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s-t Connectivity Problem

s-t Connectivity Problem

Given an undirected graph G = (V, E) and two vertices s and t in G,
determine if there is a path connecting s and t.

One Answer
Let n = |V | and m = |E|. Standard BFS and DFS are deterministic
algorithms linear running time O(n+m).

Such algorithms require Ω(n) space.

A New Target

Develop a randomized algorithm that works with only O(logn) bits of
memory.

O(logn) is even less than the number of bits required to write the path
between s and t.



Math Background: Markov’s Inequality

A Motivating Question

How do we bound the tail distribution, the probability that a random
variable assumes values that are far from its expectation?

Theorem (Markov’s Inequality)

Let X be a random variable that assumes only nonnegative values. Then,
for all a > 0,

Pr[X ≥ a] ≤ E[X]

a
.

Proof.
For a > 0, let

I =

{
1, if X ≥ a,
0, otherwise,

and note that since X ≥ 0,

(∗) I ≤ X

a
.

Because I is a 0-1 random variable, E[I] = Pr[I = 1] = Pr[X ≥ a].
Taking expectations in (∗) thus yields

Pr[X ≥ a] = E[I] ≤ E[
X

a
] =

E[X]

a
.



Math Background: Markov Chain and Random Walk

Definition (Markov Chain)

A discrete time stochastic process X0, X1, X2, . . . is a Markov Chain if

Pr[Xt = at | Xt−1 = at−1, Xt−2 = at−2, . . . , X0 = a0]

= Pr[Xt = at | Xt−1 = at−1]

= Pat−1,at .

Let G = (V, E) be a finite, undirected, and connected graph.

Definition (Random Walk)

A random walk on G is a Markov chain defined by the sequence of moves of
a particle between vertices of G. In this process, the place of the particle at
a given time step is the state of the system. If the particle is at vertex i and
if i has d(i) outgoing edges, then the probability that the particle follows
edge (i, j) and moves to a neighbor j is 1

d(i)
.



Math Background: Markov Chain and Random Walk
We might analyze a Markov chain to make predictions about system
behaviors.
Let P is the one-step transition probability matrix of a Markov chain. If
p(t) is the probability distribution of the state of the chain at time t, then

p(t+ 1) = p(t)P.

Definition (Stationary Distribution π)

A stationary distribution (also called an equilibrium distribution) of a
Markov chain is a probability distribution π such that

π = πP.

Note
∑
πv = 1.

Theorem
A random walk on G converges to a stationary distribution π, where

πv =
d(v)

2|E| .

Proof.



Math Background: Markov Chain and Random Walk

Theorem
A random walk on G converges to a stationary distribution π, where

πv =
d(v)

2|E| .

Proof.
Since

∑
v∈V d(v) = 2|E|, it follows that

1 =
∑
v∈V

πv =
∑
v∈V

d(v)

2|E| ,

and π is a proper distribution over v ∈ V .
Let P be the transition probability matrix of the Markov chain. Let N(v)
represent the neighbors of v. The relation π = πP is equivalent to

πv =
∑

u∈N(v)

(
d(u)

2|E|
1

d(u)

)
=

1

2|E|
∑

u∈N(v)

1 =
d(v)

2|E| ,

and the theorem follows.



Math Background: Markov Chain and Random Walk

Theorem
A random walk on G converges to a stationary distribution π, where
πv = d(v)

2|E| .

Let hv,u denote the expected number of steps to reach u from v.

Corollary

For any vertex u in G, hu,u = 2|E|
d(u)

.

Lemma
If (u, v) ∈ E, then hv,u < 2|E|.

Proof.
Let N(u) be the set of neighbors of vertex u in G. We compute hu,u in two
different ways:

2|E|
d(u)

= hu,u =
1

d(u)

∑
w∈N(u)

(1 + hw,u) .

Therefore,

2|E| =
∑

w∈N(u)

(1 + hw,u) ,

and we conclude that hv,u < 2|E|.



Math Background: Markov Chain and Random Walk

Definition (Cover Time)

The cover time of a graph G = (V, E) is a maximum over all vertices v ∈ V
of the expected time to visit all of the nodes in the graph by a random walk
starting from v.

Lemma
The cover time of G = (V, E) is bounded above by 4|V | · |E|.

