
Linear Programming1

Fei Li

March 5, 2012

1With references of “Algorithms” by S. Dasgupta, C. H. Papadimitriou, and U. V.
Vazirani.

Many of the problems for which we want algorithms are optimization tasks.
We seek a solution that

1. satisfies certain constraints (for instance, the path must use edges of
the graph and lead from s to t, the tree must touch all nodes, the
subsequence must be increasing); and

2. is the best possible, with respect to some well-defined criterion, among
all solutions that satisfy these constraints.

Linear programming describes a broad class of optimization tasks in which
both the constraints and the optimization criterion are linear functions.

Definition (Linear Programming)

In a linear programming problem we are given a set of variables, and we
want to assign real values to them so as to (1) satisfy a set of linear
equations and/or linear inequalities involving these variables and (2)
maximize or minimize a given linear objective function.

An Example: Geometrical Interpretation

There are two products: Pyramide and Nuit. How much of each should it
produce to maximize profits? Let us say it makes x1 boxes of Pyramide per
day, at a profit of $1 each, and x2 boxes of Nuit, at profit of $6 apiece; x1

and x2 are unknown values that we wish to determine. There are also some
constraints on x1 and x2. First, the daily demand for these products is
limited to at most 200 boxes of Pyramide and 300 boxes of Nuit. Also, the
current workforce can produce a total of at most 400 boxes per day. What
are the optimal levels of production?

max x1 + 6x2

subject to x1 ≤ 200

x2 ≤ 300

x1 + x2 ≤ 400

x1, x2 ≥ 0

A linear equation in x1 and x2 defines a line in the two-dimensional (2D)
plane, and a linear inequality designates a half-space, the region on one side
of the line. Thus the set of all feasible solutions of this linear program, that
is, the points (x1, x2) which satisfy all constraints, is the intersection of five
half-spaces. It is a convex polygon.

We want to find the point in this polygon at which the objective function
— the profit — is maximized. The points with a profit of c dollars lie on
the line x1 + 6x2 = c, which has a slope of −1/6. As c increases, this “profit
line” moves parallel to itself, up and to the right. Since the goal is to
maximize c, we must move the line as far up as possible, while still touching
the feasible region. The optimum solution will be the very last feasible
point that the profit line sees and must therefore be a vertex of the polygon.

It is a general rule of linear programs that the optimum is achieved at a
vertex of the feasible region. The only exceptions are cases in which there is
no optimum; this can happen in two ways:

1. The linear program is infeasible; that is, the constraints are so tight
that it is impossible to satisfy all of them. For instance,

x ≤ 1, x ≥ 2.

2. The constraints are so loose that the feasible region is unbounded, and
it is possible to achieve arbitrarily high objective values. For instance,

max x1 + x2

x1, x2 ≥ 0

Simplex Method
Linear programs can be solved by the simplex method, devised by George
Dantzig in 1947. Briefly, this algorithm starts at a vertex, in our case
perhaps (0, 0), and repeatedly looks for an adjacent vertex (connected by
an edge of the feasible region) of better objective value. In this way it does
hill-climbing on the vertices of the polygon, walking from neighbor to
neighbor so as to steadily increase profit along the way. Here’s a possible
trajectory.

Upon reaching a vertex that has no better neighbor, simplex declares it to
be optimal and halts. Why does this local test imply global optimality? By
simple geometry — think of the profit line passing through this vertex.
Since all the vertex’s neighbors lie below the line, the rest of the feasible
polygon must also lie below this line.

max x1 + 6x2 + 13x3

x1 ≤ 200

x2 ≤ 300

x1 + x2 + x3 ≤ 400

x2 + 3x3 ≤ 600

x1, x2, x3 ≥ 0

How would the simplex algorithm behave? As before, it would move from
vertex to vertex, along edges of the polyhedron, increasing profit steadily.
The optimal point is (0, 300, 100) with a total profit of $3,100.

