
Chapter 35 of CLRS: Approximation Algorithms



A Randomized Approximation Algorithm (Vertex Cover)

An Approximation Algorithm (Metric TSP)

A PTAS (Subset-Sum)

Approximation Algorithms for MAX-3-CNF

A Linear Programming Based (Weighted Vertex Cover)



Background

1. Linear Algebra
I Matrices
I Vectors, inner product
I etc.

2. Probability Theory
I Expectation, variance
I Basic distributions (binomial, Poisson, exponential, etc)
I Markov’s inequality (Pr[|X | ≥ a] ≤ E(|X |)/a)

Chebyshev’s inequality (Pr[|x − E(x)| ≥ k] ≤ µ2/k2)
I etc.

3. Algorithm Techniques
I O() notation
I Graph algorithms, e.g., breath and depth first search, minimal spanning

tree, topological sort, maximum-flow, etc.
I P, NP, NP-completeness, NP-hard, PTAS
I Linear programming (duality)
I etc.



Background

1. Linear Algebra
I Matrices
I Vectors, inner product
I etc.

2. Probability Theory
I Expectation, variance
I Basic distributions (binomial, Poisson, exponential, etc)
I Markov’s inequality (Pr[|X | ≥ a] ≤ E(|X |)/a)

Chebyshev’s inequality (Pr[|x − E(x)| ≥ k] ≤ µ2/k2)
I etc.

3. Algorithm Techniques
I O() notation
I Graph algorithms, e.g., breath and depth first search, minimal spanning

tree, topological sort, maximum-flow, etc.
I P, NP, NP-completeness, NP-hard, PTAS
I Linear programming (duality)
I etc.



Background

1. Linear Algebra
I Matrices
I Vectors, inner product
I etc.

2. Probability Theory
I Expectation, variance
I Basic distributions (binomial, Poisson, exponential, etc)
I Markov’s inequality (Pr[|X | ≥ a] ≤ E(|X |)/a)

Chebyshev’s inequality (Pr[|x − E(x)| ≥ k] ≤ µ2/k2)
I etc.

3. Algorithm Techniques
I O() notation
I Graph algorithms, e.g., breath and depth first search, minimal spanning

tree, topological sort, maximum-flow, etc.
I P, NP, NP-completeness, NP-hard, PTAS
I Linear programming (duality)
I etc.



Background

1. Linear Algebra
I Matrices
I Vectors, inner product
I etc.

2. Probability Theory
I Expectation, variance
I Basic distributions (binomial, Poisson, exponential, etc)
I Markov’s inequality (Pr[|X | ≥ a] ≤ E(|X |)/a)

Chebyshev’s inequality (Pr[|x − E(x)| ≥ k] ≤ µ2/k2)
I etc.

3. Algorithm Techniques
I O() notation
I Graph algorithms, e.g., breath and depth first search, minimal spanning

tree, topological sort, maximum-flow, etc.
I P, NP, NP-completeness, NP-hard, PTAS
I Linear programming (duality)
I etc.



NP-Complete versus NP-Hard

Definition (Optimization problem)

Find a best objective, e.g., Given graph G , find a minimal size vertex cover.

Definition (Decision problem)

Have a yes/no answer, e.g., Given a graph G and integer k, does G have a
vertex cover of size ≤ k?

P =?NP
NP-complete problems are, by definition, decision problems. If they can be
solved in polynomial time then P = NP.

NP-complete and NP-hard

Problems that have the property that if they can be solved in polynomial time
then P = NP, but not necessarily vice-versa, are called NP-hard. The
optimization versions of NP-complete decision problems are NP-hard.



Performance Ratios for Approximation Algorithms

Let C be the cost of the algorithm, let C∗ be the cost of an optimal solution,
for any input of size n, the algorithm is called ρ(n)-approximation if
max(C/C∗, C∗/C) ≤ ρ(n).

Definition (Approximation scheme)

An approximation scheme for an optimization problem is an approximation
algorithm that takes as input not only an instance of the problem, but also a
value ε > 0 such that for any fixed ε, the scheme is a (1 + ε)-approximation
algorithm.

Definition (PTAS (Polynomial-Time Approximation Scheme))

We say an approximation scheme is a polynomial-time approximation scheme
if for any fixed ε > 0, the scheme runs in time polynomial in the size n of its
input instance.

Definition (FPTAS (Fully Polynomial-Time Approximation Scheme))

We say an approximation scheme is a fully polynomial-time approximation
scheme if it is an approximation scheme and its running time is polynomial
both in 1/ε and in the size n of the input instance.
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Vertex Cover

Definition (Vertex Cover problem)

A vertex cover of an undirected graph G = (V ,E) is a subset of vertices
V ′ ⊆ V such that

If (u, v) ∈ E , then either u ∈ V ′, v ∈ V ′, or both.