Proof.
Choose a spanning tree of G; that is, choose any subset of the edges that
gives an acyclic graph connecting all of the vertices of G. There exists a
cyclic (Eulerian) tour on this spanning tree in which every edge is traversed
once in each direction: for example, such a tour can be found by
considering the sequence of vertices passed through when doing a
depth-first search. Let v0, v1, . . . , v2|V |−2 = v0 be the sequence of vertices
in the tour, starting from vertex v0. Clearly the expected time to go
through the vertices in the tour is an upper bound on the cover time.
Hence the cover time is bounded by above by

2|V |−3∑
i=0

hvi,vi+1 < (2|V | − 2)(2|E|) < 4|V | · |E|,

where the first inequality comes from hv,u < 2|E|.



A Randomized s-t Connectivity Algorithm

A Randomized s-t Connectivity Algorithm

1. Start a random walk from s.

2. If the walk reaches t within 4n3 steps, return that there is a path.
Otherwise, return that there is no path.

Theorem
The s-t connectivity algorithm returns the correct answer with probability 1

2

and it only errs by returning that there is no path from s to t when there is
such a path.

Proof.
If there is no path then the algorithm returns the correct answer. If there is
a path, the algorithm errs if it does not find the path within 4n3 steps of
the walk. The expected time to reach t from s (if there is a path) is
bounded by the cover time of their shared component, which is at most
4nm < 2n3. By Markov’s inequality, the probability that a walk takes more
than 4n3 steps to reach s from t is at most 1

2
.



A Randomized s-t Connectivity Algorithm

A Randomized s-t Connectivity Algorithm

1. Start a random walk from s.

2. If the walk reaches t within 4n3 steps, return that there is a path.
Otherwise, return that there is no path.

The algorithm must keep track of its current position, which takes O(logn)
bits, as well as the number of steps taken in the random walk, which also
takes only O(logn) bits (since we count up to only 4n3).



Example: Boltzmann Economy

Boltzmann Economy Model

Suppose there is a fixed amount of money (M dollars), and a fixed number
of agents (N) in the economy. Suppose that during each time step, each
agent randomly selects another agent and transfers one dollar to the
selected agent. An agent having no money does not go in debt. What will
the long term (stable) distribution of money be?

Note
There is no growth, only a redistribution of money (by a random process).
For the sake of argument, we can imagine that every agent starts with
approximately the same amount of money, although in the long run, the
starting distribution should not matter.



Example: Boltzmann Economy

For this example, we are interested in looking at the distribution of money
in the economy, so we are looking at the probabilities {pi} that an agent
has the amount of money i. We are hoping to develop a model for the
collection {pi}.
If we let ni be the number of agents who have i dollars, we have two
constraints: ∑

i

(ni · i) = M∑
i

ni = N.

Phrased differently (using pi = ni
N

), this says∑
i

(pi · i) =
M

N∑
i

pi = 1.



A Maximum Entropy Principle

We define the entropy of the distribution P by

H(P ) =

n∑
i=1

(
pi log

1

pi

)
.

Theorem (A Maximum Entropy Principle)

Suppose we have a system for which we can measure certain macroscopic
characteristics. Suppose further that the system is made up of many
microscopic elements, and that the system is free to vary among various
states. Let us assume that with probability essentially equal to 1, the system
will be observed in states with maximum entropy.



A Maximum Entropy Principle

What we have right now: ∑
i

(pi · i) =
M

N∑
i

pi = 1.

We now apply Lagrange multiplier:

L =

n∑
i=1

(
pi log

1

pi

)
− λ

(∑
i

(pi · i)−
M

N

)
− µ

(∑
i

pi − 1

)
,

from which we get

∂L

∂pi
= −[1 + ln(pi)]− λ · i− µ = 0.

We can solve this for pi:

ln(pi) = −λ · i− (1 + µ)

and so
pi = e−(1+µ)e−λ·i.



A Maximum Entropy Principle

pi = e−(1+µ)e−λ·i.

Putting in constraints, we have

1 =
∑
i

pi =
∑
i

e−(1+µ)e−λ·i = e−(1+µ)
M∑
i=0

e−λ·i

M

N
=

∑
i

(pi · i) =
∑
i

e−(1+µ)e−λ·i · i = e−(1+µ)
∑
i

e−λ·i · i

We can approximate (for large M)

M∑
i=0

e−λ·i ≈
∫ M

0

eλxdx ≈ 1

λ

M∑
i=0

e−λ·i · i ≈
∫ M

0

xe−λxdx ≈ 1

λ2
.

From these we have (approximately) e1+µ = 1
λ

and e1+µM
N

= 1
λ2 .

We have λ = N
M

= e−(1+µ), and thus (letting T = M
N

) we have

pi = e−(1+µ)e−λ·i =
1

T
e−

i
T =

1

T
e−

i
T .