max x1 + 6x2 + 13x3

x1 ≤ 200

x2 ≤ 300

x1 + x2 + x3 ≤ 400

x2 + 3x3 ≤ 600

x1, x2, x3 ≥ 0

Here is why you should believe that (0, 300, 100), with a total profit of
$3100, is the optimum: Look back at the linear program. Add the second
inequality to the third, and add to them the fourth multiplied by 4. The
result is the inequality x1 + 6x2 + 13x3 ≤ 3100.
Do you see? This inequality says that no feasible solution (values
x1, x2, x3) satisfying the constraints) can possibly have a profit greater
than 3100. So we must indeed have found the optimum! The only question
is, where did we get these mysterious multipliers (0, 1, 1, 4) for the four
inequalities?
We will see that it is always possible to come up with such multipliers by
solving another LP! Except that (it gets even better) we do not even need
to solve this other LP, because it is in fact so intimately connected to the
original one — it is called the dual — that solving the original LP solves
the dual as well!

Exercises

This time, our company makes handwoven carpets, a product for which the
demand is extremely seasonal. Our analyst has just obtained demand
estimates for all months of the next calendar year: d1, d2, . . . , d12. As
feared, they are very uneven, ranging from 440 to 920. Here is a quick
snapshot of the company. We currently have 30 employees, each of whom
makes 20 carpets per month and gets a monthly salary of $2,000. We have
no initial surplus of carpets.
How can we handle the fluctuations in demand? There are three ways:

1. Overtime, but this is expensive since overtime pay is 80% more than
regular pay. Also, workers can put in at most 30% overtime.

2. Hiring and firing, but these cost $320 and $400, respectively, per
worker.

3. Storing surplus production, but this costs $8 per carpet per month. We
currently have no stored carpets on hand, and we must end the year
without any carpets stored.

The objective function is to minimize the total cost.

Variants of Linear Programming

A general linear program has many degrees of freedom.

1. It can be either a maximization or a minimization problem.

2. Its constraints can be equations and/or inequalities.

3. The variables are often restricted to be nonnegative, but they can also
be unrestricted in sign.

These various LP options can all be reduced to one another via simple
transformations.
By applying these transformations we can reduce any LP (maximization or
minimization, with both inequalities and equations, and with both
nonnegative and unrestricted variables) into an LP of a much more
constrained kind that we call the standard form, in which the variables
are all nonnegative, the constraints are all equations, and the
objective function is to be minimized.

Transformation 1
To turn a maximization problem into a minimization (or vice versa), just
multiply the coefficients of the objective function by −1.

Transformation 2
To turn an inequality constraint like

∑n
i=1 (ai · xi) ≤ b into an equation,

introduce a new variable s and use
∑n

i=1 (ai · xi) + s = b and s ≥ 0
This s is called the slack variable for the inequality. To change an equality
constraint into inequalities is easy: rewrite a · x = b as the equivalent
pair of constraints a · x ≤ b and a · x ≥ b.

Transformation 3
To deal with a variable x that is unrestricted in sign, do the following:

1. Introduce two nonnegative variables, x+, x− ≥ 0.

2. Replace x, wherever it occurs in the constraints or the objective
function, by x+ − x−.
This way, x can take on any real value by appropriately adjusting the
new variables. More precisely, any feasible solution to the original LP
involving x can be mapped to a feasible solution of the new LP
involving x+, x−, and vice versa.

Duality

We have seen that in networks, flows are smaller than cuts, but the
maximum flow and minimum cut exactly coincide and each is therefore a
certificate of the other’s optimality. Remarkable as this phenomenon is, we
now generalize it from maximum flow to any problem that can be solved
by linear programming! It turns out that every linear maximization
problem has a dual minimization problem, and they relate to each other in
much the same way as flows and cuts.

max x1 + 6x2

x1 ≤ 200

x2 ≤ 300

x1 + x2 ≤ 400

x1, x2 ≥ 0

Simplex declares the optimum
solution to be (x1, x2) = (100, 300),
with objective value 1900. Can this
answer be checked somehow?

1. Suppose we take the first
inequality and add it to six
times the second inequality. We
get x1 + 6x2 ≤ 2000.

2. Multiplying the three
inequalities by 0, 5, and 1,
respectively, and adding them
up yields x1 + 6x2 ≤ 1900.

The multipliers (0, 5, 1) magically
constitute a certificate of optimality!

