Multiway Cut, $k$-Cut, and $k$-Center ${ }^{1}$
${ }^{1}$ Chapter 4 of Approximation Algorithm, Vijay V. Vazirani, 2003

## Multiway Cut

## Definition (Cut)

Given a connected, undirected graph $G=(V, E)$ with an assignment of weights to edges, $w: E \rightarrow \mathcal{R}^{+}$, a cut is defined by a partition of $V$ into two sets, say $V^{\prime}$ and $V-V^{\prime}$, and consists of all edges that have one endpoint in each partition.
Clearly, the removal of the cut from $G$ disconnects $G$.
Definition ( $s-t$ cut)
Given terminals $s, t \in V$, consider a partition of $V$ that separates $s$ and $t$. The cut defined by such a partition will be called an s-t cut.
The problems of finding a minimum weight cut and a minimum weight st cut can be efficiently solved using a maximum flow algorithm.

## Problem (Multiway cut)

Given a set of terminals $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\} \subseteq V$, a multiway cut is a set of edges whose removal disconnects the terminals from each other. The multiway cut problem asks for the minimum weight such set.

## Problem (Minimum $k$-cut)

$A$ set of edges whose removal leaves $k$ connected components is called a $k$-cut. The $k$-cut problem asks for a minimum weight $k$-cut.

## Multiway Cut and $k$-Cut

## Problem (Multiway cut)

Given a set of terminals $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\} \subseteq V$, a multiway cut is a set of edges whose removal disconnects the terminals from each other. The multiway cut problem asks for the minimum weight such set.

## Remark

The problem of finding a minimum weight multiway cut is NP-hard for any fixed $k \geq 3$. Observe that the case $k=2$ is precisely the minimum s-t cut problem. The minimum $k$-cut problem is polynomial time solvable for fixed $k$; however, it is NP-hard if $k$ is specified as part of the input.
In this following, we will obtain factor $2-\frac{2}{k}$ approximation algorithms for both problems.

## Definition (Isolating cut)

Define an isolating cut for $s_{i}$ to be a set of edges whose removal disconnects $s_{i}$ from the rest of the terminals.

## Algorithm 0.1: Multiway cut(G)

## for $i=1, \ldots, k$

$\left\{\right.$ compute a minimum weight isolating cut for $s_{i}$, say $C_{i}$.
Discard the heaviest of these cuts, and output the union of the rest, say $C$.

## Multiway Cut

Each computation in step 1 can be accomplished by identifying the terminals in $S-\left\{s_{i}\right\}$ into a single node, and finding a minimum cut separating this node from $s_{i}$; this takes one max-flow computation. Clearly, removing $C$ from the graph disconnects every pair of terminals, and so is a multiway cut.

## Theorem

The above algorithm achieves an approximation guarantee of $2-\frac{2}{k}$.

## Proof.

Let $A$ be an optimal multiway cut in $G$. We can view $A$ as the union of $k$ cuts as follows:

- The removal of $A$ from $G$ will create $k$ connected components, each having one terminal (since $A$ is a minimum weight multiway cut, no more than $k$ components will be created). Let $A_{i}$ be the cut separating the component containing $s_{i}$ from the rest of the graph. Then $A=\bigcup_{i=1}^{k} A_{i}$.
Since each edge of $A$ is incident at two of these components, each edge will be in two of the cuts $A_{i}$. Hence,

$$
\sum_{i=1}^{k} w\left(A_{i}\right)=2 w(A)
$$

## Multiway Cut

## Theorem

The above algorithm achieves an approximation guarantee of $2-\frac{2}{k}$.
Proof.
Let $A$ be an optimal multiway cut in $G$. Since each edge of $A$ is incident at two of these components, each edge will be in two of the cuts $A_{i}$. Hence,

$$
\sum_{i=1}^{k} w\left(A_{i}\right)=2 w(A)
$$

Clearly, $A_{i}$ is an isolating cut for $s_{i}$. Since $C_{i}$ is a minimum weight isolating cut for $s_{i}, w\left(C_{i}\right) \leq w\left(A_{i}\right)$. Notice that this already gives a factor 2 algorithm, by taking the union of all $k$ cuts $C_{i}$. Finally, since $C$ is obtained by discarding the heaviest of the cuts $C_{i}$,

$$
w(C) \leq\left(1-\frac{1}{k}\right) \sum_{i=1}^{k} w\left(C_{i}\right) \leq\left(1-\frac{1}{k}\right) \sum_{i=1}^{k} w\left(A_{i}\right)=2\left(1-\frac{1}{k}\right) w(A)
$$

## Multiway Cut

## Example

A tight example for this algorithm is given by a graph on $2 k$ vertices consisting of a $k$-cycle and a distinct terminal attached to each vertex of the cycle. The edges of the cycle have weight 1 and edges attaching terminals to the cycle have weight $2-\epsilon$ for a small fraction $\epsilon>0$.
For example, the graph corresponding to $k=4$ is:


For each terminal $s_{i}$, the minimum weight isolating cuts for $s_{i}$ is given by the edge incident to $s_{i}$. So, the cut $C$ returned by the algorithm has weight $(k-1)(2-\epsilon)$. On the other hand, the optimal multiway cut is given by the cycle edges, and has weight $k$.

## Minimum k-Cut

## Problem (Minimum $k$-cut)

A set of edges whose removal leaves $k$ connected components is called a $k$-cut. The $k$-cut problem asks for a minimum weight $k$-cut.
A natural algorithm for finding a $k$-cut is as follows.
Algorithm 0.2: Greedy approach for $k$-Cut $(G)$

## repeat

for $i=1, \ldots, k$
\{compute a minimum cut in each connected component,
remove the lightest one.
until until there are $k$ connected components.

This algorithm does achieve a guarantee of $2-\frac{2}{k}$.

## Remark

We will use the Gomory-Hu tree representation of minimum cuts to give a simpler algorithm achieving the same guarantee.

## Minimum $k$-Cut

## Definition (Gomory-Hu tree)

Let $T$ be a tree on vertex set $V$; the edges of $T$ need not be in $E$. Let $e$ be an edge in $T$. Its removal from $T$ creates two connected components. Let $S$ and $\bar{S}$ be the vertex sets of these components. The cut defined in graph $G$ by the partition $(S, \bar{S})$ is the cut associated with e in $G$. Define a weight function $w^{\prime}$ on the edges of $T$. Tree $T$ will be said to be a Gomory-Hu tree for $G$ if

1. for each pair of vertices $u, v \in V$, the weight of a minimum $u-v$ cut in $G$ is the same as that in $T$.
2. for each edge $e \in T, w^{\prime}(e)$ is the weight of the cut associated with $e$ in $G$. A Gomory-Hu tree encodes, in a succinct manner, a minimum $u-v$ cut in $G$, for each pair of vertices $u, v \in V$ as follows. A minimum $u-v$ cut in $T$ is given by a minimum weight edge on the unique path from $u$ to $v$ in $T$, say $e$. By the properties stated above, the cut associated with $e$ in $G$ is a minimum $u-v$ cut, and has weight $w^{\prime}(e)$. So, for the $\binom{n}{2}$ pairs of vertices $u, v \in V$, we need only $n-1$ cuts, those encoded by the edges of a Gomory-Hu tree, to give minimum $u-v$ cuts in $G$.

## Minimum k-Cut

## Example



Lemma
Let $S$ be the union of cuts in $G$ associated with I edges of $T$. Then, the removal of $S$ from $G$ leaves a graph with at least $I+1$ components.

Proof.
Removing the corresponding I edges from $T$ leaves exactly $I+1$ connected components, say with vertex sets $V_{1}, V_{2}, \ldots, V_{l}+1$. Clearly, removing $S$ from $G$ will disconnect each pair $V_{i}$ and $V_{j}$. Hence we must get at least $I+1$ connected components.

## Minimum k-Cut

To construct a Gomory-Hu tree for an undirected graph, we use only $n-1$ max-flow computations.

Algorithm 0.3: Gomory-Hu-Tree approach for $k$-CUT( $G$ )
Compute a Gomory-Hu tree $T$ for $G$.
Output the union of the lightest $k-1$ cuts
of the $n-1$ cuts associated with edges of $T$ in $G$.
Let $C$ be this union.

## Theorem

The above algorithm achieves an approximation ratio $2-\frac{2}{k}$.
Proof.
Similar proof..

## Example

The tight example given above for multiway cuts on $2 k$ vertices also serves as a tight example for the $k$-cut algorithm (of course, there is no need to mark vertices as terminals). Below we give the example for $k=4$, together with its Gomory-Hu tree.


The lightest $k-1$ cuts in the Gomory-Hu tree have weight $2-\epsilon$ each, corresponding to picking edges of weight $2-\epsilon$ of $G$. So, the $k$-cut returned by the algorithm has weight $(k-1)(2-\epsilon)$. On the other hand, the optimal $k$-cut picks all edges of weight 1 , and has weight $k$.

