
Exercises

Problem
Suppose you are given a connected graph G, with edge costs that you may
assume are all distinct. G has n vertices and m edges. A particular edge e of G
is specified. Give an algorithm with running time O(n + m) to decide whether
e is contained in the minimum spanning tree of G.



Use the cut property and the Cycle property. Both properties are essentially
talking about how e related to the set of edges that are cheaper than e. The
Cut property can be viewed as asking: Is there some set S ⊆ V so that in order
to get from S to V \ S without using e, we need to use an edge that is more
expensive than e? The Cycle property says that an alternative route between
two endpoints of e that uses cheaper edges.

Theorem
Edge e = (v , w) does not belong to a minimum spanning tree of G if and only
if v and w can be joined by a path consisting entirely of edges that are cheaper
than e.

Given this fact, we form a graph G ′ by deleting from G all edges of weight
greater that we (as well as deleting e itself). We then use one of the
connectivity algorithm (BFS or DFS) to determine whether there is a path from
v to w in G ′. Above theorem says that e belongs to a minimum spanning tree
if and only if there is no such path.



Consider techniques for coordinating groups of mobile robots. Each robot has a
radio transmitter that it uses to communicate with a base station, and your
friend find that if the robots get too close to one another, then there are
problems with interference among the transmitters. So a natural problem arises:

Problem
How to plan the motion of the robots in such a way that each robot gets to its
intended destination, but in the process the robots do not come close enough
together to cause interference problems.

We can model the problem abstractly as follows. Suppose that we have an
undirected graph G = (V , E), representing the floor plan of a building, and
there are two robots initially located at nodes a and b in the graph. The robot
at node a wants to travel to node c along a path in G , and the robot at node b
wants to travel to node d . This is accomplished by means of a schedule: at
each time step, the schedule specifies that one of the robots moves across a
single edge, from one node to a neighboring node; at the end of this schedule,
the robot from a should be sitting on c, and the robot from b should be sitting
on d . A schedule is interference-free if there is no point at which the two
robots occupy nodes that are at a distance ≤ r from one another in the graph,
for a given parameter r . We will assume that the two starting nodes a and b
are at a distance greater than r , and so are the two ending nodes c and d .

Problem
Given a polynomial-time algorithm that decides whether there exists an
interference-free schedule by which each robot can get to its destination.



Problem
Given an algorithm to detect whether a given undirected graph contains a
cycle. If the graph contains a cycle, then your algorithm should output one. (It
should not output all cycles in the graph, just one of them.) The running time
of your algorithm should be O(n + m) for a graph with n nodes and m edges.



Inspired by the example of that great Cornellian, Vladimir Nabokov, some of
your friends have become amateur lepidopterist (they study bufferflies). Often
when they return from a trip with specimens of bufferflies, it is very difficult for
them to tell how many distinct species they have caught — thanks to the fact
that many species look very similar to one another.
One day they return with n bufferflies, and they believe that each belongs to
one of two different species, which we will call A and B for purposes of this
discussion. They would like to divide the n specimens into two groups — those
that belong to A and those that belong to B — but it is very hard for them to
directly label any one specimen. So they decide to adopt the following
approach.
For each pair of specimens i and j , they study them carefully side by side. If
they are confident enough in their judgement, then they label the pair (i , j)
either “same” or “different”. They also have the option of rendering no
judgement on a given pair, in which case we will call the pair “ambiguous”.
We will declare m judgement “consistent” if it is possible to label each
specimen either A or B in such a way that for each pair (i , j) labeled “same”,
it is the case the i and j have the same label; and for each pair (i , j) labeled
“different”, it is the case that i and j have different labels.

Problem
Given an algorithm with running time O(m + n) that determines whether the
m judgements are consistent.



We have a connected graph G = (V , E), and a specified vertex u ∈ V .
Suppose we compute a depth-first search tree rooted at u, and obtain a tree T
that includes all nodes of G . Suppose we then compute a breath-first search
tree rooted at u, and obtain the same tree T .