Algorithm 1.1: RVC(G)

C = ∅;
E ′ = E ;
while (E ′ 6= ∅)

Pick up (u, v) from E ′ randomly;
C ′ = C ∪ {u, v};
Remove every edge touching u or v from E ′;

return (C)

Question
How do we analyze it?
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Approximation

For any graph G , define RVC(G) as the number of vertices chosen by
algorithm RVC, OPT (G) as the size of the smallest vertex cover of G .

Theorem
RVC runs in time O(|V |+ |E |).

Refer to page 1025 of CLRS.

Theorem
RVC is polynomial-time 2-approximation algorithm.
1 ≤ RVC(G)/OPT (G) ≤ 2.

Proof.

|OPT (G)| ≥ the number of edges pick up randomly in the loop,

=
|RVC(G)|

2
.
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Question
Is the following algorithm 2-approximation?

Algorithm 1.5: RVC(G)

C = ∅;
E ′ = E ;
while (E ′ 6= ∅)

Select a vertex of the highest degree v ∈ E ′;
C ′ = C ∪ v ;
Remove all v ’s incident edges;

return (C)

Hint: Try a bipartite graph with vertices of uniform degree on the left and
vertices of varying degree on the right.



Consider a special case which is not NP-hard.

Theorem
There exists an efficient algorithm (running in polynomial time) to find the
optimal vertex cover if G = (V , E) is a tree.

Proof.
Greedy approach.

Theorem
There exists an efficient algorithm (running in polynomial time) to find the
optimal weighted vertex cover if G = (V , E) is a tree.

Proof.
Dynamic programming approach.



1. Heuristics

2. Local search

3. Simulated annealing

4. Tabu search

5. Genetic algorithms

6. etc.
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Three Graph Problems

Let G = (V , E) be a graph. Each e ∈ E has a cost ce . The cost of a set of
edges E ′ ⊆ E is c(E ′) =

∑
e∈E ′ ce . A Hamiltonian cycle is a tour (cycle) in

passing through every vertex exactly once.

Definition
Hamiltonian Cycle (HC): Does G = (V ,E) contain a Hamiltonian cycle?

Definition
Traveling Salesman Problems (TSP): Find a Hamiltonian cycle, T , with
minimal cost c(T ) among all cycles.

Definition
Euler Tour (ET): Find a path in the graph G that uses each edge in the graph
exactly once (a repeated vertex is used exactly as many times as it appears).
An Euler tour can be found in polynomial time O(|V |+ |E |).



Metric TSP

Definition
A graph G with cost c() has the triangle inequality if for all vertices u, v ,w ∈ V

c(u,w) ≤ c(u,v) + c(v,w).

Algorithm 2.1: Metric-TSP(G)

Find a minimum spanning tree T ′ of G .
Double every edge in T ′ to get new graph G ′.
Find an Euler tour T ′ of G ′.
Output the vertices of G in the order in which they first appear in T ′.
Let T be the Hamiltonian cycle thus created.
return (T )

Lemma
Metric-TSP runs in polynomial time.



Analysis of Metric-TSP

Theorem
Metric-TSP is a 2-approximation algorithm for the TSP problem on metric
graphs.

Proof.
Goal:

c(T ′) ≤ OPT (G)

c(T ′) = 2 · C(T ′)

c(T ) ≤ c(T ′)
= 2 · C(T ′)

≤ 2 · OPT (T )



Improved Algorithm for Metric TSP

Definition
Matching. Let G = (V ,E) be a graph with cost function c(.) on its edges

1. A matching of G is a set of edges E ′ ⊆ E such that no two edges in E ′

share a vertex in common

2. A perfect matching is a matching in which |E ′| = bEc
2

. Perfect matching
of complete graphs always exist

3. A minimum-cost perfect matching of a complete graph can be found in
O(|V |3) time

What is the relationship between a matching and TSP?



Christofide’s Algorithm for Metric TSP

Algorithm 2.2: Chris-TSP(G)

Find a minimum spanning tree T ′ of G .
Find a minimal cost perfect matching, M, on the vertices of odd-degree in T ′.
Let E ′ be the union of T ′ and M.
Let G ′ = (V ,E ′) be the multi-graph.
(If an edge appears in both M and T ′, we count it twice in G ′).
Find an Euler tour T ′ of G ′.
Output the vertices of G in the order in which they first appear in T ′.
Let T be the Hamiltonian cycle thus created.

Lemma
The number of odd-degree vertices in T ′ is even.

