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Outline

Talk Overview

This talk is about some of the hardware features that CPUs provide to
save power, and algorithms that we can use to take advantage of those
features.
First I’ll tell you why we care about saving power.
Unlike some of the other algorithms that we’ve looked at, this one is
really setup the way it is because of the way hardware is designed. If
CPUs were designed in a different way, we’d be learning something
different. So I want to show you how CPUs work so you understand why
we model the problem the way we do.
We’ll also look at some variations on the problem that have been written
about in other papers.
We won’t have time to look at everything in today’s paper, but we’ll get
as far as we can.

So first, let me tell you why we care about this problem.



Motivation: Who Cares About Power Consumption?

#1 Supercomputer: Cray XT5-HE, Oak Ridge National Laboratory[3]

I Peak power consumption: 6950.60 kW
I Cost at 7 ¢/kW·h:

$4,261,740 per year

For large-scale systems, reducing operational cost is important

Case study: $200,000/year saved at Kyoto University[4]

©2008 Wouter Horré. Used with permission.

Embedded devices may have:
I Fixed power budgets, or
I Limited runtime based on

battery capacity
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Algorithms for Power Savings

Motivation

Motivation: Who Cares About Power Consumption?

This supercomputer consumes almost 7 MEGAWATTS.
For comparison, an average nuclear fission plant generates about 700
megawatts. This computer uses 1% of a nuclear plant’s capacity.

So if you wanted to run this thing full-bore for a year, it would only cost

you. . . oh, I don’t know. . . 4 MILLION DOLLARS
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Motivation

Motivation: Who Cares About Power Consumption?

When you’re talking about this much money, even if you have to pay
someone to work on it for a year, it’s not a bad deal.

Also, this is not just supercomputers... Any company that runs

datacenters with lots of servers is interested in saving money through

better power management.
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©2008 Wouter Horré. Used with permission.

Embedded devices may have:
I Fixed power budgets, or
I Limited runtime based on

battery capacity

Brandon Thomson Algorithms for Power Savings November 16 2010 3 / 15



Motivation: Who Cares About Power Consumption?

#1 Supercomputer: Cray XT5-HE, Oak Ridge National Laboratory[3]

I Peak power consumption: 6950.60 kW
I Cost at 7 ¢/kW·h: $4,261,740 per year

For large-scale systems, reducing operational cost is important

Case study: $200,000/year saved at Kyoto University[4]
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Motivation

Motivation: Who Cares About Power Consumption?

So that’s the large scale. Huge systems. On the other side we have
embedded devices.
It’s not always practical to change batteries, especially when you have
large deployments of wireless devices. So this is another case we care
about.

We can also talk about the environment, or any other number of reasons,

but suffice it to say that this is not just academic.



Background: Processor Speed Scaling

CPUs support a fixed set of clock frequencies
I Lower frequency → Lower voltage → Lower energy use
I Examples: Intel’s “SpeedStep,” AMD’s “PowerNOW”

. . .

×3

×2

×1

“Clock Multipliers”

200 MHz

200 MHz

400 MHz

600 MHz

time

frequency

SWITCH TO(400 MHz)

(˜10 µs)

ramp time

Hardware leaves transition decisions up to operating system
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Background: How CPUs Work

Speed Scaling

Background: Processor Speed Scaling

We’re going to be looking at an individual processor, so it’s important to

understand how they work.
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Background: How CPUs Work

Speed Scaling

Background: Processor Speed Scaling

Usually there’s a fixed set of frequencies that you can change to.
The processor multiplies a slow input clock internally, thereby allowing it
to run faster than the bus but still remaining synchronized to it.

Sometimes you can change this input bus clock on the fly and get

arbitrary speeds for the CPU. but now you have to make sure all your

other hardware supports the new clock speed too. And then you’re

changing two things at the same time. So just changing the CPU

multiplier is much more widely supported. Much less messy.
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Background: How CPUs Work

Speed Scaling

Background: Processor Speed Scaling

Let’s put up some example speeds and see how the frequency-changing

process works. First we start out at some speed, say 200 MHz.
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Background: How CPUs Work

Speed Scaling

Background: Processor Speed Scaling

Then the OS issues a command to switch. There’s a delay while all sorts

of fun electrical stuff is happening. You can’t get work done during that

period.
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Background: How CPUs Work

Speed Scaling

Background: Processor Speed Scaling

Note that the hardware doesn’t manage it’s own speeds; the OS has to do

that. This is also true for sleep states, which we’re going to look at next.



Background: Processor Sleep States

Many CPUs support fixed set of “sleep states”

Deeper sleep states:
I Save more power
I Have higher “return-to-service” latency

Non-trivial transition delay (compared to speed scaling)

Intel sleep state examples[5]:
I C0 - Active: CPU on.
I C1 - Auto Halt: no execution; can return to executing state quickly.
I C2 - Stop Clock: core and bus clocks off.
I C3 - Deep Sleep: all clock circuitry off, cache flushed to main memory.
I C4 - Deeper Sleep: reduced voltage.

Ugly details. Sometimes hardware:
I has to be at slowest speed to go to sleep
I always wakes in slowest speed
I behaves abnormally in sleep states
I . . .
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Background: How CPUs Work

Sleep States

Background: Processor Sleep States

The general principle is, the more stuff you turn off, the longer it takes to
resynchronize and get you back to a state where you can execute.

Delays here are much more likely to be significant compared to speed

scaling. The deeper sleep states are on the order of ms. Some papers

talk about suspending or hibernating an entire computer, which is on the

order of seconds.
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Background: How CPUs Work

Sleep States

Background: Processor Sleep States

The general principle is, the more stuff you turn off, the longer it takes to
resynchronize and get you back to a state where you can execute.
Delays here are much more likely to be significant compared to speed
scaling. The deeper sleep states are on the order of ms. Some papers
talk about suspending or hibernating an entire computer, which is on the
order of seconds. Often individual hardware has its own quirks. So as an
OS programmer, if you want an algorithm that supports everything, that
can be difficult

If I enable C4 sleep on my laptop, every time I go to move the cursor

there’s a delay. The USB interrupt comes in and then the thing has to

wakeup and repopulate the cache, and it takes long enough that it’s

noticeable.



Related Work Summary / Problem Variations

Goal: Scheduling algorithms which minimize power consumption
I Usually online algorithms are more useful in real systems

Variations:
I One Machine / Multiple Machines
I Sleep States Only / Speed Scaling Only / Both

F One Sleep State / Multiple Sleep States
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Related Work

Related Work Summary / Problem Variations

Systems handle scheduling differently, so there’s value in looking at many
ways of setting up the problem.

Especially in this simplest single sleep state case, we don’t have to be

talking about a CPU. This could be hibernating an entire computer, or

turning off the wireless radio on a laptop, or... whatever you can think of

that can be turned off when it’s idle.
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I Usually online algorithms are more useful in real systems

Variations:
I One Machine / Multiple Machines
I Sleep States Only / Speed Scaling Only / Both
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Repeated Continuous Ski-Rental Problem
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Repeated Continuous Ski-Rental Problem

time

Busy

Idle . . .

When to go to sleep?

If idle period is long enough, sleeping is “worth it”

Should sleep immediately after busy if upcoming idle period is “worth it”

Repeated:

time

Busy Idle Busy Idle Busy Idle

More advanced versions:

I Assume idle periods conform to known probability distribution
I “Learn” and change strategy based on recent idle period lengths
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Related Work

Related Work Summary / Problem Variations

The speed scaling case is not necessarily exclusive to CPUs... For

example some hard disks support multiple speeds... pretty much any

device that is clocked... but the CPU is by far the most common case.



Related Work Summary / Problem Variations

Goal: Scheduling algorithms which minimize power consumption
I Usually online algorithms are more useful in real systems

Variations:
I One Machine / Multiple Machines
I Sleep States Only / Speed Scaling Only / Both

F One Sleep State / Multiple Sleep States

“Optimal Powerdown Strategies[2]”

“Online Strategies for Dynamic Power Management in

Systems with Multiple Power-Saving States[7]”
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Related Work

Related Work Summary / Problem Variations

You can come up with other variations here... For example different

papers treat job scheduling differently... but I want to spend at least a

little time looking at the algorithm setup from the paper.



Related Work Summary / Problem Variations

Goal: Scheduling algorithms which minimize power consumption
I Usually online algorithms are more useful in real systems

Variations:
I One Machine / Multiple Machines
I Sleep States Only / Speed Scaling Only / Both

F One Sleep State / Multiple Sleep States

Tonight:

“Algorithms for Power Savings[1]”
I offline algorithm: within 2x of optimal
I online algorithm: constant competitive ratio

Brandon Thomson Algorithms for Power Savings November 16 2010 8 / 15



Problem Definition: Input

Input: set J of jobs

Each job j has:
I release time rj
I deadline dj
I work units Wj

Online algorithm learns of job at rj

One job at a time

No suspend/resume delay

No state transition delay

function P(s) is:

I non-decreasing
I unbounded
I convex
I continuous

P(0) > 0

, P(sleeping) = 0

time

job release time

rj

job deadline

dj

first job
release time

t0

last job
deadline

t1

system speed s

power usage P(s)

idle power consumption
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“Algorithms for Power Savings”

Problem Definition

Problem Definition: Input

This is fairly similar to single machine scheduling so far. Note that we
have work units instead of duration or processing time.

This setup with a release time and deadline is pretty standard... but

obviously we only have those in real-time systems. In multi-user

operating systems we’re more interested in things like fairness and lack of

starvation.
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Algorithms for Power Savings

“Algorithms for Power Savings”

Problem Definition

Problem Definition: Input

Note that since real CPUs usually support discrete speed states, this

would be more realistically modeled as a set of points. Some papers do it

that way, but then you lose the ability to integrate etc so it’s a tradeoff.

Here, we’ll treat it as continuous.
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Problem Definition: Output

Output: Schedule S = (s, φ, job)

s (t) : system speed at time t

job (t) : job executing at time t

φ (t) : sleep status at time t

S is feasible if all jobs completed between release and deadline.

cost (S) = k +

∫ t1

t0

P (s (t) , φ (t)) dt

Goal: Find a feasible S that minimizes cost (S).
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Example

P(s) = s3 + 16

“cube-root-rule”

Power usage/duration of job at different speeds?

duration
power consumption

∫ 1
0 17 dt = 17

s = 1

0 1

P(1) = 17

∫ 1
2

0 24 dt = 12

“Critical Speed” (scrit)

s = 2

0 1
2

P(2) = 24

∫ 1
3

0 43 dt = 14.33

s = 3

0 1
3

P(3) = 43
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Algorithms for Power Savings

“Algorithms for Power Savings”

Problem Definition

Example

The cube-root-rule says that a cubic function is a pretty good
approximation for power usage at a given speed.

(By the way, that’s why we’re stuck around 3 GHz... The power usage is

increasing with the cube, so it starts getting ridiculous beyond that point)



Example
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Power usage/duration of job at different speeds?
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Algorithms for Power Savings

“Algorithms for Power Savings”

Problem Definition

Example

The fact that the idle power consumption is decreasing while the running
power consumption is increasing means there’s going to be a critical
point somewhere in this middle.

In this example, that’s at s = 2. If you sum up the area of the boxes, the

center one is only 12, whereas both of the ones on the ends are larger.
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Critical Speed = Optimal Speed?

No. Sometimes we may want to run slower:

1
2

s = 2

0 1

P(2) = 24
P(0) = 16

∫ 1
2

0 24 dt +
∫ 1

1
2

16 dt = 20∫ 1
0 17 dt = 17

s = 1

0 1

P(1) = 17

∫ 1
0 24 dt = 24

s = 2

0 1

P(2) = 24

Nothing to do

Running at constant minimum constant speed to finish job in interval
is better than running at scrit and then dropping to idle

Running faster than scrit is always wasteful

I use only if required to meet deadlines
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Finding the Critical Speed

scrit : first zero of
(
P(s)
s

)′
.

For our example P(s) = s3 + 16:

P ′(s) = 3s2

(
P (s)

s

)′
=

sP ′(s)− P (s)

s2
=

2s3 − 16

s2

s

(
P(s)
s

)′

1 2 3 4

(details about perverse cases omitted)
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Summary

Proper power management saves money and the environment

CPUs support software-controlled:
I clock speeds
I sleep states

Varying hardware configurations inspire many different algorithms
I Sleep-state algorithms can be used with many kinds of devices

“Algorithms for Power Savings”
I Online/Offline algorithms for single machine with speed scaling and a

single sleep state
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