
All the following problems are review problems. They are not

difficult.

The scopes are CLRS Chapters 22 - 26, and KT Chapters 3, 4, and

7.

Each problem deserves 3 points.

1. For each of the following three statements, decide whether it is true of false. If it is true, give

a short explanation. If it is false, give a counterexample.

(a) Let G be an arbitrary connected, undirected graph with a distinct cost c(e) on every

edge e. Suppose e∗ is the cheapest edge in G; that is, c(e∗) < c(e) for every edge e 6= e∗.

Then there is a minimum spanning tree T of G that contains the edge e∗.

(b) Suppose we are given an instance of the Minimum Spanning Tree Problem on a graph

G, with edge costs that are all positive and distinct. Let T be a minimum spanning tree

for this instance. Now suppose we replace each edge cost ce by its square c2e, thereby

creating a new instance of the problem with the same graph but different costs.

True of false? T must still be a minimum spanning tree for this new instance.

(c) Suppose we are given an instance of the Shortest s− t Path Problem on a directed graph

G. we assume that all edge costs are positive and distinct. Let P be a minimum-cost

s− t path for this instance. Now suppose we replace each edge cost ce by its square, c2e,

thereby creating a new instance of the problem with the same graph but different costs.

True of false? P must still be a minimum-cost s− t path for this new instance.

2. Suppose you are given a connected graph G, with edge costs that are all distinct. Prove that

G has a unique minimum spanning tree.

3. Let G = (V, E) be an (undirected) graph with costs ce ≥ 0 on the edge e ∈ E. Assume you

are given a minimum-cost spanning tree T in G. Now assume that a new edge is added to G,

connecting two nodes v, w ∈ V with cost c. (Note the new edge may not be in T .)

Given an efficient algorithm to test if T remains the minimum-cost spanning tree with then

new edge added to G (but not to the tree T).

(a) Make your algorithm run in time O(|E|).

(b) Can you do it in O(|V |) time?

You can assume we represent T using an adjacency list.

1

4. To assess how “well-connected” two nodes in a directed graph are, one can not only look

at the length of the shortest path between them, but can also count the number of shortest

paths.

This turns out to be a problem that can be solved efficiently, subject to some restrictions on

the edge costs. Suppose we are given a directed graph G = (V, E), with costs on the edges;

the costs may be positive or negative, but every cycle in the graph has strictly positive cost.

We are also given two nodes v, w ∈ V . Give an efficient algorithm that computes the number

of shortest v − w paths in G. (The algorithm should not list all the paths; just the number

suffices.)

5. Consider the following problem. You are given a flow network with unit-capacity edges: It

consists of a directed graph G = (V, E), a source s ∈ V , and a sink t ∈ V ; and ce = 1 for

every e ∈ E. You are also given a parameter k.

The goal is to delete k edges so as to reduce the maximum s − t flow in G by as much as

possible. In other words, you should find a set of edges F ⊆ E so that |F | = k and the

maximum s− t flow in G′ = (V, E \ F) is as small as possible subject to this.

Give a polynomial-time algorithm to solve this problem.

6. Let G = (V, E) be a flow network with source s, sink t, and integer capacities. Suppose that

we are given a maximum flow in G.

(a) Suppose that the capacity of a single edge (u, v) ∈ E is increased by 1. Give an

O(V + E)-time algorithm to update the maximum flow.

(b) Suppose that the capacity of a single edge (u, v) ∈ E is decreased by 1. Give an

O(V + E)-time algorithm to update the maximum flow.

7. Suppose a directed graph G represents a communication network. The maximum number of

node-disjoint paths from node s to t is called s− t connectivity. The s− t vulnerability is the

minimum number of nodes (besides s, t) whose removal disconnects s from t. We know that

Claim 1. The s− t connectivity equals the s− t vulnerability.

(You do not have to to prove Claim 1.) Based on Claim 1, work on the following problem:

The edge connectivity of an undirected graph is the minimum number k of edges that

must be removed to disconnect the graph. For example, the edge connectivity of a tree is 1,

and the edge connectivity of a cycle chain of vertices is 2. Show how the edge connectivity of

an undirected graph G = (V, E) can be determined by running a maximum-flow algorithm

on at most |V | flow networks, each having O(V) vertices and O(E) edges.

(Hint: The edge connectivity is the minimum of the maximum number of vertex-disjoint

paths from s to t.)

2

8. (School bus driver assignment.)

A bus company has n morning runs and n afternoon runs that it needs to assign to its n

drivers. (Each driver has one morning run and one afternoon run.) The runs are of different

duration. If the total duration of the morning and afternoon runs assigned to a driver is more

than a specified number D, the driver receives a premium payment for each hour of overtime.

The company would like to assign the runs to the drivers to minimize the total number of

overtime hours.

(a) Formulate this problem as a matching problem.

(b) Suppose that we arrange the morning runs in the nondecreasing order of their duration

and the afternoon runs in the non-increasing order of their duration. Show that if we

assign each driver i to the ith morning run and the ith afternoon run, we obtain the

optimal assignment. (Hint: Use the Exchange Argument to prove this.)

9. (Escape problem.)

An n × n grid is an undirected graph consisting of n rows and n columns of vertices. We

denote the vertex in the ith row and the jth column by (i, j). All vertices in a grid have

exactly four neighbors, except for the boundary vertices, which are the points (i, j) for which

i = 1, i = n, j = 1, or j = n.

Given m ≤ n2 starting points (x1, y1), (x2, y2), . . . , (xm, ym) in the grid, the escape problem

is to determine whether or not there are m vertex-disjoint paths from the starting points to

any m different points on the boundary.

(a) Consider a flow network in which vertices, as well as edges, have capacities. That is, the

total positive flow entering any given vertex is subject to a capacity constraint. Show

that determining the maximum flow in a network with edge and vertex capacities can

be reduced to an ordinary maximum-flow problem on a flow network of comparable size.

(b) Describe an efficient algorithm to solve the escape problem. (You do not have to analyze

its running time.)

3