Proof.



Christofide’s Algorithm for Metric TSP

Lemma
Let V ′ ⊆ V such that |V ′| is even and let M be a minimum-cost perfect
matching on V ′. Then

c(M) ≤ OPT (G)

2

Proof.
?



Christofide’s Algorithm for Metric TSP

Lemma
Let V ′ ⊆ V such that |V ′| is even and let M be a minimum-cost perfect
matching on V ′. Then

c(M) ≤ OPT (G)

2

Proof.
Let T be a TSP tour of G
Let T ′ be the tour on V ′ that results by visiting the vertices in V ′ in the order
defined by T

c(T ′) ≤ c(T ) = OPT (G)

Note that taking every other edge in T ′ yields a perfect matching of V ′ so T ′
is the union of two perfect matchings of V ′, M ′, and M

′′
. Since these

matchings cannot have cost less than the minimal one

2 · c(M) ≤ c(M ′) + c(M
′′

) = c(T ′) ≤ OPT (G).

c(M) ≤ OPT (G)

2
.



Analysis of Christofide’s Algorithm for Metric TSP

Theorem
Christofide’s algorithm is 3

2
-approximation for Metric TSP.

Proof.

c(T ′) ≤ OPT (G)

c(M) ≤ OPT (G)

2

c(T ′) = c(T ′) + c(M) ≤ 3

2
· OPT (G)

c(T ) ≤ c(T ′) ≤ 3

2
· OPT (G)



A Negative Result

Theorem
If for any ρ > 1, there exists a polynomial-time ρ-approximation algorithm for
TSP, then there exists a polynomial-time algorithm for solving Hamiltonian
cycle (i.e., P = NP).

Proof.
Let A be the ρ-approximation algorithm for TSP.
Let G = (V ,E) be any instance of Hamiltonian cycle, let G ′ be the complete
graph with the same vertex set as G with

c(u,v) =

{
1, (u, v) ∈ E
ρ · |V |+ 1, otherwise

(1)

G ′ can be constructed in time polynomial in the size of G .

If G has a Hamiltonian cycle T , then all edges e ∈ T have ce = 1 so T is a
min-cost tour in G ′ and OPT (G ′) = |V |. A(G ′) ≤ ρ · OPT (G ′) = ρ · |V |.
If G does not have a Hamiltonian cycle then for every Hamiltonian cycle T , G ′

contains at least one edge e /∈ E so ce = ρ · |V |+ 1 and

c(T ) ≥ ce + |V | − 1 = ρ · |V |+ 1 + |V | − 1 > ρ · |V |

Thus, A(G ′) ≥ OPT (G ′) > ρ · |V |.
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A Negative Result

Theorem
G has a Hamiltonian cycle if and only if A(G ′) ≤ ρ · |V |.

Proof.
For any G ,

1. Construct G ′.

2. Run A on G ′ and check if A(G ′) ≤ ρ · |V | or not.



Subset-Sum

Definition
An instance of the subset-sum decision problem is (S , t) where
S = {x1, x2, . . . , xn} a set of positive integers and t a positive integer.
The decision problem is whether some subset of S adds up exactly to t.
The optimization problem is to find a subset of S whose sum is as large as
possible but no greater than t.

Definition
A (fully) polynomial-time approximation scheme (PTAS) for a maximization
problem is a family of algorithms {Aε} such that for each ε > 0, Aε is a
(1− ε)-approximation algorithm which runs in polynomial time in input size for
fixed ε. Aε runs in time polynomial in n (and 1

ε
).



Subset-Sum

1. Get an exact solution.

2. Round/trim input.

3. Get the approximated solution, based on rounded/trimmed input.

Let S = {x1, x2, . . . , xn}. Let S + x := {x1 + x , x2 + x , . . . , xn + x}.

Algorithm 3.1: Exact-Subset-Sum(G)

n = |S |;
L(0) = < 0 >;
for i = 1 to n{

L(i)← Merge-List(L(i − 1), L(i − 1) + xi );
Remove from L(i) all elements bigger than t;

Return the largest element in L(n).



Trimming

Let L = {x1, x2, . . . , xm} be a list.
To trim the list by parameter δ means to remove as many elements from L as
possible in such a way that the list L′ of remaining elements

For every removed y ∈ L there exists a z ∈ L′ such that (1− δ) · y ≤ z ≤ y .

Algorithm 3.2: trim(L, δ)

L′ = < x1 >;
last = x1;
for i = 2 to m
if last < (1− δ) · xi{

append xi onto end of L′;
last = xi ;

return (L)′



Approximate Subset Sum Problem

Algorithm 3.3: approximate-subset-sum(S , t, ε)

n = |S |;
L(0) = < 0 >;
for i = 1 to n

L(i) = Merge-List(L(i), L(i − 1) + xi );
L(i) = trim(L(i), ε/n);
remove from L(i) all elements bigger than t;

return (max)L(n).