It is remarkable that such a certificate exists for this LP — and even if we
knew there were one, how would we systematically go about finding it? Let
us describe what we expect of these three multipliers, call them y1, y2, y3.

After the multiplication and addition steps, we get the bound:

(y1 + y3)x1 + (y2 + y3)x2 ≤ 200y1 + 300y2 + 400y3.

We want the left-hand side to look like our objective function maxx1 + 6x2

so that the right-hand side is an upper bound on the optimum solution. For
this we need y1 + y3 to be 1 and y2 + y3 to be 6. Come to think of it, it
would be fine if y1 + y3 were larger than 1 — the resulting certificate would
be all the more convincing. Thus, we get an upper bound

x1 + 6x2 ≤ 200y1 + 300y2 + 400y3, if

y1, y2, y3 ≥ 0

y1 + y3 ≥ 1

y2 + y3 ≥ 6

Primal:

max x1 + 6x2

x1 ≤ 200

x2 ≤ 300

x1 + x2 ≤ 400

x1, x2 ≥ 0

Simplex declares the optimum
solution to be (x1, x2) = (100, 300),
with objective value 1900.

Dual:

min 200y1 + 300y2 + 400y3

y1 + y3 ≥ 1

y2 + y3 ≥ 6

y1, y2, y3 ≥ 0

The multipliers (0, 5, 1) constitute a
certificate of optimality!

Theorem (Duality theorem)

If a linear program has a bounded optimum, then so does its dual, and the
two optimum values coincide

Example

One can solve the shortest-path problem by the following “analog” device:
Given a weighted undirected graph, build a physical model of it in which
each edge is a string of length equal to the edge’s weight, and each node is a
knot at which the appropriate endpoints of strings are tied together. Then
to find the shortest path from s to t, just pull s away from t until the
gadget is taut. It is intuitively clear that this finds the shortest path from
s to t.
By pulling s away from t we solve the dual of the shortest-path problem!
This dual has a very simple form, with one variable xu for each node u:

max xS − xT

|xu − xv| ≤ wu,v, ∀e = {u, v}

In words, the dual problem is to stretch s and t as far apart as possible,
subject to the constraint that the endpoints of any edge {u, v} are
separated by a distance of at most wu,v.

The Simplex Algorithm

1. Let v be any vertex of the feasible region

2. While (there is a neighbor v′ of v with better objective value):
set v = v′.

Assume there are n variables x1, x2, . . . , xn. Any setting of the xi’s can
be represented by an n-tuple of real numbers and plotted in n-dimensional
space. A linear equation involving the xi’s defines a hyperplane in this
same space Rn, and the corresponding linear inequality defines a
half-space, all points that are either precisely on the hyperplane or lie on
one particular side of it. Finally, the feasible region of the linear program is
specified by a set of inequalities and is therefore the intersection of the
corresponding half-spaces, a convex polyhedron.

But what do the concepts of vertex and neighbor mean in this general
context?

Definition (Vertex)

Pick a subset of the inequalities. If there is a unique point that satisfies
them with equality, and this point happens to be feasible, then it is a vertex.

How many equations are needed to uniquely identify a point? When there
are n variables, we need at least n linear equations if we want a unique
solution. On the other hand, having more than n equations is redundant:
at least one of them can be rewritten as a linear combination of the others
and can therefore be disregarded. In short,

I Each vertex is specified by a set of n inequalities.

A notion of neighbor now follows naturally.

I Two vertices are neighbors if they have n− 1 defining inequalities in
common.

For instance, vertices A and C share the two defining inequalities {(3), (7)}
and are thus neighbors.

The Algorithm

On each iteration, simplex has two tasks:

1. Check whether the current vertex is optimal (and if so, halt).

2. Determine where to move next.

As we will see, both tasks are easy if the vertex happens to be at the origin.
And if the vertex is elsewhere, we will transform the coordinate system to
move it to the origin!
Suppose we have some generic LP

max cTx

Ax ≤ b

x ≥ 0

where x is the vector of variables, x = (x1, x2, . . . , xn). Suppose the
origin is feasible. Then it is certainly a vertex, since it is the unique point
at which the n inequalities {x1 ≥ 0, . . . , xn ≥ 0} are tight.