Theorem
Prove that G = T .

(In other words, if T is both a depth-first search tree and a breath-first search
tree rooted at u, then G cannot contain any edges that do not belong to T .)



Some friends of yours work on wireless networks, and they are currently
studying the prosperities of n mobile devices. As the devices move around, they
define a graph at any point in time as follows: there is a node representing
each of the n devices, and there is an edge between device i and device j if the
physical locations of i and j are no more than 500 meters apart. (If so, we say
that i and j are “in range” of each other.)
They would like it to be the case the the network of devices is connected at all
times, and so they have constrained the motion of the devices to satisfy the
following property: at all times, each device i is within 500 meters of at least n

2

of the other devices. (We will assume n is an even number.) What they would
like to know is: Does this property by itself guarantees that the network will
remain connected?
Here is a concrete way to formulate the question as a claim about graphs:

Problem
Let G be a graph on n nodes, where n is an even number. If every node of G
has degree at least n

2
, then G is connected.

Decide whether you think the claim is true or false, and give a proof of either
the claim or its negation.

Problem
What is the answer if we change n

2
to n

2
− 1?



Definition (Distance, dist(u, v).)

The distance between two nodes u and v in a graph G = (V , E) is the
minimum number of edges in a path joining them.

Definition (Diameter, diam(G ).)

The maximum distance between any pair of nodes in G .

Definition (Average pairwise distance in G , apd(G ).)

apd(G) is the average, over all pairs of two distinct nodes u and v , of the
distance between u and v .

apd(G) =

∑
{u, v}∈V dist(u, v)

(n2)
.

Problem
There exists a positive natural number c so that for all connected graphs G, it
is the case that

diam(G)

apd(G)
≤ c.

Decide whether you think the claim is true or false, and give a proof of either
the claim or its negation.



Suppose that an n-node undirected graph G = (V , E) contains two nodes s
and t such that the distance (the number of hops on the path s − t) between s
and t is strictly greater than n

2
.

Problem
Show that there must exists some node v, not equal to either s or t, such that
deleting v from G destroys all s − t paths.

(In other words, the graph obtained from G by deleting v contains no path from
s to t.) Give an algorithm with running time O(m + n) to find such a node v .



A number of art museums around the country have been featuring by an artist
named Mark Lombardi (1951 - 2000), consisting of a set of intricately rendered
celestial-like graphs. Building on a great deal of research, these graphs encode
the relationship among people involved in major political scandals over the past
several decades: the nodes correspond to participants; and each edge indicates
some type of relationship between a pair of participants. And so, if you peer
closely enough at the drawings, you can trace out ominous-looking paths form
a high-ranking US government officials, to a former business parter, to a bank
of Switzerland, to a shadowy arms dealer. Such picture form striking example
of social networks, which have nodes representing people and organizations,
and edges representing relationships of various kinds. And the short paths that
abound in these networks have attracted considerable attention recently, as
people ponder what they mean. In the case of Mark Lombardi’s graphs, they
hint at the shorter set of steps that can carry you form the reputable to the
disreputable.



Of course, a single, spurious short path between node v and w in such a
network may be more coincidental than anything else; a large number of short
paths between v and w can be much more convincing. So in addition to the
problem of computing a single shortest v − w path in a graph G , social
networks researchers have looked at the problem of determining the number of
shortest v − w paths. This turns out to be problem that can be solved
efficiently.

Problem
Suppose we are given an undirected graph G = (V , E), and we identify two
nodes v and w in G. Given an algorithm that computes the number of shortest
v − w paths in G. (This algorithm should not list all the paths; just the
number suffices.) The running time of your algorithm should be O(n + m) for a
graph with n nodes and m edges.