Proof.
Let Pi be the set of all values that can be obtained by selecting some subset of
{x1, x2, . . . , xi} and summing its members. For every element y ∈ Pi , there
exists some z ∈ L(i) such that (1− ε/n)i · y ≤ z ≤ y .
Let z̄ be the largest element in L(n). If y∗ is a solution to the exact subset-sum
problem, then there exists a z∗ ∈ L(n) such that

(1− ε

n
)n · y∗ ≤ z∗ ≤ z̄ ≤ y∗.

∀n > 1, 1− ε ≤ (1− ε
n

)n, then (1− ε) · y∗ ≤ z̄ .



MAX-3-CNF

1. Let x1, x2, . . . , xn be Boolean variables. These variables are set to be either
TRUE or FALSE. A variable xi is TRUE if and only if its negation x̄i is
FALSE and vice versa.

2. A clause is the conjunction of random variables and their negations, e.g.,
x1 ∨ x̄3 ∨ x4.

3. Given a truth assignment for the x1, x2, . . . , xn, a clause is satisfied if at
least one of its elements is TRUE.

4. Given n Boolean variables, m clauses Ci , ∀i = 1, 2, . . . ,m over those
variables and a weight wi ≥ 0 for each clause, the MAX-SAT problem is to
find a truth assignment for the variables that maximizes the total weight
of the clauses satisfied. This problem is NP-hard



MAX-3-CNF

Algorithm 4.1: MAX-SAT(n)

for i = 1 to n


flip a fair coin.
If “heads”
set xi true.
else
set xi false.

Lemma
Let OPT be the weight of the optimal assignment and W be the weight of the
random assignment. Then

E [W ] ≥ OPT

2

Proof.
?



MAX-3SAT

1. MAX-3SAT is the version of MAX SAT in which every clause Cj has
exactly 3 variables in it, i.e., ∀j , lj = 3

2. A theorem due to Hastad says that if there is an approximation algorithm
that always returns a solution to the MAX-3SAT that is > 7

8
· OPT , then

P = NP

3. Note that the simple algorithm on the previous page actually returns an
assignment whose expectation is ≥ 7

8
· OPT when ∀j , lj = 3. Thus, in

some sense, it is a best possible approximation algorithm for MAX-3SAT
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Weighted Vertex Cover

Definition
Minimum-Weight Vertex Cover Problem. Given an undirected graph
G = (V ,E) in which each vertex v ∈ V has an associated positive weight wv .
For any vertex cover V ′ ⊆ V , we define the weight of the vertex cover
w(V ′) =

∑
v∈V ′ wv . The goal is to find a vertex cover of minimum weight.

Associate each vertex v a variable xv ∈ {0, 1}. We interpret xv = 1 as v is
chosen in V ′ and xv = 0 otherwise. For each edge (u, v), at least one of them
is chosen, i.e., xu + xv ≥ 1.

min
∑
v∈V

wv · xv

subject to xu + xv ≥ 1, ∀(u, v) ∈ E

xv ∈ {0, 1}, ∀v ∈ V



Rounding Technique for Integer Programs

min
∑
v∈V

wv · xv

subject to xu + xv ≥ 1, ∀(u, v) ∈ E

xv ∈ {0, 1}, ∀v ∈ V

min
∑
v∈V

wv · xv

subject to xu + xv ≥ 1, ∀(u, v) ∈ E

xv ≥ 0, ∀v ∈ V

xv ≤ 1, ∀v ∈ V



Rounding Technique for Integer Programs

Algorithm 5.1: Min-Weight(G , w)

C = ∅;
compute x̄ , an optimal solution to the linear program;
for each v ∈ V
if x̄v ≥ 1/2

then C = C ∪ {v};
return (C)



Weighted Vertex Cover

Theorem
Min-Weight is 2-approximation.

Proof.
Let C∗ be an optimal solution to the minimum-weight vertex-cover problem.
Let z∗ be the value of an optimal solution to the linear program.

z∗ ≤ w(C∗)

z∗ =
∑
v∈V

w(v) · x̄(v)

≥
∑

v∈V :x̄(x)≥1/2

w(v) · x̄(v) ≥
∑

v∈V :x̄(x)≥1/2

w(v) · (1/2)

=
∑
v∈C

w(v) · (1/2)

= (1/2) ·
∑
v∈C

w(v) = (1/2)w(C).
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