
Multiway Cut, k-Cut, and k-Center1

1Chapter 4 of Approximation Algorithm, Vijay V. Vazirani, 2003



Multiway Cut

Definition (Cut)

Given a connected, undirected graph G = (V , E) with an assignment of
weights to edges, w : E →R+, a cut is defined by a partition of V into two
sets, say V ′ and V − V ′, and consists of all edges that have one endpoint in
each partition.

Clearly, the removal of the cut from G disconnects G .

Definition (s-t cut)

Given terminals s, t ∈ V , consider a partition of V that separates s and t. The
cut defined by such a partition will be called an s-t cut.

The problems of finding a minimum weight cut and a minimum weight st cut
can be efficiently solved using a maximum flow algorithm.

Problem (Multiway cut)

Given a set of terminals S = {s1, s2, . . . , sk} ⊆ V , a multiway cut is a set of
edges whose removal disconnects the terminals from each other. The multiway
cut problem asks for the minimum weight such set.

Problem (Minimum k-cut)

A set of edges whose removal leaves k connected components is called a k-cut.
The k-cut problem asks for a minimum weight k-cut.



Multiway Cut and k-Cut

Problem (Multiway cut)

Given a set of terminals S = {s1, s2, . . . , sk} ⊆ V , a multiway cut is a set of
edges whose removal disconnects the terminals from each other. The multiway
cut problem asks for the minimum weight such set.

Remark
The problem of finding a minimum weight multiway cut is NP-hard for any
fixed k ≥ 3. Observe that the case k = 2 is precisely the minimum s-t cut
problem. The minimum k-cut problem is polynomial time solvable for fixed k;
however, it is NP-hard if k is specified as part of the input.

In this following, we will obtain factor 2− 2
k

approximation algorithms for both
problems.

Definition (Isolating cut)

Define an isolating cut for si to be a set of edges whose removal disconnects si
from the rest of the terminals.

Algorithm 0.1: Multiway cut(G)

for i = 1, . . . , k{
compute a minimum weight isolating cut for si , say Ci .

Discard the heaviest of these cuts, and output the union of the rest, say C .



Multiway Cut

Each computation in step 1 can be accomplished by identifying the terminals in
S − {si} into a single node, and finding a minimum cut separating this node
from si ; this takes one max-flow computation. Clearly, removing C from the
graph disconnects every pair of terminals, and so is a multiway cut.

Theorem
The above algorithm achieves an approximation guarantee of 2− 2

k
.

Proof.
Let A be an optimal multiway cut in G . We can view A as the union of k cuts
as follows:

I The removal of A from G will create k connected components, each
having one terminal (since A is a minimum weight multiway cut, no more
than k components will be created). Let Ai be the cut separating the
component containing si from the rest of the graph. Then A =

⋃k
i=1 Ai .

Since each edge of A is incident at two of these components, each edge will be
in two of the cuts Ai . Hence,

k∑
i=1

w(Ai ) = 2w(A).



Multiway Cut

Theorem
The above algorithm achieves an approximation guarantee of 2− 2

k
.

Proof.
Let A be an optimal multiway cut in G . Since each edge of A is incident at two
of these components, each edge will be in two of the cuts Ai . Hence,

k∑
i=1

w(Ai ) = 2w(A).

Clearly, Ai is an isolating cut for si . Since Ci is a minimum weight isolating cut
for si , w(Ci ) ≤ w(Ai ). Notice that this already gives a factor 2 algorithm, by
taking the union of all k cuts Ci . Finally, since C is obtained by discarding the
heaviest of the cuts Ci ,

w(C) ≤
(

1− 1

k

) k∑
i=1

w(Ci ) ≤
(

1− 1

k

) k∑
i=1

w(Ai ) = 2

(
1− 1

k

)
w(A).



Multiway Cut

Example

A tight example for this algorithm is given by a graph on 2k vertices consisting
of a k-cycle and a distinct terminal attached to each vertex of the cycle. The
edges of the cycle have weight 1 and edges attaching terminals to the cycle
have weight 2− ε for a small fraction ε > 0.
For example, the graph corresponding to k = 4 is:

For each terminal si , the minimum weight isolating cuts for si is given by the
edge incident to si . So, the cut C returned by the algorithm has weight
(k − 1)(2− ε). On the other hand, the optimal multiway cut is given by the
cycle edges, and has weight k.



Minimum k-Cut

Problem (Minimum k-cut)

A set of edges whose removal leaves k connected components is called a k-cut.
The k-cut problem asks for a minimum weight k-cut.

A natural algorithm for finding a k-cut is as follows.

Algorithm 0.2: Greedy approach for k-cut(G)

repeat
for i = 1, . . . , k{

compute a minimum cut in each connected component,
remove the lightest one.

until until there are k connected components.

This algorithm does achieve a guarantee of 2− 2
k

.

Remark
We will use the Gomory-Hu tree representation of minimum cuts to give a
simpler algorithm achieving the same guarantee.



Minimum k-Cut

Definition (Gomory-Hu tree)

Let T be a tree on vertex set V ; the edges of T need not be in E . Let e be an
edge in T . Its removal from T creates two connected components. Let S and
S̄ be the vertex sets of these components. The cut defined in graph G by the
partition (S , S̄) is the cut associated with e in G . Define a weight function w ′

on the edges of T . Tree T will be said to be a Gomory-Hu tree for G if

1. for each pair of vertices u, v ∈ V , the weight of a minimum u-v cut in G
is the same as that in T .

2. for each edge e ∈ T , w ′(e) is the weight of the cut associated with e in G .

A Gomory-Hu tree encodes, in a succinct manner, a minimum u-v cut in G , for
each pair of vertices u, v ∈ V as follows. A minimum u-v cut in T is given by
a minimum weight edge on the unique path from u to v in T , say e. By the
properties stated above, the cut associated with e in G is a minimum u-v cut,
and has weight w ′(e). So, for the (n2) pairs of vertices u, v ∈ V , we need only
n − 1 cuts, those encoded by the edges of a Gomory-Hu tree, to give minimum
u-v cuts in G .



Minimum k-Cut

Example

Lemma
Let S be the union of cuts in G associated with l edges of T . Then, the
removal of S from G leaves a graph with at least l + 1 components.

Proof.
Removing the corresponding l edges from T leaves exactly l + 1 connected
components, say with vertex sets V1, V2, . . . , Vl + 1. Clearly, removing S
from G will disconnect each pair Vi and Vj . Hence we must get at least l + 1
connected components.



Minimum k-Cut

To construct a Gomory-Hu tree for an undirected graph, we use only n − 1
max-flow computations.

Algorithm 0.3: Gomory-Hu-tree approach for k-cut(G)

Compute a Gomory-Hu tree T for G .
Output the union of the lightest k − 1 cuts

of the n − 1 cuts associated with edges of T in G .
Let C be this union.

Theorem
The above algorithm achieves an approximation ratio 2− 2

k
.

Proof.
Similar proof..



Example

The tight example given above for multiway cuts on 2k vertices also serves as a
tight example for the k-cut algorithm (of course, there is no need to mark
vertices as terminals). Below we give the example for k = 4, together with its
Gomory-Hu tree.

The lightest k − 1 cuts in the Gomory-Hu tree have weight 2− ε each,
corresponding to picking edges of weight 2− ε of G . So, the k-cut returned by
the algorithm has weight (k − 1)(2− ε). On the other hand, the optimal k-cut
picks all edges of weight 1, and has weight k.


