
0.1 A faster network flow algorithm. Augmentation increases the value of the maximum flow by
the bottleneck capacity of the selected path; so if we choose paths with large bottleneck capacity, we
will be making a lot of progress. A natural idea is to select the path that has the largest bottleneck
capacity. Having to find such paths can slow down each individual iteration by quite a bit. We will
maintain a so-called scaling parameter ∆, and we will look for paths that have bottleneck capacity of
at least ∆.

See the algorithm on page 353. Initialize ∆ to be the largest power of 2 that is no larger than the
maximum capacity out of s.

Lemma 0.1. If the capacities are integer-valued, then throughout the Scaling Max-Flow Algorithm the
flow and the residual capacities remain integer-valued. This implies that when ∆ = 1, Gf (∆) is the
same as Gf , and hence when the algorithm terminates the flow, f is of maximum value.

Lemma 0.2. The number of iterations of the outer While loop is at most 1 + dlog2Ce.

Lemma 0.3. During the ∆-scaling phase, each augmentation increases the flow value by at least ∆.

Lemma 0.4. Let f be the flow at the end of the ∆-scaling phase. There is an s-t cut (A, B) in G
for which c(A, B) ≤ v(f) + m∆, where m is the number of edges in the graph G. Consequently, the
maximum flow in the network has value at most v(f) + m∆.

Proof. Consider an edge e = (u, v) in G for which u ∈ A and v ∈ B. ce < f(e) + ∆; otherwise, v ∈ A as
well. Also, for any edge e′ = (u′, v′) in G for which u′ ∈ B and v′ ∈ A, we have f(e′) < ∆; otherwise,
we have a s-u′ path in Gf (∆). So, all edges e out of A are almost saturated: ce < f(e) + ∆; and all
edges into A are almost empty: f(e) < ∆.
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Lemma 0.5. The number of augmentations in a scaling phase is at most 2m.

Theorem 0.1. The Scaling Max-Flow Algorithm in a graph with m edges and integer capacities finds
a maximum flow in at most 2m(1 + dlog2Ce) augmentations. It can be implemented to run in at most
O(m2 log2C) time.

0.2 The preflow-push maximum-flow algorithm. The preflow-push algorithm increases the flow
on an edge-by-edge basis. For each node v other than the source s, we have

∑
e in to v f(e) ≥∑

e out of v f(e). The difference is called excess of the preflow at node v.
The algorithm is based on the physical intuition that flow naturally finds its way ‘downhill’. The

‘heights’ for this intuition are labels h(v) for each node v. We will push flow from nodes with higher
labels to those with lower labels. h(t) = 0 and h(s) = n. For all edges (v, w) ∈ Ef in the residual
graph, we have h(v) ≤ h(w) + 1.



Lemma 0.6. If s-t preflow f is compatible with a labeling h, then there is no s-t path in the residual
graph Gf .

Lemma 0.7. If s-t flow f is compatible with a labeling h, then f is a flow of maximum value.

See the algorithm on page 360. ‘while there is a node v 6= t with excess ef (v) > 0, then if there is
w such that push(f, h, v, w) can be applied (that is, h(w) < h(v)) then apply it. Else, relabel v (that
is, if for all w with (v, w) ∈ Ef , we have h(w) ≥ h(v), then increase h(v) by 1).

Lemma 0.8. Throughout the algorithm; (1) the labels are nonnegative integers; (2) f is a preflow, and if
the capacities are integral, then the preflow f is integral; (3) the preflow f and labeling h are compatible.
If the algorithm returns a preflow f , the f is a flow of maximum value.

Lemma 0.9. Let f be a preflow. If the node v has excess, then there is a path in Gf from v to the
source s.

