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Abstract

Most previous artificial ant foraging algorithms have to date
relied to some degree ona priori knowledge of the environ-
ment, in the form of explicit gradients generated by the nest,
by hard-coding the nest location in an easily-discoverable
place, or by imbuing the artificial ants with the knowledge
of the nest direction. In contrast, the work presented solves
ant foraging problems using two pheromones, one applied
when searching for food and the other when returning food
items to the nest. This replaces the need to use complicated
nest-discovery devices with simpler mechanisms based on
pheromone information, which in turn reduces the ant sys-
tem complexity. The resulting algorithm is orthogonal and
simple, yet ants are able to establish increasingly efficient
trails from the nest to the food in the presence of obstacles.
The algorithm replaces the blind addition of new amounts of
pheromones with an adjustment mechanism that resembles
dynamic programming.

Introduction
Swarm-behavior algorithms are increasingly popular ap-
proaches to clustering and foraging tasks multi-agent and
robotics research (Beckers et al., 1994; Deneubourg et al.,
1991). We are interested in communication among swarm
agents, and the focus of this paper is the application of
pheromones to swarm foraging. Ants and other social in-
sects use pheromones very successfully to mark trails con-
necting the nest to food sources (Holldobler and Wilson,
1990) and to recruit other ants to the foraging task. For ex-
ample, leafcutter ants are able to organize trails connecting
their nest with food sources located as far as hundreds of
meters away (Holldobler and Wilson, 1990).

We are interested in the capabilities of pheromones as
a guide for artificial agents and robots. In some sense
pheromones may be viewed as a mechanism for inter-agent
communication that can help reduce the complexity of in-
dividual agents. But pheromones cannot be viewed as es-
sentially a blackboard architecture. While pheromones are
global in that they may be deposited and read by any ant,
and generally last long periods of time, they arelocal in that
ants may only read or change the pheromone concentrations
local to themselves in the environment.

However, nearly all existing pheromone models for ar-
tificial agents have eschewed a formalism such as this,
concentrating instead on approaches inspired by biology if
not biologically plausible. These models assume a single
pheromone in order to mark locations to food, and use an ad-
hoc mechanism for getting back home (for example, com-
pass information). However, this problem is very easily rep-
resented in a symmetric fashion under the assumption oftwo
pheromones, one for finding the food and one leading back
to the nest. The use of multiple pheromones not only elim-
inates the ad-hoc nature of previous work, but also permits
obstacles and other environment features.

Previous Work

The problem discussed in this paper is known as “central
place food foraging”, and consists of two phases: leaving the
nest to search for food, and returning to the nest laden with
food (Sudd and Franks, 1987). There are several ant forag-
ing applications already suggested in the literature. One of
the earliest ones (Deneubourg et al., 1990) concerns model-
ing the path selection decision making process of the Argen-
tine antLinepithema humile. Given two paths of identical
lengths connecting the nest and the food source, Deneubourg
et al show that the ants collectively choose one of the two
paths by depositing pheromones over time. When paths of
different lengths connect the two sites, the ant system grad-
ually learns to forage along the shortest one. Bonabeau
et al suggest that this happens because larger amounts of
pheromones accumulate on the shorter paths more quickly
(Bonabeau, 1996; Bonabeau and Cogne, 1996). Deneubourg
et al also present a model of the foraging patterns of army
ants (Deneubourg et al., 1989). Monte Carlo simulations of
their model produces patterns strikingly similar to the ones
observed in nature.

All models presented thus far have used a single type
of pheromone. A foraging model that uses two kinds of
pheromones is presented in (Resnick, 1994): ants deposit
one pheromone to mark trails to the food sources, but a sec-
ond type of pheromone is released by the nest itself. This
second pheromone diffuses in the environment and creates a



gradient that the ants can follow to locate the nest. Resnick’s
ants learn to forage from the closest food source. Moreover,
when food sources deplete, the ants learn to search for other
more distant food sources and establish paths connecting
them to the nest, “forgetting” about the previously estab-
lished trails to depleted sites. Further investigation of this
model is presented in (Nakamura and Kurumatani, 1997).

