Randomized Competitive
Algorithms for the List
Update Problem

Eric Popelka

Randomized Competitive Algorithms for the List Update Problem — p. 1/29

About the authors

= Nick Reingold - AT&T Bell Labs

= Jeffery Westbrook - Yale University
= Daniel D. Sleator - Carnegie Mellon
m Published in Algorithmica in 1994

Randomized Competitive Algorithms for the List Update Problem — p. 2/29

List update problem

m Unsorted linear list

m Cost of accessing an item is equal to its
distance from the front

m Can perform transpositions, each with a unit
cost of one

Deterministic
solution

= Move-to-front (MTF)

= Move an item to the front each time it is
accessed

m 2-competitive

m MTF Is the best that any deterministic online
algorithm can do

Can we do better?

m Yes, If we use randomization

mBIT
= Barely random algorithm
= “Move-to-front every other access”
= 1.75-competitive

m COUNTER
= \/3-competitive

BIT-ACCESS(X)

Require: Each item z has a corresponding bit
b(x), initialized uniformly at random

b(x) = not(b(x))
if b(x) = 1 then
move z 1o the front;
end if
process request for item x;

Randomized Competitive Algorithms for the List Update Problem — p. 6/29

Analysis of BIT

m 0. sequence of m accesses

m Theorem: BIT is at most
1.75 - OPT(c) — 3m/4

m Proof similar to Homework #3

Analysis of BIT

m Lemma: After an event, b(x) Vz is equally
likely to be 0 or 1, is independent of the bits of
other items, and is independent of the
positions of items in OPT

= Proof:

= |nitial assignment of bit values is chosen
uniformly at random

= Accesses change the values of the bits, but
everything is modulo 2

= Therefore, the bits remain uniformly
distributed

Analysis of BIT

mForeventi: ¢ =c¢, + &, — ®;_;4

= An event may be an access or a transposition
m Inversion: (z,y) in OPT, (y,z) iIn BIT

m Type 1 inversions: b(x) = 0

m Type 2 inversions: b(x) = 1

® 9. number of type 1 inversions

® 9o. number of type 2 inversions

D =20+ ¢

Analysis of BIT

Case 1: Event 7 Is an access to item z.

m Random variables for the change in potential:
= A: new inversions being created
= B: old inversions being removed
= C: old inversions changing type

ICIDi—CIDi_1:A+B+C’

m B+ C =—R,where R is the number of
inversions of the form (y, z)

BIT Example

Event ¢ is a request for “Becca”

OPT,_;| Mark |Becca | Stephen| Ali
BIT; | | Stephen | Al Becca | Mark
b(x) 1 0 1 0

Inversions: {(Stephen, Becca), (Stephen, Mark),
(Ali, Becca), (Ali, Mark), (Becca, Mark)}

R = # of inversions of the form (y, “Becca”) = 2

1 =3 Py = 2 D = 2¢ + 1 =

Randomized Competitive Algorithms for the List Update Problem — p. 11/29

BIT Example

Event ¢ is a request for “Becca”

OPT;| Mark | Becca | Stephen | Al
BIT; | Stephen | Al Becca | Mark
b(x) 1 0 0 0

Inversions: {(Stephen, Becca), (Stephen, Mark),
(Ali, Becca), (Ali, Mark), (Becca, Mark)}

R = # of inversions of the form (y, “Becca”) = 2

Pp1=5 P2=0 D=2+ = AD = —2

Randomized Competitive Algorithms for the List Update Problem — p. 12/29

BIT Example

Event ¢+ + 1 Is a request for “Becca”

OPT;., | Mark | Becca | Stephen | Al
BIT;,, | Becca | Stephen Ali Mark
b(x) 1 0 0 0

Inversions: {{Stephen,Beeea}, (Stephen, Mark),
Al Beeea}, (Ali, Mark), (Becca, Mark)}

R = # of inversions of the form (y, “Becca”) = 0

o1 =3 P2=0 D =203+ 1 = AP = -2

Randomized Competitive Algorithms for the List Update Problem — p. 13/29

Analysis of BIT

El¢i] = E|ci + AP

< E[(rank(z) + R) + (A+ B+ ()]
= E[(rank(x) + R) + (A — R)]
= rank(x) + E[A]

= A: new inversions being created

= B: old inversions being removed

m C: old inversions changing type

mR: # of (y, x) inversions

Randomized Competitive Algorithms for the List Update Problem — p. 14/29

Analysis of BIT

What's the expected value of A?

= Both BIT and OPT may move x forward

mlet 21, 29,...,2;,_1 be the items preceding x In
OPT

m Inversion created if OPT or BIT (but not both)
move x forward past some z;

Analysis of BIT

New random variable: Z;
m Z; measures the change in potential due to
each pair (x, z;)
mlf b(x) = 0, x moves to the front of BIT
= Worst case: New inversions (x, z;) of type
1 + b(z;) createdfor1 < ¢ < rank’(x) — 1
mlf b(x) = 1, x does not move
=Now b(x) =0
= Worst case: New inversions (z;, x) of type
1 created for rank’(x) < 7 < rank(x) — 1

Randomized Competitive Algorithms for the List Update Problem —n. 16/29

BIT Example

rank(x) 1 2 3 4 5 6 7

OPT;_, Mark Ali | Kim | Stephen | Becca | Will | David

BIT;_ 1 | Stephen | Will | Kim David Becca | Ali | Mark

b(x) 0 0 1 1 1 1 1

15 Inversions:
M (Stephen, Kim), (Stephen, Ali), (Stephen, Mark)
B (Will, Kim), (Will, Becca), (Will, Ali), (Will, Mark)
B (Kim, Ali), (Kim, Mark)
M (David, Becca), (David, Ali), (David, Mark)
B (Becca, Ali), (Becca, Mark)
B (Ali, Mark)

Randomized Competitive Algorithms for the List Update Problem — p. 17/29

BIT Example

Event 7 is a request for “Becca”

rank(x) 1 2 3 4 5 6 7

OPT; Mark Ali Kim | Becca | Stephen | Will | David

BIT; Stephen | Will | Kim | David Becca Ali | Mark

b(x) 0 0 1 1 0 1 1

16 Inversions:
M (Stephen, Kim), (Stephen, Becca), (Stephen, Ali), (Stephen, Mark)

B (Will, Kim), (Will, Becca), (Will, Ali), (Will, Mark)

(Kim, Ali), (Kim, Mark)

(David, Becca), (David, Ali), (David, Mark)

(Becca, Ali), (Becca, Mark)

(

O
B
B
M (Ali, Mark)

Randomized Competitive Algorithms for the List Update Problem — p. 18/29

Analysis of BIT

— % Vx
rank(z)—1
E[A] = E[Z)]
1=1
rank’ (x)—1 rank(x)—1
11 1)
< —(=-24=--1 .1
< ; 552+ 5)+_ 3

< 2(rank(z) — 1)

Analysis of BIT

Case 2: OPT performs a transposition at event ¢

= OPT will pay a cost of one
= We might have an inversion now

= [t might be type 1 or type 2, each with a
probability of

m A type 1 inversion increases ¢ by 1
m A type 2 inversion increases ¢ by 2

5.14%.2
<15-0PT;

_ Elé]

COUNTER(S, S)

m “Move-to-front on steroids”

mscZ"
mSC{0,1,...,s—1},S #10
m Keeps a mod s counter for each item

m Each counter is randomly set to some
number {0,1,...,s —1}

m BIT is COUNTER(2, {1})

COUNTER-ACCESS(S,
S, X)

decrement z’'s counter mod s;
iIf v € S then
move z to the front;
end if
| process the request for item z;

Analysis of COUNTER

mc(x) = # of accesses to = before x moves to
the front

m p; = probability that an item will next move to
the front after j accessesfor j =1,2,...,s =1

m After initialization, Pric(x) = j| IS p; Vx
m Claim: COUNTER(s, S) Is

s—1 s—1
max{) jp;,1+p1)_ jp;}-competitive
= =

Analysis of COUNTER

m Inversion (y, x) is type j if c(x) =3
m ¢; = # of inversions of type j

0 =) j-¢
j=1

Randomized Competitive Algorithms for the List Update Problem — p. 24/29

Analysis of COUNTER

Case 1: Event 7 Is an access to item z.

m ¢ does not move to the front
= c(z) decreases by one
= Ad = # of inversions of the form (y, z)

= z moves to the front
= Ad = # of inversions of the form (y, z)

Analysis of COUNTER

Let A be a random variable giving the number of
new inversions created

E[CAZ] — E[CZ' + A(I)]
= rank(x) + E[A]

< rank(z) + (rank’(z) — 1)p; Z]p]

. COUNTER; < (1+p, Z jp;) - OPT,

7=1

Analysis of COUNTER

Case 2: OPT performs a transposition at event ¢
= OPT will pay a cost of one
= We might have an inversion now

E[AD] = " jp,
j=1

= .COUNTER; < () jp;)- OPT,

7=1

Randomized Competitive Algorithms for the List Update Problem — p. 27/29

Competitive Ratio of
COUNTER

m Pick good values for s and S
= COUNTER(7, {0, 2, 4}) =
1.735-competitive
m Use the RANDOM-RESET algorithm
= Keep a counter from 1 to s for each item

= Move to front when an item’s counter gets
to 1, and reset it to j with some probability
T

= Simple Markov chain

= Can get the best competitive ratio, v/3

Randomized Competitive Algorithms for the List Update Problem — p. 28/29

References

References

[1] Fei Li. Online algorithms - introduction, list
update, 2010.

[2] Nick Reingold, Jeffery Westbrook, and
Daniel D. Sleator. Randomized competitive
algorithms for the list update problem.
Algorithmica, 11:15-32, 1994.
10.1007/BF01294261.

Randomized Competitive Algorithms for the List Update Problem — p. 29/29

	About the authors
	List update problem
	Deterministic solution
	Can we do better?
		extsc {BIT-Access}(x)
	Analysis of 	extsc {Bit}
	Analysis of 	extsc {Bit}
	Analysis of 	extsc {Bit}
	Analysis of 	extsc {Bit}
		extsc {Bit} Example
		extsc {Bit} Example
		extsc {Bit} Example
	Analysis of 	extsc {Bit}
	Analysis of 	extsc {Bit}
	Analysis of 	extsc {Bit}
		extsc {Bit} Example
		extsc {BIT} Example
	Analysis of 	extsc {Bit}
	Analysis of 	extsc {Bit}
		extsc {Counter}(s, S)
		extsc {Counter-Access}(s, S, x)
	Analysis of 	extsc {Counter}
	Analysis of 	extsc {Counter}
	Analysis of 	extsc {Counter}
	Analysis of 	extsc {Counter}
	Analysis of 	extsc {Counter}
	Competitive Ratio of 	extsc {Counter}
	References