Theorem (Task 1: Check whether the current vertex is optimal (and if
so, halt).)

The original is optimal if and only if all ci ≤ 0.

Theorem (Task 2: Determine where to move next.)

We can move by increasing some xi for which ci > 0. How much can we
increase it? Until we hit some other constraint. That is, we release the
tight constraint xi ≥ 0 and increase xi until some other inequality,
previously loose, now becomes tight. At that point, we again have exactly n
tight inequalities, so we are at a new vertex.

max 2x1 + 5x2

2x1 − x2 ≤ 4 (1)

x1 + 2x2 ≤ 9 (2)

−x1 + x2 ≤ 3 (3)

x1 ≥ 0 (4)

x2 ≥ 0 (5)

Simplex can be started at the origin, which is specified by constraints (4)
and (5) . To move, we release the tight constraint x2 ≥ 0. As x2 is
gradually increased, the first constraint it runs into is −x1 + x2 ≤ 3, and
thus it has to stop at x2 = 3, at which point this new inequality is tight.
The new vertex is thus given by (3) and (4).

What if Our Current Vertex u is Elsewhere?

Approach

The trick is to transform u into the origin, by shifting the coordinate
system from the usual (x1, . . . , xn) to the “local view” from u. These local
coordinates consist of (appropriately scaled) distances y1, . . . , yn to the n
hyperplanes (inequalities) that define and enclose u.

Specifically, if one of these enclosing inequalities is ai · x ≤ bi, then the
distance from a point x to that particular “wall” is

yi = bi − ai · x.

The n equations of this type, one per wall, define the yi’s as linear functions
of the xi’s, and this relationship can be inverted to express the xi’s as a
linear function of the yi’s. Thus we can rewrite the entire LP in terms of
the y’s. This does not fundamentally change it (for instance, the optimal
value stays the same), but expresses it in a different coordinate frame.

The revised “local” LP has the following three properties:

1. It includes the inequalities y ≥ 0, which are simply the transformed
versions of the inequalities defining u.

2. u itself is the origin in y-space.

3. The cost function becomes max cu + c̃T y, where cu is the value of the
objective function at u and c̃ is a transformed cost vector.

The simplex algorithm is now fully defined. It moves from vertex to
neighboring vertex, stopping when the objective function is locally
optimal, that is, when the coordinates of the local cost vector are
all zero or negative. As we have just seen, a vertex with this property
must also be globally optimal. On the other hand, if the current vertex is
not locally optimal, then its local coordinate system includes some
dimension along which the objective function can be improved, so we move
along this direction.along this edge of the polyhedron.until we reach a
neighboring vertex. By the nondegeneracy assumption, this edge has
nonzero length, and so we strictly improve the objective value. Thus the
process must eventually halt.

The starting vertex. Start with any linear program in standard form,
since we know LPs can always be rewritten this way.

min cTx such that Ax = b and x ≥ 0.

We first make sure that the right-hand sides of the equations are all
nonnegative: if bi < 0, just multiply both sides of the ith equation by −1.
Then we create a new LP as follows:

1. Create m new artificial variables z1, . . . , zm ≥ 0, where m is the
number of equations.

2. Add zi to the left-hand side of the ith equation.

3. Let the objective, to be minimized, be z1 + z2 + · · ·+ zm.

For this new LP, it’s easy to come up with a starting vertex, namely, the
one with zi = bi for all i and all other variables zero. Therefore we can
solve it by simplex, to obtain the optimum solution.
Unboundedness. In some cases an LP is unbounded, in that its objective
function can be made arbitrarily large. If this is the case, simplex will
discover it: in exploring the neighborhood of a vertex, it will notice that
taking out an inequality and adding another leads to an under-determined
system of equations that has an infinity of solutions. And in fact (this is an
easy test) the space of solutions contains a whole line across which the
objective can become larger and larger. In this case simplex halts and
complains.