The models discussed so far all make the assumption that
the ants have an ad-hoc oracle — essentially a compass —
which leads them back to the nest. This assumption is either
stated explicitly, or it is adopted implicitly by using specific
environment models and transition functions. The main jus-
tifications are not computational, but biological: ants arebe-
lieved to employ sophisticated navigational techniques (in-
cluding orientation based on landmark memorization and the
position of the sun) to return to the nest (Holldobler and Wil-
son, 1990).

We know of two papers which do not rely on ad-hoc meth-
ods to return to the nest. The first such work (Wodrich and
Bilchev, 1997) is similar to our own, using two pheromones
to establish gradients to the nest and to a food source in the
presence of an obstacle. The ants use simple pheromone ad-
dition to create trails and so the authors rely on high rates
of pheromone evaporation to maintain the gradients. An-
other work (Vaughan et al., 2000) proposes agent behaviors
usingdirected pheromones(pheromones that indicate a di-
rection), and show successful foraging in simulation and on
real robots. Aside from using directed pheromones, their
work also assumes that the agents can deposit pheromones
at any location in the environment, even if they are located
far away from it (similar to a random-access memory).

Method
Our goal is to adapt thenotion of pheromones (if not bio-
logically plausible pheromones per se) as a communication
mode for artificial foraging agents. Hence the method de-
scribed in this paper applies two different pheromones, one
used to locate the food source, and the other used to locate
the nest. These pheromones are deposited by the ants and
may evaporate and diffuse. The algorithm assumes that both
types of pheromones can co-exist at the same location.

Upon leaving the nest, ants follow food-pheromonegradi-
ents to the food source, but also leave “home” (toward-nest)
pheromones behind to indicate the path back home. When
the ants are at the food source, they pick up a food item and
start heading back to the nest. To do so, they now follow the
trail of home pheromones back to the nest, while leaving a
trail of food pheromones behind to mark the trail toward the
food source.

Ants have one of eight possible orientations: N, NE, E,
SE, S, SW, W, NW. When determining where to move, the
ants first look at three nearby locations: directly in front,to
the front-left, and to the front-right. We will refer to these
three locations as theforward locations. For example, an

Parameter Value
Duration of simulation 5000 time steps

Environment 100x100, Non-Toroidal
Nest location and size (70,70), single location

Food source location and size(20,20), single location
Maximum ants in simulation 1000
Maximum ants per location 10

Life time for each ant 500
Number of initial ants at nest 2

Ants borne per time step 2
Min amount of pheromone 0.0
Max amount of pheromone 1000.0

Evaporation ratio 0.1%
Diffusion ratio 0.1%

Obstacles none
K 0.001
N 10.0

Table 1: Parameters for the experiments

ant with orientation N considers its NE, N and NW neigh-
bors. Each location receives a weight based on the amounts
of pheromones it contains. Ants searching for food are more
likely to transition to locations with more food pheromones,
while ants returning to the nest are attracted by more home
pheromones. Transition decisions are stochastic to add ex-
ploration. An ant does not consider moving to a neighbor-
ing location that is too crowded (more than ten ants) or that
is covered by an obstacle. If none of the three forward lo-
cations are valid, the ant then considers moving to one of
the five remaining (non-forward) locations. If none of these
locations are valid either, then the ant stays in its currentlo-
cation until the next time step.

At each location visited, ants “top off” the current
pheromone level to a desired value. If there is already
more pheromone than the desired value, the ant deposits
nothing. The desired value is defined as the maximum
amount of pheromones in the surrounding eight neighbors,
minus a constant. Thus as the ant wanders away from the
nest (or food), its desired level of deposited nest (or food)
pheromone drops, establishing a gradient. When reaching a
goal (nest or food) the desired concentration is set to a max-
imum value.

The Algorithm
Foraging ants execute theAnt-Forage procedure at each
time step. The pseudocode is shown next:

Ant-Forage
If HasFoodItem
Ant-Return-To-Nest

Else
Ant-Find-Food-Source



Ant-Return-To-Nest
If ant located at food source

Orientation← neighbor location with max home
pheromones

X← forward location with max home pheromones
If X = NULL

X← neighbor location with max home
pheromones

If X 6= NULL
Drop-Food-Pheromones
Orientation← heading to X from current location
Move to X
If ant located at nest

Drop food item
HasFoodItem← FALSE

Ant-Find-Food-Source
If ant located at nest

Orientation← neighbor location with max food
pheromones

X← Select-Location(forward locations)
If X = NULL

X← Select-Location(neighbor locations)
If X 6= NULL
Drop-Home-Pheromones
Orientation← heading to X from current location
Move to X
If ant located at food source

Pick up food item
HasFoodItem← TRUE

Select-Location(LocSet)
LocSet← LocSet - Obstacles
LocSet← LocSet - LocationsWithTooManyAnts
If LocSet = NULL

Return NULL
Else

Select a location from LocSet, where each
location is chosen with probability
(K +FoodPheromonesAtLocation)N

Drop-Home-Pheromones
If ant located at nest

Top off home pheromones to maximum level
Else

MAX ← max home pheromones of neighbor
locations

DES← MAX - 2
D← DES - home pheromones at current location
If D > 0

Deposit D home pheromones at current location

Drop-Food-Pheromones
Same as Drop-Home-Pheromones, but modify
“home”→“food” and “nest”→“food source”.

Ph. Adjust Ph. Increment
Mean 10450.70 4396.04

Std. Dev. 1850.69 2835.90

Table 2: Mean and standard deviation of the food items
foraged when adjusting or incrementing the amount of
pheromone at the current location.

Evaporation Rate Mean Std. Dev.
0.0 9783.38 2477.07

0.001 10450.70 1850.69
0.01 1203.98 409.62

Table 3: Mean and standard deviation of the food items for-
aged when different evaporation rates are used

Experiments

The experiments were performed using the MASON multi-
agent system simulator (Luke et al., 2003). Unless stated
otherwise, the experiments use the settings described in Ta-
ble 1. Claims of better or worse performance are verified
with a Welch’s two-sample statistical test at 95% confidence
over samples of 50 runs each.

The first experiment compares the algorithm using the
“top off” mechanism with one that simply deposits a fixed
amount of pheromones, incrementing the amount existing at
the current location. Table 2 shows the means and stan-
dard deviations of the amounts of food items collected with
the two algorithms. The pheromone adjustment algorithm is
significantly better.

Next, we analyzed the sensitivity of the “top off” algo-
rithm to evaporation and diffusion rates (Tables 3 and 4).
The results show that the amount of food foraged is rela-
tively sensitive to both parameters. Lower evaporation rates
do not significantly affect the results, while higher rates de-
plete information too rapidly for successful foraging. Dif-
fusion is different: a zero diffusion rate significantly de-
creases performance. This suggests that without diffusion,
pheromone information can spread to neighboring locations
only through ant propagation. As expected, too much diffu-
sion again depletes information.

We then investigated the effectiveness of the foraging
behaviors at different exploration-exploitation settings.
In the Selection-Location procedure, N is an
exploitation factor, where larger values influence greedier
decisions. The results shown in Table 5 compare the impact
of the N parameter on the performance. We found that
increasing the greediness led to a direct improvement in
performance. We then replacedSelect-Location
with Greedy-Select-Location to examine extreme
greediness (N→ ∞). The revised algorithm is shown here:



Timestep: 0 1100 1600 2600 6600

Figure 1: Foraging sequence with predefined suboptimal path, showing local path optimization.

Diffusion Rate Mean Std. Dev.
0.0 6133.2 1159.17

0.001 10450.70 1850.69
0.01 6162.52 1145.94

Table 4: Mean and standard deviation of the food items for-
aged when different diffusion rates are used

N Mean Std. Dev.
2 4111.3 648.02
5 8435.36 1514.27

10 10450.70 1850.69

Table 5: Mean and standard deviation of the food items for-
aged when different values for theN parameter are used in
the Select-Location procedure. Results are signifi-
cantly improving with increasingN from 2 to 5 and then
10.

Greedy-Select-Location(LocSet)
LocSet← LocSet - Obstacles
LocSet← LocSet - LocationsWithTooManyAnts
If LocSet = NULL

Return NULL
Select from LocSet the location with max food

pheromones

This increased the total number of food items returned to
the nest by about three times (Table 6). However, if the al-
gorithm uses the fixed-incrementing method, greedy selec-
tion method shows no statistically significant improvement
(a mean of 4926.88, standard deviation of 2425.68 — com-
pare to the fixed-incrementing results in Table 2). Not only
does a “topping-off” method do better than more traditional
approaches, but it improves with more greedy behavior.

We also observed that the foraging trails for the greedy
foraging are usually optimally short and straight. Our final
experiment marked a clearly suboptimal path before the sim-
ulation, and adjusted the neighborhood transition probabili-
ties to reflect the fact that diagonal transitions are longerthan
horizontal and vertical ones (this adjustment was used only
for this experiment). The progress of the foraging process is
presented in Figure 1. The ants collectively change the path

(N = 10) Greedy-
Select-Neighbor Select-Neighbor

Mean 10450.70 28369.98
Std. Dev. 1850.69 849.16

Table 6: Increasing the greediness of the algorithm.
TheGreedy-Select-Neighbor method shows an in-
creased performance by 171%

Figure 2: Ant foraging with no obstacles (left), and with an
obstacle placed symmetrically on the shortest path (right)

until it becomes optimal, which suggests that our foraging
technique also exhibits emergent path optimization.

We have also tested the behavior of the pheromone adjust-
ment algorithm in more difficult domains in our simulator.
Two examples are shown in Figure 2. Ants are represented
by black dots. Shades of gray represent pheromones: the
lighter the shade, the smaller the amount of pheromones.
Nest is located in the lower right region, while the food
source is in the upper left area.

The left snapshot in Figure 2 shows the foraging process
after some 1250 time steps. The nest and food source loca-
tions are located close to the two ends of the dense center
trail. There are many ants on the shortest path connecting
the nest and the food source. Additionally, most space has
a light gray color: ants have previously performed an exten-
sive exploration for the food source.

The right snapshot in Figure 2 shows the foraging task
in the presence of an obstacle centered on the path. The
ants discover a path on one side of the obstacle and con-
centrate the foraging in that direction. Taken later in the
run, the image shows most pheromones have already evap-



Figure 3: Ant foraging with an obstacle placed non-
symmetrically: early (left) and late (right) snapshots of the
simulation

orated throughout the environment, suggesting that the ants
are mainly exploiting the existing food source and they are
not exploring for alternatives.

Figure 3 shows the same algorithm applied in an environ-
ment where the only obstacle is slightly modified such that
one of its sides offers a shorter path than the other does. In
an early (left) snapshot, the ants discover several paths on
both sides of the obstacle. Later, the ants concentrate on the
shorter path and the pheromones disappear in most of the
space (right snapshot). It is important to note that, because
in this environment, diagonal transitions cost the same as
others, most of the paths shown are in fact optimal.

Figure 4 shows the exploration with two obstacles placed
such that the shortest path goes between them. Several paths
are initially found, but their number decreases with time. If
more time were allowed, the longer trail close to the top-
right corner of the image would probably disappear.

Conclusions and Future Work
We proposed a new algorithm for foraging inspired from ant
colonies which uses multiple pheromones. This model does
not rely on ad-hoc methods to return to the nest, and is es-
sentially symmetric. We showed its efficacy at solving basic
foraging tasks and its ability to perform path optimization.
We then experimented with the effects of different parameter
settings (degrees of evaporation and diffusion; greediness)
on the rate of food transfer in the model.

The pheromone-adjustment procedure detailed earlier
bears some resemblance to Dijkstra’s single source short-
est path graph algorithm in that both perform essentially
the same relaxation procedure. However in the pheromone
model, theselectionof the state transition to relax is not
greedily chosen but is determined by the gradient of the
otherpheromone. We also note a relationship between this
approach and reinforcement learning methods. In some
sense pheromone concentrations may be viewed as state util-
ity values. However we note that reinforcement learning per-
forms backups, iteratively painting the “pheromone” back
one step each time the ant traverses the entire length of the

Figure 4: Ant foraging with two obstacles: early (left) and
late (right) snapshots of the simulation

path. In contrast our method paints the pheromone forward
every step the ant takes, resulting in a significant speedup.
We further explore the similarities between reinforcement
learning and pheromone-based foraging in (Panait and Luke,
2004).

For future work we plan to extend the method and ap-
ply it to other problem domains involving defense of forag-
ing trails and nest, competition for resources with other ant
colonies, and depleting and moving food sources. We are
also interested in formal investigations of the propertiesof
the model. In particular, we wish to cast the model in a form
based on dynamic programming.
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