You are helping some security analysts monitor a collection of networked
computers, tracking the spread of an online virus. There are n computers in the
system, labeled C1, C2, . . . , Cn, and as input you are given a collection of
trace data indicating the times at which pairs of computers communicated.
Thus the data is a sequence of ordered triples (Ci , Cj , tk); such a triple
indicates that Ci and Cj exchanges bits at time tk . There are m triples total.
We will assume that the triples are presented to you in sorted order of time.
For purposes of simplicity, we will assume that each pair of computers
communication at most once during the interval you are observing. The
security analysts you are working with would like to be able to answer questions
of the following form:

Problem
If the virus was inserted into computer Ca at time x, could it possibly have
infected computer Cb by time y?

The mechanics of infection are simple: if an infected computer Ci

communicates with an uninfected computer Cj at time tk (in other words, if
one of the triples (Ci , Cj , tk) or (Cj , Ci , tk) appears in the trace data), then
computer Cj becomes infected as well, starting at time tk . Infection can thus
spread from one machine to another across a sequence of communications,
provided that no step in this sequence involves a move backward in time.

Problem
Design an algorithm: given a collection of trace data, the algorithm should
decide whether a virus introduced at computer Ca at time x could have
infected computer Cb by time y. That algorithm should run in time O(m + n).



You are helping a group of ethnographers analyze some oral history data they
have collected by interviewing members of a village to learn about the lives of
people who have lived there over the past two hundred years.
From these interviews, they have learnt about a set of n people (all of them
now decreased), whom we will denote P1, P2, . . . , Pn. They have also
collected facts about when these people lived relative to one another. Each fact
has one of the following two forms:

1. For some i and j , person Pi died before person Pj was born; or

2. for some i and j , the life spans of Pi and Pj overlapped at least partially.

Naturally, they are not sure that all these facts are correct; memories are not so
good, and a lot of this was passed down by words of mouth. So what they have
like you to determine is whether the data they have collected is at least
internally consistent, in the sense that there could have existed a set of people
for which all the facts they have learnt simultaneously hold.

Problem
Given an efficient algorithm to do this: either it should produce proposed dates
of birth and death for each of the n people so that all the facts hold true, or it
should report (correctly) that no such data can exist – that is, the facts
collected by the ethnographers are not internally consistent.



Problem
Let G = (V , E) be an undirected graph with costs ce ≥ 0 on the edges e ∈ E.
Assume you are given a minimum-cost spanning tree T in G. Now assume that
a new edge is added to G, connecting two nodes v , w ∈ V with cost c.

1. Give an efficient algorithm to test if T remains the minimum-cost
spanning tree with the new edge added to G (but not the tree T ).
Make your algorithm run in time O(|E |).
Can you do it in O(|V |) time?

2. Suppose T is no longer the minimum-cost spanning tree. Give a
linear-time algorithm (time O(|E |)) to update the tree T to the new
minimum-cost spanning tree.



Minimum-Cost Arborescence: A Multi-Phase Greedy Algorithm

Problem
Compute a minimum-cost arborescence of a directed graph.
Let G = (V , E) be a directed graph in which r ∈ V is a root. An arborescence
(with respect to r) is essentially a directed spanning tree rooted at r .
Specifically, it is a subgraph T = (V , F ) such that T is a spanning tree of G if
we ignore the directions of edges; and there is a path in T from r to each other
node v ∈ V if we take the directions of edges into account.



Lemma
A subgraph T = (V , F ) of G is an arborescence with respect to root r if and
only if T has no cycles, and for each node v 6= r , there is exactly one edge in F
that enters v .

Proof.

1. ⇒. If T is an arborescence with root r , then indeed every other node v
has exactly one edge entering it: this is simply the last edge on the unique
r − v path.

2. ⇐. Suppose T has no cycles, and each node v 6= r has exactly one
entering edge.
In order to establish that T is an arborescence, we need to only show that
there is a directed path from r to each other node v : We start at v and
repeatedly follow edges in the backward direction. Since T has no cycles,
we can never return to a node we have previously visited, and thus this
process must terminate. But r is the only node without incoming edges,
and so the process must in fact terminate by reaching r ; the sequence of
nodes thus visited yields a path (in the reverse direction) from r to v .
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1. Can we apply the ideas directly we developed for the minimum-spanning
tree to this setting?

