
transaction in which we buy from agent v and sell immediately to w.

s

3

t

2

6

7

4
5

10

18
 -16

9

 6

15 -8

 30

 20

44

16

11

6

19

6

allow negative weights

4

Shortest Paths: Failed Attempts

Dijkstra. Can fail if negative edge costs.

Re-weighting. Adding a constant to every edge weight can fail.

u

t

s v

2

 1

3

-6

s t

2

 3

2

-3

3

5 5

66

0

5

Shortest Paths: Negative Cost Cycles

Negative cost cycle.

Observation. If some path from s to t contains a negative cost cycle,
there does not exist a shortest s-t path; otherwise, there exists one
that is simple.

s t
W

c(W) < 0

 -6

 7

 -4

6

Shortest Paths: Dynamic Programming

Def. OPT(i, v) = length of shortest v-t path P using at most i edges.

 Case 1: P uses at most i-1 edges.
– OPT(i, v) = OPT(i-1, v)

 Case 2: P uses exactly i edges.
– if (v, w) is first edge, then OPT uses (v, w), and then selects best

w-t path using at most i-1 edges

Remark. By previous observation, if no negative cycles, then
OPT(n-1, v) = length of shortest v-t path.

!

OPT(i, v) =

 0 if i = 0

 min OPT(i "1, v) ,
(v, w)# E

min OPT(i "1, w)+ c
vw{ }

$
%
&

'
(
)

otherwise

$

%
*

& *

7

Shortest Paths: Implementation

Analysis. Θ(mn) time, Θ(n2) space.

Finding the shortest paths. Maintain a "successor" for each table
entry.

Shortest-Path(G, t) {
 foreach node v ∈ V
 M[0, v] ← ∞
 M[0, t] ← 0

 for i = 1 to n-1
 foreach node v ∈ V
 M[i, v] ← M[i-1, v]
 foreach edge (v, w) ∈ E
 M[i, v] ← min { M[i, v], M[i-1, w] + cvw }
}

8

Shortest Paths: Practical Improvements

Practical improvements.
 Maintain only one array M[v] = shortest v-t path that we have

found so far.
 No need to check edges of the form (v, w) unless M[w] changed

in previous iteration.

Theorem. Throughout the algorithm, M[v] is length of some v-t path,
and after i rounds of updates, the value M[v] is no larger than the length
of shortest v-t path using ≤ i edges.

Overall impact.
 Memory: O(m + n).
 Running time: O(mn) worst case, but substantially faster in practice.

9

Bellman-Ford: Efficient Implementation

Push-Based-Shortest-Path(G, s, t) {
 foreach node v ∈ V {
 M[v] ← ∞
 successor[v] ← φ
 }

 M[t] = 0
 for i = 1 to n-1 {
 foreach node w ∈ V {
 if (M[w] has been updated in previous iteration) {
 foreach node v such that (v, w) ∈ E {
 if (M[v] > M[w] + cvw) {
 M[v] ← M[w] + cvw
 successor[v] ← w
 }
 }
 }
 If no M[w] value changed in iteration i, stop.
 }
}

4

Flow network.
 Abstraction for material flowing through the edges.
 G = (V, E) = directed graph, no parallel edges.
 Two distinguished nodes: s = source, t = sink.
 c(e) = capacity of edge e.

Minimum Cut Problem

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4
capacity

source sink

5

Def. An s-t cut is a partition (A, B) of V with s ∈ A and t ∈ B.

Def. The capacity of a cut (A, B) is:

Cuts

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4

 Capacity = 10 + 5 + 15
 = 30

 A

!

cap(A, B) = c(e)
e out of A

"

6

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4
 A

Cuts

Def. An s-t cut is a partition (A, B) of V with s ∈ A and t ∈ B.

Def. The capacity of a cut (A, B) is:

!

cap(A, B) = c(e)
e out of A

"

 Capacity = 9 + 15 + 8 + 30
 = 62

7

Min s-t cut problem. Find an s-t cut of minimum capacity.

Minimum Cut Problem

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 A

 Capacity = 10 + 8 + 10
 = 28

8

Def. An s-t flow is a function that satisfies:
 For each e ∈ E: [capacity]
 For each v ∈ V – {s, t}: [conservation]

Def. The value of a flow f is:

Flows

4

0

0

0

0 0

0 4 4

0
0

0

Value = 40

!

f (e)
e in to v

" = f (e)
e out of v

"

!

0 " f (e) " c(e)

capacity
flow

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

!

v(f) = f (e)
e out of s

" .

4

9

Def. An s-t flow is a function that satisfies:
 For each e ∈ E: [capacity]
 For each v ∈ V – {s, t}: [conservation]

Def. The value of a flow f is:

Flows

10

6

6

11

1 10

3 8 8

0
0

0

11

capacity
flow

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

Value = 24

!

f (e)
e in to v

" = f (e)
e out of v

"

!

0 " f (e) " c(e)

!

v(f) = f (e)
e out of s

" .

4

10

Max flow problem. Find s-t flow of maximum value.

Maximum Flow Problem

10

9

9

14

4 10

4 8 9

1

0 0

0

14

capacity
flow

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

Value = 28

11

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts

10

6

6

11

1 10

3 8 8

0
0

0

11

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

Value = 24

!

f (e)
e out of A

" # f (e)
e in to A

" = v(f)

4

A

12

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts

10

6

6

1 10

3 8 8

0
0

0

11

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

!

f (e)
e out of A

" # f (e)
e in to A

" = v(f)

 Value = 6 + 0 + 8 - 1 + 11
 = 24

4

11

A

13

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts

10

6

6

11

1 10

3 8 8

0
0

0

11

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

!

f (e)
e out of A

" # f (e)
e in to A

" = v(f)

 Value = 10 - 4 + 8 - 0 + 10
 = 24

4

A

14

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

Pf.

!

f (e)
e out of A

" # f (e) = v(f)
e in to A

" .

!

v(f) = f (e)
e out of s

"

=
v #A

" f (e)
e out of v

" $ f (e)
e in to v

"
%

&
'

(

)
*

= f (e)
e out of A

" $ f (e).
e in to A

"

by flow conservation, all terms
except v = s are 0

15

Flows and Cuts

Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the
value of the flow is at most the capacity of the cut.

Cut capacity = 30 ⇒ Flow value ≤ 30

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4

Capacity = 30

A

16

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have
v(f) ≤ cap(A, B).

Pf.

▪

Flows and Cuts

!

v(f) = f (e)
e out of A

" # f (e)
e in to A

"

$ f (e)
e out of A

"

$ c(e)
e out of A

"

= cap(A,B)

s

t

A B

 7

6

 8
4

17

Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut.
If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Value of flow = 28
Cut capacity = 28 ⇒ Flow value ≤ 28

10

9

9

14

4 10

4 8 9

1

0 0

0

14

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0A

18

Towards a Max Flow Algorithm

Greedy algorithm.
 Start with f(e) = 0 for all edge e ∈ E.
 Find an s-t path P where each edge has f(e) < c(e).
 Augment flow along path P.
 Repeat until you get stuck.

s

1

2

t

10

10

0 0

0 0

0

20

20

30

Flow value = 0

19

Towards a Max Flow Algorithm

Greedy algorithm.
 Start with f(e) = 0 for all edge e ∈ E.
 Find an s-t path P where each edge has f(e) < c(e).
 Augment flow along path P.
 Repeat until you get stuck.

s

1

2

t

20

Flow value = 20

10

10 20

30

0 0

0 0

0

X

X

X

20

20

20

20

Towards a Max Flow Algorithm

Greedy algorithm.
 Start with f(e) = 0 for all edge e ∈ E.
 Find an s-t path P where each edge has f(e) < c(e).
 Augment flow along path P.
 Repeat until you get stuck.

greedy = 20

s

1

2

t

20 10

10 20

30

20 0

0

20

20

opt = 30

s

1

2

t

20 10

10 20

30

20 10

10

10

20

locally optimality ⇒ global optimality

21

Residual Graph

Original edge: e = (u, v) ∈ E.
 Flow f(e), capacity c(e).

Residual edge.
 "Undo" flow sent.
 e = (u, v) and eR = (v, u).
 Residual capacity:

Residual graph: Gf = (V, Ef).
 Residual edges with positive residual capacity.
 Ef = {e : f(e) < c(e)} ∪ {eR : f(e) > 0}.

u v 17

6

capacity

u v 11

residual capacity

 6
residual capacity

flow

!

c f (e) =
c(e)" f (e) if e # E

f (e) if e
R # E

$
%
&

22

Ford-Fulkerson Algorithm

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2

 G:
capacity

23

Augmenting Path Algorithm

Augment(f, c, P) {
 b ← bottleneck(P)
 foreach e ∈ P {
 if (e ∈ E) f(e) ← f(e) + b
 else f(eR)← f(eR) - b
 }
 return f
}

Ford-Fulkerson(G, s, t, c) {
 foreach e ∈ E f(e) ← 0
 Gf ← residual graph

 while (there exists augmenting path P) {
 f ← Augment(f, c, P)
 update Gf
 }
 return f
}

forward edge
reverse edge

24

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no
augmenting paths.

Max-flow min-cut theorem. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956]

The value of the max flow is equal to the value of the min cut.

Pf. We prove both simultaneously by showing TFAE:
 (i) There exists a cut (A, B) such that v(f) = cap(A, B).
 (ii) Flow f is a max flow.
 (iii) There is no augmenting path relative to f.

(i) ⇒ (ii) This was the corollary to weak duality lemma.

(ii) ⇒ (iii) We show contrapositive.
 Let f be a flow. If there exists an augmenting path, then we can

improve f by sending flow along path.