Simplex is not a polynomial time algorithm. Certain rare kinds of linear
programs cause it to go from one corner of the feasible region to a better
corner and then to a still better one, and so on for an exponential number
of steps.
In 1979, a young Soviet mathematician called Leonid Khachiyan came up
with the ellipsoid algorithm, one that is very different from simplex,
extremely simple in its conception (but sophisticated in its proof) and yet
one that solves any linear program in polynomial time. Instead of chasing
the solution from one corner of the polyhedron to the next, Khachiyan’s
algorithm confines it to smaller and smaller ellipsoids (skewed
high-dimensional balls). When this algorithm was announced, it became a
kind of “mathematical Sputnik”, a splashy achievement that had the U.S.
establishment worried, in the height of the Cold War, about the possible
scientific superiority of the Soviet Union. The ellipsoid algorithm turned
out to be an important theoretical advance, but did not compete well with
simplex in practice. The paradox of linear programming deepened: A
problem with two algorithms, one that is efficient in theory, and one that is
efficient in practice!

A few years later Narendra Karmarkar, a graduate student at UC Berkeley,
came up with a completely different idea, which led to another provably
polynomial algorithm for linear programming. Karmarkar’s algorithm is
known as the interior point method, because it does just that: it dashes
to the optimum corner not by hopping from corner to corner on the surface
of the polyhedron like simplex does, but by cutting a clever path in the
interior of the polyhedron. And it does perform well in practice. But
perhaps the greatest advance in linear programming algorithms was not
Khachiyan’s theoretical breakthrough or Karmarkar’s novel approach, but
an unexpected consequence of the latter: the fierce competition between
the two approaches, simplex and interior point, resulted in the development
of very fast code for linear programming.

Ellipsoid Algorithm

Problem
Given a bounded convex set P ∈ Rn, find x ∈ P . (We will see that we can
reduce linear programming to finding an x in P .)

Theorem (Khachian 79)

Ellipsoid algorithm is the first polynomial-time algorithm for linear
programming. Its running time is O(n4L), where L is the number of bits to
represent A and b.

Idea
Consider a sequence of smaller and smaller ellipsoids; each with the feasible
region inside. For iteration k:

ck = center of Ek.

Eventually ck has to be inside of F , and we are done.

Reduction from the General Case

Definition (Ellipsoid)

Given a center a, and a positive definite matrix A, the ellipsoid E(a, A) is
defined as

{x ∈ Rn : (x− a)TA−1(x− 1) ≤ 1}

max z = cTx

subject to Ax ≤ b

x ≥ 0.

find x, y

subject to Ax ≤ b

−x ≤ 0

−yA ≤ −c
−y ≤ 0

−cx + by ≤ 0

We start with a big ellipsoid E that is guaranteed to contain P . We then
check if the center of the ellipsoid is in P . If it is, we are done, we found a
point in P . Otherwise, we find an inequality cTx ≤ bi which is satisfied by
all points in P (for example, it is explicitly given in the description of P)
which is not satisfied by our center.

1. Let E0 be an ellipsoid containing P .

2. while (center ak of Ek is not in P) do

2.1 Let cT x ≤ cT ak be such that {x : cT x ≤ cT ak} ⊇ P .
2.2 Let Ek + 1 be the minimum volume ellipsoid containing

Ek
⋂
{x : cT x ≤ cT ak}.

2.3 k ← k + 1.

The ellipsoid algorithm has the important property that the ellipsoids
constructed shrink in volume as the algorithm proceeds.

Lemma

V ol(Ek+1)

V ol(Ek)
< e
− 1

2(n+1) .

Interior Point Methods

Idea
Travel through the interior with a combination of (1) An optimization term
(moves toward objective) and (2) A centering term (keeps away from
boundary).

Remark
Used since 1950s for nonlinear programming. Karmakar proved a variant is
polynomial time in 1984.

1. Affine scaling: simplest, but no known time bounds

2. Potential reduction: O(nL) iterations

3. Central trajectory: O(n1/2L) iterations

The time for each iteration involves solving a linear system so it takes
polynomial time. The “real world” time depends heavily on the matrix
structure.