2. Must the minimum-cost arborescence contain the cheapest edge in the
whole graph?

3. Can we safely delete the most expensive edge on a cycle, confident that it
cannot be in the optimal arborescence?



1. For each node v 6= r , select the cheapest edge entering v (breaking ties
arbitrarily), and let F ∗ be this set of n − 1 edges.
Now, consider the subgraph (V , F ∗). Since the optimal arborescence
needs to have exactly one edge entering each node v 6= r , and (V , F ∗)
represents the cheapest possible way of making these choices.

2. If (V , F ∗) is an arborescence, we are done (why?).
If (V , F ∗) is not an arborescence, it must contain a cycle C .

3. Every arborescence contains exactly one edge entering each node v 6= r ; so
if we pick some node v and subtract a uniform quantity from the cost of
every edge entering v , then the total cost of every arborescence changes
by exactly the same amount.
This means, essentially, that the actual cost of the cheapest edge entering
v is not important; what matters is the cost of all other edges entering v
relative to this.

4. Let yv denote the minimum cost of any edge entering v . For each edge
e = (u, v), with cost ce ≥ 0, we define its modified cost c ′e to be ce − yv ,
all the modified costs are still nonnegative.

Theorem
T is an optimal arborescence in G subject to costs {ce} if and only if it is an
optimal arborescence subject to the modified costs {c ′e}.

Proof.
The total difference

∑
e∈T ce −

∑
e∈T c ′e =

∑
v 6=r yv .



1. All the edges in set F ∗ (for each node v 6= r , select the cheapest edge
entering v — breaking ties arbitrarily, and let F ∗ be this set of n − 1
edges) have cost 0 under the modified costs.
If (V , F ∗) contains a cycle C , and all edges in C have cost 0. This
suggest that we can afford to use as many edges from C as we want
(consistent with producing an arborescence), since including edges from C
does not raise the cost.

2. We contract C into a single supernode, obtaining a smaller graph
G ′ = (V ′, E ′), V ′ contains the nodes V \ C , plus a single node c∗

representing C . We transform each edge e ∈ E to an edge e′ ∈ E ′ by
replacing each end of e that belongs to C with a new node c∗. This can
result in G ′ having parallel edges. We delete self-loops from E ′.

3. We recursively find an optimal arborescence in this smaller graph G ′,
subject to the cost {c ′e}. The arborescence returned by this recursive call
can be converted into an arborescence of G by including all but one edge
on the cycle C .



1. For each node v 6= r

2. Let yv be the minimum cost of an edge entering node v

3. Modify the costs of all edges e entering v to c ′e = ce − yv .

4. Choose one 0-cost edge entering each v 6= r , obtaining a set F ∗

5. If F ∗ forms an arborescence, then return it

6. Else there is a directed cycle C ⊆ F ∗

7. Contract C to a single supernode, yielding a graph G ′ = (V ′, E ′)

8. Recursively find an optimal arborescence (V ′, F ′) in G ′ with costs {c ′e}
9. Extend (V ′, F ′) to an arborescence (V , F ) in G by adding all but one

edge of C



Lemma
Let C be a cycle in G consisting of edges of cost 0, such that r /∈ C. Then
there is an optimal arborescence rooted at r that has exactly one edge entering
C.

