Assignment 4

1. (CLRS page 428 16.2-7.)

Suppose you are given two sets A and B, each containing n positive integers. You can choose to reorder each set however you like. After reordering, let a_{i} be the i-th element of set A, and let b_{i} is the i-th element of set B. You then receive a payoff of $\Pi_{i=1}^{n} a_{i}^{b_{i}}$. Give an algorithm that will maximize your payoff.
Prove that your algorithm maximizes the payoff, and state its running time.
2. Suppose the symbols a, b, c, d, e occur with frequencies
$1 / 2,1 / 4,1 / 8,1 / 16,1 / 16$, respectively.
2.1 What is the Huffman encoding of the alphabet?
2.2 If this encoding is applied to a file consisting of $1,000,000$ characters with the given frequencies, what is the length of the encoded file in bits?