25

Proof of Max-Flow Min-Cut Theorem

(iii) ⇒ (i)
 Let f be a flow with no augmenting paths.
 Let A be set of vertices reachable from s in residual graph.
 By definition of A, s ∈ A.
 By definition of f, t ∉ A.

!

v(f) = f (e)
e out of A

" # f (e)
e in to A

"

= c(e)
e out of A

"

= cap(A,B)

original network

s

t

A B

3

Matching.
 Input: undirected graph G = (V, E).
 M ⊆ E is a matching if each node appears in at most edge in M.
 Max matching: find a max cardinality matching.

Matching

4

Bipartite Matching

Bipartite matching.
 Input: undirected, bipartite graph G = (L ∪ R, E).
 M ⊆ E is a matching if each node appears in at most edge in M.
 Max matching: find a max cardinality matching.

1

3

5

1'

3'

5'

2

4

2'

4'

matching

1-2', 3-1', 4-5'

RL

5

Bipartite Matching

Bipartite matching.
 Input: undirected, bipartite graph G = (L ∪ R, E).
 M ⊆ E is a matching if each node appears in at most edge in M.
 Max matching: find a max cardinality matching.

1

3

5

1'

3'

5'

2

4

2'

4'

RL

max matching

1-1', 2-2', 3-3' 4-4'

6

Max flow formulation.
 Create digraph G' = (L ∪ R ∪ {s, t}, E').
 Direct all edges from L to R, and assign infinite (or unit) capacity.
 Add source s, and unit capacity edges from s to each node in L.
 Add sink t, and unit capacity edges from each node in R to t.

Bipartite Matching

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

∞

RL

G'

7

Theorem. Max cardinality matching in G = value of max flow in G'.
Pf. ≤

 Given max matching M of cardinality k.
 Consider flow f that sends 1 unit along each of k paths.
 f is a flow, and has cardinality k. ▪

Bipartite Matching: Proof of Correctness

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

∞1

3

5

1'

3'

5'

2

4

2'

4'

G'G

8

Theorem. Max cardinality matching in G = value of max flow in G'.
Pf. ≥

 Let f be a max flow in G' of value k.
 Integrality theorem ⇒ k is integral and can assume f is 0-1.
 Consider M = set of edges from L to R with f(e) = 1.

– each node in L and R participates in at most one edge in M
– |M| = k: consider cut (L ∪ s, R ∪ t) ▪

Bipartite Matching: Proof of Correctness

1

3

5

1'

3'

5'

2

4

2'

4'

G

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

∞

G'

15

Disjoint path problem. Given a digraph G = (V, E) and two nodes s and t,
find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.

s

2

3

4

Edge Disjoint Paths

5

6

7

t

16

Disjoint path problem. Given a digraph G = (V, E) and two nodes s and t,
find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.

s

2

3

4

Edge Disjoint Paths

5

6

7

t

17

Max flow formulation: assign unit capacity to every edge.

Theorem. Max number edge-disjoint s-t paths equals max flow value.
Pf. ≤

 Suppose there are k edge-disjoint paths P1, . . . , Pk.
 Set f(e) = 1 if e participates in some path Pi ; else set f(e) = 0.
 Since paths are edge-disjoint, f is a flow of value k. ▪

Edge Disjoint Paths

s t

1

1

1

1

1

1

1
1

1

1

1

1

1

1

18

Max flow formulation: assign unit capacity to every edge.

Theorem. Max number edge-disjoint s-t paths equals max flow value.
Pf. ≥

 Suppose max flow value is k.
 Integrality theorem ⇒ there exists 0-1 flow f of value k.
 Consider edge (s, u) with f(s, u) = 1.

– by conservation, there exists an edge (u, v) with f(u, v) = 1
– continue until reach t, always choosing a new edge

 Produces k (not necessarily simple) edge-disjoint paths. ▪

Edge Disjoint Paths

s t

1

1

1

1

1

1

1
1

1

1

1

1

1

1

can eliminate cycles to get simple paths if desired

19

Network connectivity. Given a digraph G = (V, E) and two nodes s and t,
find min number of edges whose removal disconnects t from s.

Def. A set of edges F ⊆ E disconnects t from s if every s-t path uses
at least one edge in F.

Network Connectivity

s

2

3

4

5

6

7

t

20

Edge Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t paths is
equal to the min number of edges whose removal disconnects t from s.

Pf. ≤
 Suppose the removal of F ⊆ E disconnects t from s, and |F| = k.
 Every s-t path uses at least one edge in F.

Hence, the number of edge-disjoint paths is at most k. ▪

s

2

3

4

5

6

7

t s

2

3

4

5

6

7

t

21

Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t paths is
equal to the min number of edges whose removal disconnects t from s.

Pf. ≥
 Suppose max number of edge-disjoint paths is k.
 Then max flow value is k.
 Max-flow min-cut ⇒ cut (A, B) of capacity k.
 Let F be set of edges going from A to B.
 |F| = k and disconnects t from s. ▪

s

2

3

4

5

6

7

t s

2

3

4

5

6

7

t

A