Let T be an optimal arborescence in G . Since r has a path in T to every node,
there is at least one edge of T that enters C . If T enters C exactly once, we
are done. Otherwise, we show how to modify T to obtain an arborescence of
no greater cost that enters C exactly once.
Let e = (a, b) be an edge entering C that lies on as short a path as possible
from r . We delete all edges of T that enter C , except for the edge e. We add
in all edges of C except for the one edge that enters b, the head of edge e. Let
T ′ denote the resulting subgraph of G . T ′ is also an arborescence (why?).
(1) T ′ has exactly one edge entering each node v 6= r , and no edge entering r .
So T ′ has exactly n − 1 edges.
(2) Consider any node v 6= r , we show there is a r − v path in T ′. If v ∈ C ,
the path in T from r to e is preserved in T ′. If v /∈ C , let P denote the r − v
path in T . If P did not touch C , then it still exists in T ′. Otherwise, let w be
the last node in P ∩ C , and let P ′ be the sub-path of P from w to v . Observe
that all the edges in P ′ still exist in T ′. We know w is reachable from r in T ′,
since w ∈ C . Concatenating this path to w with the sub-path P ′ gives us a
path to v as well.
The cost of T ′ is clearly no greater than that of T : the only edges of T ′ that
do not also belong to T have cost 0.



Lemma
T ′ is an arborescence.

Proof.
T ′ has exactly one edge entering each node v 6= r , and no edge entering r . So
T ′ has exactly n − 1 edges.
Consider any node v 6= r , we show there is a r − v path in T ′.
If v ∈ C , the path in T from r to e is preserved in T ′.
If v /∈ C , let P denote the r − v path in T . If P did not touch C , then it still
exists in T ′. Otherwise, let w be the last node in P ∩ C , and let P ′ be the
sub-path of P from w to v . Observe that all the edges in P ′ still exist in T ′. w
is reachable from r in T ′, since w ∈ C . Concatenating this path to w with the
sub-path P ′ gives us a path to v as well.

Theorem
The algorithm finds an optimal arborescence rooted at r in G.

Proof.
Mathematical induction...



Cayley’s Theorem

Definition (Labeled Tree.)

A labeled tree is a tree in which each node is labeled with a distinct integer.
(Without loss of generality, we let them be 1, 2, . . . , n.)

From a labeled tree with at least 2 nodes we can remove the leaf with the
lowest number, together with the edge connecting it to the rest of the tree; the
remaining graph is again a labeled tree. Hence this action can be repeated until
the tree has been reduced to a single node; that remaining node is the one with
the maximum label number.
For instance, each time we have written the number of the leaf being removed
in the upper line:

2 3 4 0 5 6 1 the node removed in order

1 7 0 7 1 1 7 the other end of the edge when one of its nodes is removed



I1. The right-most value of the bottom line (i.e., node 7) is always the highest
node number.

I2. The top line is always a permutation of the remaining node numbers (all
nodes except node 7).

I3. The number of times that a value occurs in such a scheme equals the
degree of the corresponding node (at that time when a node is removed).

When we remove from such a scheme the top line and the right-most column
in both top and bottom lines — in our example

1 7 0 7 1 1 (1)

would be the result — each value has been removed once (on account of I1 and
I2). On account of I3, we have (note nodes 2, 3, 4, 5, 6 are leaves)

Lemma
The number of times that a value occurs in such a sequence (i.e., the bottom
line) is one less than the degree of the corresponding nodes. Hence the leaves
are the nodes whose number is missing in the sequence.



Theorem
The left-most element of the top line is the minimum index value from the set
that is missing in the sequence. (All other leaves have higher index values but
they are less than the maximum one.)

Because for a tree of n nodes the sequence (as in Formula (1)) is n − 2
elements long, at least 2 values are missing; therefore that minimum missing
value never equals the maximum node number (in our example, 2 6= 7), i.e.,
the construction is possible for any sequence of n − 2 node numbers.
The next value in the top line is found by the same argument after reducing
the set of node numbers by removing from it the value just filled in (in our
example, 2), and reducing the sequence by the removal of its left-most
element. By repeating the argument, the first n − 2 elements of the top line
can be reconstructed. Finally, of the right-most column the bottom element is
reconstructible on account of I1 and its top element by I2.
Hence, for a set of n labeled nodes, there is a one-to-one correspondence
between the trees connecting these nodes and the sequences (i.e., the bottom
line) of n − 2 node numbers. Because the number of such sequences is
obviously equal to

nn−2,

this value also equals the number of possible trees connecting n labeled nodes.