Proof. Let A denote all the nodes w such that there is a path from w to s in the residual graph Gf . We
show all nodes with excess are in A. No edges e = (x, y) leaving A can have positive flow, as f(e) > 0
gives rise to a reverse edge (y, x) and then y is in A as well. The sum of excess of B is 0, since each
individual excess is non-negative, then all are 0. �

Lemma 0.10. Throughout the algorithm, all nodes have h(v) ≤ 2n− 1.

Proof. h(v)− h(s) ≤ |P | ≤ n− 1. �

Lemma 0.11. Throughput the algorithm, each node is relabeled at most 2n − 1 times, and the total
number of relabeling operations is less than 2n2.

Lemma 0.12. Throughput the algorithm, then number of saturating push operations is at most 2nm.

Lemma 0.13. Throughout the algorithm, the number of non-saturating push operations is most 2n2m.

0.3 Hall’s theorem.

Theorem 0.2. Consider a bipartite graph G = (X, Y, E). Then G either has a perfect matching or
there is a subset A ⊂ X such that |N(A)| < |A|.

Proof. We show that if the value of the maximum flow is < n, then there exists a subset A such that
|N(A)| < |A|. That is, there exists a cut (A′, B′) with capacity < n. At first one can modify (A′, B′)
so as to ensure that N(A) ⊆ A′. By moving y from B′ to A′, we do not increase the capacity of the cut.
Since all neighbors of A belong to A′, we see that the only edges out of A′ are either edges that leave the
source s or that enter the sink t. Thus c(A′, B′) = |X

⋂
B′| + |Y

⋂
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⋂
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So, |A| > |N(A)|. �



0.4 Circulation with demands.

• Directed graph G = (V, E).

• Edge capacities c(e), e ∈ E.

• Node supply and demands d(v), v ∈ V . demand if d(v) > 0; supply if d(v) < 0; transshipment if
d(v) = 0.

A circulation is a function that satisfies: (1) for each e ∈ E: 0 ≤ f(e) ≤ c(e) (capacity); (2) for
each v ∈ V :

∑
e in to v f(e) −

∑
e out of v f(e) = d(v) (conservation). Circulation problem: given

(V, E, c, d), does there exist a circulation?

Lemma 0.14. Necessary condition: Sum of supplies = sum of demands.
∑

v:d(v)>0 d(v) =∑
v:d(v)<0−d(v) := D.

Proof. Sum conservation constraints for every demand node v. �

Max flow formulation.

• Add new source s and sink t.

• For each v with d(v) < 0, add edge (s, v) with capacity −d(v).

• For each v with d(v) > 0, add edge (v, t) with capacity d(v).

• Claim: G has circulation if and only if G′ has max flow of value D, which saturates all edges
leaving s and entering t.

Theorem 0.3. Integrality theorem. If all capacities and demands are integers, and there exists a
circulation, then there exists one that is integer-valued.

Lemma 0.15. Given (V, E, c, d), there does not exists a circulation if and only if there exists a node
partition (A, B) such that

∑
v∈B dv > cap(A, B). That is, demand by nodes in B exceeds supply of

nodes in B plus max capacity of edges going from A to B.

Feasible circulation.

• Directed graph G = (V, E).

• Edge capacities c(e) and lower bounds l(e), e ∈ E.

• Node supply and demands d(v), v ∈ V .

A circulation is a function that satisfies: (1) for each e ∈ E: l(e) ≤ f(e) ≤ c(e) (capacity); (2) for
each v ∈ V :

∑
e in to v f(e) −

∑
e out of v f(e) = d(v) (conservation). Circulation problem with lower

bounds. Given (V, E, l, c, d), does there exists a a circulation?
Idea. Model lower bounds with demands. (1) send l(e) units of flow along edge e; (2) update

demands of both endpoints.

Theorem 0.4. There exists a circulation in G if and only if there exists a circulation in G′. If all
demands, capacities, and lower bounds in G are integers, then there is a circulation in G that is integer-
valued.

Proof. f(e) is a circulation in G if and only if f ′(e) = f(e)− l(e) is a circulation in G′. �


