
INPUT VALIDATION TESTING: A SYSTEM
LEVEL, EARLY LIFECYCLE TECHNIQUE

by

Jane Huffman Hayes
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
in Partial Fulfillment of

the Requirements for the Degree
of

Doctor of Philosophy
Information Technology

Committee:

 A. Jefferson Offutt, Dissertation Director

 David Rine, Chairman

 Paul Ammann

 Elizabeth White

 Lance Miller, VP and Director, SAIC

 Stephen Nash, Associate Dean for
Graduate Studies and Research

 Lloyd Griffiths, Dean, School of
Information Technology and Engineering

Date: Fall 1998
George Mason University
Fairfax, Virginia

INPUT VALIDATION TESTING: A SYSTEM
LEVEL, EARLY LIFECYCLE TECHNIQUE

A dissertation submitted in partial fulfillment of the requirements for the Doctor Of
Philosophy degree in Information Technology
at George Mason University

By

Jane Huffman Hayes
Master of Science

University of Southern Mississippi, 1987

Director: A. Jefferson Offutt, Associate Professor
Department of Information and Software Engineering

Fall Semester 1998
George Mason University

Fairfax, Virginia

ii

Copyright 1998 Jane Huffman Hayes
All Rights Reserved

iii

Dedication

This dissertation is lovingly dedicated to:

My Grandmother, Margaret Ruth Nicholson Huffman, for teaching me to stand up for what I believe in

My Grandfather, John Hubert Gunter, for teaching me that amazing things can be accomplished before breakfast

My Great Grandmother, Jane Ellen Nicholson, for teaching me it’s the thought that counts

My Grandmother, Beatrice Gertrude Gunter, for teaching me that love is the most important ingredient in any
recipe

My Great Aunt Evie, Evelyn Nicholson, for teaching me that you don’t have to be related to be family

My Grandfather, Otho Clarence Huffman, for teaching me that familiarity breeds content

My best friend, Kelly Ann Noss Marcum, for teaching me to listen with the heart

My husband, Gregory Lee Hayes, for his support and dedication, and for showing me that we are in this together

My daughter, Chelsea Anne Hayes, and my son, David Lee Hayes, for hugs, kisses, smiles and lots of patience
with a tired Mommy

My father, Dr. George David Huffman, for setting the bar so high and for teaching me not to settle for less

My mother, Judith Ann Gunter Huffman, for teaching and showing me that all things are possible

iv

Acknowledgements

I thank my Lord and personal Savior Jesus Christ for guiding me and watching over me during this
endeavor. I thank my parents, Grandparents, and numerous other people who, throughout the course of my life,
introduced me to the Word of God and helped me grow in faith in the Lord. “Through Him all things are
possible.”

I thank my dissertation director, Dr. A. Jefferson Offutt, for his advice, guidance, support, and
encouragement throughout my dissertation effort. I thank Dr. David Rine, Dr. Paul Ammann, Dr. Liz White, Dr.
Bo Sanden, and Dr. Lance Miller for serving on my committee and providing me guidance.

Thanks to SAIC for supporting my Ph.D.and thanks to PEO(CU) for partially funding this research. I
thank the SAIC (and government) team (Theresa Erickson, Brian Mello, Trevor Heller, Paulette Ormsby, Penny
Tingler, Brian Cahill) for their support and assistance in developing MICASA and in running the experiment.
Many thanks to the numerous volunteers who participated in the three part experiment.

My thanks to my Mom, Dr. Offutt, Charlotte Gauss, Kelly Marcum, and my husband Greg for listening
to me bemoan my lack of progress on this dissertation, for putting up with me, and for giving me the occasional
swift boot in the rear end.

v

Table Of Contents

Page
ABSTRACT .. viii

1.0 INTRODUCTION AND OVERVIEW .. 1
1.1 Motivation ... 1
1.2 Definitions ... 2
1.3 System Testing... 3
1.4 Input Validation ... 3
1.5 Problem Statement... 4
1.6 Research Thesis ... 4
1.7 Scope of Research.. 5
1.8 Dissertation Organization .. 6

2.0 BACKGROUND AND RELATED WORK... 8
2.1 All-Edges Testing Criterion... 8
2.2 Mutation Testing.. 8
2.3 Specification-Based Interface Checking .. 9
2.4 System Testing Techniques ... 9
2.5 Input Validation Testing .. 10

3.0 THE INPUT VALIDATION TEST METHOD ... 13
3.1 How to Specify the Format of Information in Specifications and/or Designs...................... 14
3.2 How To Analyze A User Command Language Specification.. 19
3.3 How To Generate Valid Test Cases for a User Command Language Specification 32
3.4 How To Generate Erroneous Test Cases for a User Command Language Specification..... 37

4.0 MICASA: A PROTOTYPE SYSTEM .. 42

5.0 VALIDATION.. 51

6.0 CONCLUSIONS AND FUTURE RESEARCH... 75

APPENDICES .. 78

Appendix A Sample MICASA Test Plan ... 78
Appendix B Experimental Means .. 98
Appendix C Defects Statically Detected for JEDMICS Specification ... 110
Appendix D Comparision... 112

LIST OF REFERENCES.. 121

CURRICULUM VITAE... 126

vi

List Of Figures

Page
3.1-1 Sample Table IIIPTR.. 15
3.1-2 Sample Table 3.2.4.2.1.1.3-5.. 16
3.1-3 Sample Table Attributes not part of doc_jecmics.. 17
3.1-4 Sample Table 3.2.4.1.2... 18
3.2-5 Sample Table 3.4.1.40.3-1.. 20
3.2-6 Sample Table 6.5.1.2.2-1.. 21
3.2-7 Sample Table - 1... 25
3.2-8 Sample Table - 2... 25
3.2-9 Required Tests Report for Launch Area Analysis. ... 26
3.2-10 Required Tests for Route Analysis Executive. ... 26
3.2-11 Sample Table - 3... 26
3.2-12 Sample Type 1 Table 3.2.2-1. .. 29
3.2-13 A Graphical Representation of Type 1 Table 3.2.2-1... 30
4.0-1 MICASA Architecture.. 42
4.0-2 MICASA Screen Flow.. 43
4.0-3 Introduction Screen. ... 44
4.0-4 Import Data into Tables.. 45
4.0-5 Static Analysis. ... 46
4.0-6 Consistency Check.. 46
4.0-7 Overloaded Token Check. .. 47
4.0-8 Ambiguous Grammar Check. ... 47
4.0-9 Check for Possible Catenation Errors... 47
4.0-10 Ambiguous Grammar Report.. 48
4.0-11 Overloaded Token Error Report. .. 48
4.0-12 Catenation Error Report. .. 49
4.0-13 Generate Test Cases. .. 50
5.0-1 Total Number of Specification Defects Detected for Condition... 66
5.0-2 Total Number of Syntactic Defects Detected for Condition. .. 67
5.0-3 Coverage Percentage of Test Cases Developed for Condition. .. 68
5.0-4 Average Time to Execute Test Cases for Condition... 68
5.0-5 Defects Detected Per Test Case for Condition. .. 69
5.0-6 Average Time to Identify a Defect in Minutes (Execution Time Only).. 70
5.0-7 Average Time to Identify a Defect (Test Case Development and Execution Time)....................... 70
5.0-8 Total Time to Analyze Specifications for System. ... 71
5.0-9 Percentage Effective Test Cases Developed by System. .. 72
5.0-10 Average Time to Develop a Test Case by System.. 73
5.0-11 Average Time to Develop a Test Case by System and Condition. ... 74

vii

List Of Tables

Page

5.0-1 Planned Analysis-of-Variance Model for Overall Experiment. .. 52
5.0-2 Description of the Planned Experiment Dependent Variables.. 53
5.0-3 Experiment Participant Key Qualifications. ... 54
5.0-4 Significance of Findings for the Dependent Variables ... 65

ABSTRACT

Input Validation Testing: A System Level, Early Lifecycle Technique

Jane Huffman Hayes, Ph.D.

George Mason University, 1998

Dissertation Director: Dr. A. Jefferson Offutt

In this dissertation, syntax-directed software is defined as an application that accepts inputs from

the user, constructed and arranged properly, that control the flow of the application. Input

validation testing is defined as techniques that choose test data that attempt to show the presence

or absence of specific faults pertaining to input tolerance. A large amount of syntax-directed

software currently exists and will continue to be developed that should be subjected to input

validation testing. System level testing techniques that currently address this area are not well

developed or formalized. There is a lack of system level testing formal research and accordingly a

lack of formal, standard criteria, general purpose techniques, and tools. Systems are expansive

(size and domain) so unit testing techniques have had limited applicability. Input validation

testing techniques have not been developed or automated to assist in static input syntax evaluation

and test case generation. This dissertation seeks to address the problem of statically analyzing

input command syntax and then generating test cases for input validation testing, early in the life

cycle. The IVT technique was developed and a proof-of-concept tool was implemented.

Validation results show that the IVT method, as implemented in the MICASA tool, found more

specification defects than senior testers, generated test cases with higher syntactic coverage than

senior testers, generated test cases that took less time to execute, generated test cases that took

less time to identify a defect than senior testers, and found defects that went undetected by senior

testers.

1

Chapter 1

1.0 INTRODUCTION AND OVERVIEW

Human users often interface with computers through commands. Commands may be in many forms:

mouse clicks, screen touches, pen touches, voice, files. A method used extensively by older programs

(FORTRAN, COBOL) and still used widely today is that of obtaining user input through text entries made via

the keyboard. Programs that accept free-form input, interactive input from the user, free-form numbers, etc. are

all examples of syntax driven applications [12]. In this dissertation, syntax driven application is defined as “an

application that accepts inputs from the user, constructed and arranged properly, that control the flow of the

application.”

1.1 Motivation

Keyboard data entry is error prone, especially if the data must conform to specific format and content

guidelines. Successful use of some applications requires a working knowledge of command languages (for

example, SQL for relational data base management systems). Other applications rely heavily on user produced

files to obtain information required for processing.

Some older applications (such as those implemented in FORTRAN, COBOL, and older generation

languages) depend on user input via keyboard entry. There is a large amount of such software, largely

undocumented [14], in existence that will need to be maintained for many years to come. According to a survey

performed by the Institute for Defense Analyses (IDA), a good deal of first and second generation language

software still exists [20]. This study examined a subset of Department of Defense programs (exceeding $15

million) representing 237.6 million source lines of code (SLOC). Of this, 200 million SLOC were for weapon

systems and the remaining 37.6 million SLOC were for automated information systems. For weapon systems, 30

million lines of code are first and second generation languages. Over 20 million SLOC (10%) are written in

some variant of FORTRAN. Twenty-two million SLOC for automated information systems are written in a

variant of COBOL [17]. The importance of these large, older systems has recently been spotlighted by the Year

2000 issue. Much time and money is being invested to modify these systems to handle post-year 2000 dates. It

2

is believed that many of these older systems have never been subjected to input validation testing. The input

validation testing technique suggested here can be used to help build a large testing suite for such systems, as

well as to test systems developed using modern programming languages.

Transaction control languages, communications protocols, and user/operator commands (e.g., SQL) are

all examples of applications that could benefit from input validation (syntax) testing [5].

1.2 Definitions

The word “syntax” is derived from the Greek syntassein meaning “to arrange together.” Syntax is

defined by Webster as “that part of grammar which treats the proper construction and arrangement of words in a

sentence” [41]. In the context of computer programs, a user command is synonymous to a sentence. Webster

defines “command” as “to direct authoritatively” [41]. In this dissertation, user command is defined as “an input

from a user that directs the control flow of a computer program.” User command language is defined as any

language having a complete, finite set of actions entered textually through the keyboard, used to control the

execution of the software system. Syntax driven software is defined as any software system having a command

language interface.

In light of this, two general requirements for syntax driven applications seem apparent:

Requirement #1: A syntax driven application shall be able to properly
handle user commands that may not be constructed and
arranged as expected.

Requirement #2: A syntax driven application shall be able to properly handle
user commands that are constructed and arranged as expected.

The first requirement refers to the need for software to be tolerant of operator errors. That is, software should

anticipate most classes of input errors and handle them gracefully. Test cases should be developed to ensure that

a syntax driven application fulfills both of these requirements. Input-tolerance is defined as an application’s

ability to properly process both expected and unexpected input values. Input validation testing, then, is defined

as choosing test data that attempt to show the presence or absence of specific faults pertaining to input-tolerance.

3

1.3 System Testing

Though much research has been done in the area of unit testing , system testing has not garnered as

much attention from researchers. This is partly due to the expansive nature of system testing: many unit level

testing techniques cannot be practically applied to millions of lines of code. There are well defined testing

criterion for unit testing [42], [18], [20],[31],[5] but not so for system testing. Lack of formal research results in

a lack of formal, standard criteria, general purpose techniques, and tools.

Much of the research undertaken to date has largely concentrated on testing for performance, security,

accountability, configuration sensitivity, start-up, and recovery [5]. These techniques require that source code

exist before they can be applied. Such dynamic techniques are referred to as detective techniques since they are

only able to identify already existing defects. What is more desirable is to discover preventive techniques that

can be applied early in the life cycle. Preventive techniques help avert the introduction of defects into the

software and allow early identification of defects while it is less costly and time consuming to repair them.

1.4 Input Validation

Input validation refers to those functions in software that attempt to validate the syntax of user provided

commands/information. It is desirable to have a systematic way to prepare test cases for this software early in

the life cycle. By doing this, planned user input commands can be analyzed for completeness and consistency. It

is preferable that planned user commands (user command language specification) be documented in Software

Requirement Specifications (SRS), Interface Requirements Specifications (IRS), Software Design Documents

(SDD), and Interface Design Documents (IDD). The generated test cases can be used by the developers to guide

them toward writing more robust, error-tolerant software. Currently, no well developed or formalized technique

exists for automatically analyzing the syntax and semantics of user commands (if such information is even

provided by the developers in requirements or design documents) or for generating test cases for input validation

testing. The technique proposed here is preventive in that it will statically analyze the syntax of the user

commands early in the life cycle. It is also detective since it generates test cases that can be run once the design

has been implemented in code.

4

1.5 Problem Statement

A large amount of syntax-directed software currently exists and will continue to be developed that

should be subjected to input validation testing. System level testing techniques that currently address this area

are not well developed or formalized. There is a lack of system level testing formal research and accordingly a

lack of formal, standard criteria, general purpose techniques, and tools. Systems are expansive (size and domain)

so unit testing techniques have had limited applicability. Input validation testing techniques have not been

developed or automated to assist in static input syntax evaluation and test case generation. This dissertation

addresses the problem of statically analyzing input command syntax and generating test cases for input validation

testing early in the life cycle. Validation results show that the IVT method, as implemented in the MICASA tool,

found more specification defects than senior testers, generated test cases with higher syntactic coverage than

senior testers, generated test cases that took less time to execute, generated test cases that took less time to

identify a defect than senior testers, and found defects that went undetected by senior testers.

1.6 Research Thesis

The goal of this research is to improve the quality of English, textual interface requirements

specifications and the resulting software implementation of these requirements for syntax-directed software.

Specifically, we are interested in formalizing the analysis and testing of interface requirements specifications

without introducing the need for testers to learn a new specification language and without increasing the duration

of analysis or testing time.

We present a new method of analyzing and testing syntax-directed software systems that introduces the

concept of generating test cases based on syntactic anomalies statically detected in interface requirements

specifications. The overall thesis of this research is that the current practice of analysis and testing of software

systems described by English, textual tabular interface requirements specifications can be improved through the

input validation testing technique. The IVT technique will detect specification defects statically better and faster

than senior testers and will generate test cases that identify defects better and more quickly than senior testers.

5

To evaluate the thesis, a working prototype system based on the new method was constructed and

validated using a three-part experiment. Using this prototype system, we empirically established large

improvements over current practice in:

� the number of anomalies statically detected in interface requirements specifications,
� the duration of time needed to develop and execute test cases,
� the duration of time needed to identify a defect, and
� identifying defects.

1.7 Scope of Research

From the software perspective, the IVT technique can be used to test any programs that have interfaces

defined in tabular fashion where 3 pieces of information are provided: 1) data element name (description), 2)

data element size (size), and 3) value. Theoretically, these elements are expected to be regular expressions, as

described below:

Data element name can be:

Literal Character a
Iteration A+

Data element size can be:

Empty string
Literal character a
Iteration A+

Data element value can be:

Empty string
Literal Character a
Alternation A | B
Iteration A+

Further, the MICASA prototype expects the interface tables to be defined in a form that satisfies the following
grammar:

Interface_table -> (Description tab Size tab Value)+
Description -> (letter|digit|special)+
Size -> (digit)+
Value -> Description | type | Exp_Value | Equal_Value
Exp_Value -> (letter | digit | special)+
Equal_Value -> (letter | digit | special)+
Special -> |\|<|>|,|.|’|...........
digit -> 0|1|2|..............
letter -> a|b|c|................
type -> Alphanumeric|Integer|Numeric|..........
tab -> ^T

6

From a practical perspective, the benefits of this technique for a program that is not syntax-directed (see

above definitions in 1.2) are not known. The research was designed for and validated with syntax-directed

applications.

To put the IVT method into a theoretical context, we examine where it falls in the hierarchy of testing

techniques. Testing methods can be categorized as being applicable at the unit, integration, or system level. IVT

is a system level testing method. System testing methods can be categorized as requirements-based or behavior-

based. Requirements-based testing techniques generate cases to ensure that the functional requirements are

complete, consistent, accurate, and/or unambiguous. Behavior-based techniques concentrate on the non-

functional requirements such as performance, security, and reliability. The IVT research generates system level

test cases based on syntactic information found in interface requirements specifications. The result is that

syntax-based testing can be added as a system testing category.

The IVT method is both requirements- and syntax-based. IVT generates test data. Automatic test data

generation can be static and/or dynamic. The IVT method is static. Requirements-based testing criteria include

completeness, consistency, and correctness. The IVT method examines completeness and consistency. Syntax-

based testing criteria include typical graph coverage methods such as branch (cover all branches/links of the

syntax graph), statement (100 % node coverage), and path (cover 100% of the paths). The IVT method uses

branch (covers all links in the syntax graph). Note that prior to the IVT research, syntax-based testing was not

considered a system level activity. Therefore the branch criterion was not previously believed to be applicable at

the system level. The IVT method has added syntax-based testing as a system level testing technique and has

thus added branch criterion as a system level (syntax-based testing) criterion.

1.8 Dissertation Organization

Chapter 2 will review background and related research. This includes mutation testing, system testing

techniques, and input validation testing. The dissertation research area will be presented in Chapter 3. Chapter 4

will present the research results as implemented in a prototype system, Method for Interface Cases and Static

Analysis (MICASA, pronounced Me-Kaass-Uh). Chapter 5 will discuss the validation of the research, and

Chapter 6 discusses future research areas.

7

8

Chapter 2

2.0 BACKGROUND AND RELATED WORK

This research uses compiler technology, elements of system testing techniques, and unit testing

techniques. Sections 2.1 and 2.2 provides background information on the all-edges testing criterion and

mutation testing. Sections 2.3 and 2.4 discusses related work in the areas of system testing and input validation

testing.

2.1 All-Edges Testing Criterion

A coverage criterion provides a measurement (usually as a percentage of program items covered) to

indicate how well a set of test cases satisfies the criterion. A criterion is a rule or set of rules that define what

tests are needed. Since the method for input validation testing presented here is driven by a syntax graph, the all-

edges (also called branch coverage) testing criterion is of interest. It demands that every edge in the program’s

flowgraph be executed by at least one test case [11].

2.2 Mutation Testing

Fault-based testing collects information on whether classes of software faults exist in a program

[39, 16, 32]. Mutation testing is an example of fault-based testing [8, 33, 2]. Mutation testing involves the

deliberate syntactic modification of individual lines of code in a source program. The resultant programs,

called mutants, are then exercised using test cases. Depending on the operators used, O(N2) mutants are

generated, where N is the number of lines of code, so even a simple program can result in hundreds of

mutants. Tests that cause a mutant program to fail are said to kill the mutant. The mutant is then

considered dead and does not remain in the testing process. This process allows correct programs to be

distinguished from those that are close to correct [8]. Mutation testing is based on two basic tenets. One is

the coupling effect [8], [31]. This refers to the theory that test cases that can detect simple faults in a

program will also detect complex faults in a program. Second, the competent programmer hypothesis

postulates that competent programmers write programs that are “close” to correct [8].

9

2.3 Specification-Based Interface Checking

Large, complex systems are often designed by decomposing them into smaller segments and

components that communicate with each other. DOD-STD-2167A [9] and MIL-STD-498 [29] make it clear that

mission critical DOD systems follow this model. As a result, a system will be composed of interfaces with the

user as well as many interfaces between components. Parnas points out that there are difficult problems of

interface design and interface enforcement [35]. Liu and Prywes describe a specification approach called

MODEL that uses a dataflow specification, interface specifications (regular expressions), and a module

specification to statically analyze the specifications, automatically generate system level and procedural

programs from the specifications, and compose and check specifications of connected components [25].

MODEL is intended for real-time, distributed systems and handles deadlock of consumable resources and critical

timing constraints. MODEL data specifications are tree structured and are given as file definitions such as:

1 ALLOC1 IS FILE (ORG IS MAIL),
 2 MSG(*) IS GROUP,
 3 MSGA (0 : 1) IS RECORD,
 4 PROC_ID IS FIELD (CHAR 1); [25]

Note that the data specifications are regular expressions, thus allowing the specification and later analysis of

constraints on the ordering of program events (finite state machine approach). The IVT method also performs

consistency checking of interface specifications, but it does not require the user to compose the specifications

using regular expressions or file definitions. It uses “informal” interface specifications found in an Interface

Requirements Specification document.

2.4 System Testing Techniques

System testing techniques have concentrated on areas such as performance, security, and configuration

sensitivity. The goals of system testing are to detect faults that can only be exposed by testing the entire

integrated system or some major part of it [5]. Transaction-flow testing [5] and category-partition testing [34]

are two system testing methods of interest. Transaction-flow testing [5] requires the building of a transaction

flowgraph (similar to a flowgraph used for path testing at the unit level). A transaction is defined as a unit of

work seen from the user’s point of view (e.g., validating a user’s ATM card, validating a user’s ATM password,

10

updating a user’s account balance, etc.). A transaction flowgraph illustrates the processing steps for a particular

type of transaction handled by the system. Conditional and unconditional branches are included. Once the

flowgraph has been built and analyzed (using standard inspection and walkthrough techniques), a coverage

criterion is selected (statement or branch, for example) and test cases are generated to meet the criterion. Though

a coverage criterion can be selected, it is not synonymous with unit testing criterion and its stopping rules. That

is because the method of building the transaction flowgraph is informal, is not precisely defined, and is probably

not repeatable (i.e., each tester would come up with a different flowgraph and set of covering test cases). Our

approach improves upon transaction-flow testing by adding formality, repeatability, and precision.

The category-partition testing method is a specification-based method that uses partitioning to generate

functional tests for programs. The steps for this technique are: a) analyze the specification; b) partition the

categories into choices; c) determine constraints among the choices; and d) write test cases [34]. The result is a

set of test cases that should achieve 100% functional requirement coverage, plus give the system a good stress

and error condition workout (because of the combinations of category choices). This method was extended to

include a minimal coverage criterion by Ammann and Offutt [1]. As with transaction-flow testing, category-

partition testing suffers from a lack of formal definition and stopping rules.

2.5 Input Validation Testing

To date, the work performed in the area of input validation testing has largely focused on automatically

generating programs to test compilers. Techniques have not been developed or automated to assist in static input

syntax evaluation and test case generation. There is a lack of formal, standard criteria, general purpose

techniques, and tools. Much of this research is from the early ‘60s, ‘70s, and ‘80s. For example, Purdom

describes an algorithm for producing a small set of short sentences so that each production of a grammar is used

at least once [37]. Bird and Munoz developed a test case generator for PL/I that randomly generated executable

test cases and predicted their execution [6]. Bauer and Finger describe a test plan generator (TPG) for systems

that can be specified using an augmented finite state automaton (fsa) model [3]. Bazzichi and Spadafora use a

tabular description of a source language to drive a test generator. The test generator produces a set of programs

that cover all grammatical constructions of the source language. They applied their technique to a subset of

Pascal. The results were limited because the generated programs were syntactically correct but not semantically

11

meaningful [4]. Hanford developed a test case generator for a subset of Pl/I that used a dynamic grammar to

handle context sensitivity [13]. Payne generates syntax-based test programs to test overload conditions in real

time systems [36]. Duncan and Hutchison use attributed context free grammars to generate test cases for testing

specifications or implementations [10]. Maurer discusses a data-generator generator called DGL that translates

context-free grammars into test generators, with the user providing the set of productions that make up the

context-free grammar plus constructs for the non-context-free aspects [27, 28]. Ince’s survey of test generation

techniques discusses syntax-based testing and the problems of contextual dependencies and of rapid increase in

size of the test grammar [23]. These approaches suffer from a lack of generality (e.g., Purdom tested compilers,

Bird and Munoz focused on PL/I) and a lack of static analysis. Our approach improves upon them by not

requiring source code or formal specifications, and by requiring minimal input from the user.

More recently, Boris Beizer [5] provides a practical discussion on input validation testing (called syntax

testing in his textbook). He proposes that the test engineer prepare a graph to describe each user command, and

then generate test cases to cover this graph (using coverage techniques such as all-edges). In addition, he

recommends the following simplistic guidelines: a) do it wrong; b) use a wrong combination; c) don’t do

enough; d) don’t do nothing; e) do too much [5]. He also suggests building an “anti-parser” to compile BNF and

produce structured garbage (erroneous test cases).

Marick [26] also presents a practical approach to syntax testing. He suggests that: a) test requirements

be derived from likely programmer errors and faults; and b) test requirements should be assumed to be

independent unless explicitly shown to be otherwise (assume no subsumption). His list of recommended error

cases includes: a) use of nearby items (“putt” instead of “put”); b) sequence errors (extra item, last item missing,

etc.); c) alternatives (an illegal alternative, none of the alternatives, etc.); and d) repetitions (minimum number, 1

repetition, maximum number, etc.) [26].

A domain-based testing tool called Sleuth [40] assists in test case generation for command-based

systems (CBS). A command-based system is a computer system that provides a command language user

interface. CBS differ from syntax-driven applications in that CBS are based on a command language user

interface whereas syntax-driven applications are broader and may include data files, textual entries in a form,

and/or a command language. Sleuth is based on the principle of testing by issuing a sequence of commands and

12

then checking the system for proper behavior. The tester uses Sleuth to perform the following steps: a) perform

command language analysis; b) perform object analysis (outside the scope of this paper); c) perform command

definition; and d) perform script definition. Command language analysis refers to static analysis of the syntax

and semantics of the system being tested (specified graphically by the tester). Command definition is performed

by using the provided command syntax and semantic rules. Script definition handles the sequencing of

commands [40].

13

Chapter 3

3.0 THE INPUT VALIDATION TEST METHOD

Input validation testing (IVT) is performed at the system level. Like transaction-flow testing, it focuses

on the specified behavior of the system and uses a graph of the syntax of user commands. Like category-

partition testing, input validation testing generates specification-based test cases. IVT incorporates formal rules

in a test criterion that includes a measurement and stopping rule. The “anti-parser” idea of Beizer inspired the

research undertaken in this paper and is the cornerstone of the approach. The practical error cases presented by

Beizer and Marick form the basis of the “rule base” used to generate erroneous test cases. Several grammar

analysis techniques have been applied as part of the static analysis of the input specification. This Chapter will

discuss the four major aspects of the IVT method: how to specify the format of specifications; how to analyze a

user command specification; how to generate valid test cases for a specification; and how to generate error test

cases for a specification.

The input validation testing approach presented here differs from and extends the research discussed in

Chapter 2 in a number of ways. It differs from Purdom, Bazzichi, Beizer, Marick, and von Mayrhauser because

it formalizes the coverage criterion and because the approach has been experimentally validated. It extends

Purdom, Beizer, and Marick’s work by adding syntactic analysis. By generalizing the technique to be multi-

domain, and by the virtue of the fact that the technique can be applied during the early life cycle phases, before

design or code exist, it enhances/differs from Purdom, Bazichi, and von Mayrhauser. The technique is applied to

input specifications and hence differs from Purdom and Bazzichi. The technique does not require the user to

learn a new specification language or technique, and the technique requires minimal interaction from the user. In

this way it differs from Purdom and von Mayrhauser [37,4,5,26,40]. Further, this technique can be used for

functional testing as well. Functional testing selects test cases to assess the implementation of specific required

functions [19].

14

The input validation testing problem has been decomposed into several sub-problems. These are:

1) How to specify the format of information in specifications and/or designs (section 3.1)

2) How to analyze a user command language specification (generally found in an SRS, IRS, SDD, IDD)
(section 3.2)

3) How to generate valid test cases for a user command language specification (section 3.3)

4) How to generate erroneous test cases for a user command language specification (section 3.4)

The IVT Method addresses each of these problems, as discussed in the following sections. Some general

concepts employed in the IVT Method include the test obligation database, test case table, and Microsoft Word

file. The test obligation database is used to record defects detected during static analysis. If a defect is found

(such as an overloaded token value), information on the specification table, the data element, and the defect are

stored in the test obligation database. Each record represents a test obligation, the obligation to generate a test

case to ensure that the static defect detected has not remained a latent defect in the as-built system. As part of

generating erroneous test cases, a test case is generated for each record in the test obligation database. The test

case table is used to record all the test cases that are generated. Each test case is stored as a single record. The

Microsoft Word file is used to generate Test Plans/Cases in a standard Test Plan template/format.

3.1 How to Specify the Format of Information in Specifications and/or Designs

Interfaces are specified in as many different ways as there are systems and developers, and in many cases the

interfaces are not specified at all. The IVT method is specification driven, thus is only useful for systems that

have some type of documented interfaces. Examination of dozens of requirements and design specifications for

as many systems showed that there were common elements that could be found in almost every user command

language specification (presented in tabular form in every document examined). These elements are data

element name or description, data element type, data element size, and expected/allowed values for the data

element. Some example tables are shown below. Figure 3.1-1 presents an interface specification from an FBI

Interface Design Document. The table is numbered IIIPTR and is named III Pointer, where III stands for

Interstate Identification Index. The table has 7 data elements (SID through SEAL) and 7 columns. The columns

are Sequence Number (Seq.), the Identifier column (ID), the Name column (has a description of each element),

the Min and Max columns (indicates the smallest and largest number of characters or positions for an element),

15

the format column (where N indicates Numeric, B indicates Binary, A indicates Alphanumeric, and ANS

indicates special alphanumeric), and the Code column (contains special semantic information).

IIIPTR III POINTER

Seq. ID Name Min Max Frmt Code
1 SID STATE IDENTIFICATION

NUMBER
3 10 ANS

2 DPE DATA POINTER ESTABLISHED 6 6 N
3 DDE DATE DECEASED OR

EXPUNGED
6 6 N

4 DECF III DECEASED FLAG 1 1 B
5 EXPF III EXPUNGED FLAG 1 1 B
6 FIF FELONY IDENTIFICATION FLAG 1 1 A FIF DISP CODE TABL
7 SEAL RECORD SEAL FLAG 1 1 N

Figure 3.1-1. Sample Table IIIPTR.

Figure 3.1-2 provides a table from a Tomahawk cruise missile Interface Requirement Specification (IRS). The

table is numbered 3.2.4.2.1.1.3-5 and is named Product Generation Pointer Record. The table has 10 data

elements (Record ID through Product Textual Description File) and has 4 columns. The columns are Item

Number (Item No.), Item name (data element name), Description (of the data element and its expected value),

and Format (length of data element and data type) where 11 char a/n indicates 11 alphanumeric characters.

16

Table 3.2.4.2.1.1.3-5 Product Generation Pointer Record

Item No. Item Name Description Format
1 Record ID Unique identifier for this Product

Generation Pointer Record. Task ID (8
chars) Record Type Indicator (1 char
indicating the type of product) Record
Sequence Number (2 digit integer)

11 char a/n

2 Source Media Media used to transfer the product
generation parameter file to DIWS on-
line storage. Value = ENET (for
Ethernet)

4 char a/n

3 Number of Source Volumes Indicates the number of tape volumes.
Value is zero.

1 char a/n

4 Source Tape Label Blank. 13 char a/n
5 Product Generation Parameter File

Name
File name of the Product Generation
Parameter File. Includes file name and
file extension.

30 char a/n

6 Status Indicates whether or not the Product
Generation Parameter File is complete.
Y=yes, complete; N=no, incomplete

1 char a/n

7 Source Media Media used to transfer the product
textual description file to DIWS on-line
storage. Value = ENET.

4 char a/n

8 Number of Source Volumes Indicates the number of tape volumes.
Value is zero.

1 char a/n

9 Source Tape Label Label on the Source Tape. This field is
filled with blanks.

13 char a/n

10 Product Textual Description File File name of the Product Textual
Description File. Includes file name and
file extension.

30 char a/n

Figure 3.1-2. Sample Table 3.2.4.2.1.1.3-5.

Figure 3.1-3 presents a table from a commercial system Program Design Document. The table is named

“Attributes not part of doc_jecmics.” The table has 9 data elements (JMX_imageStatusCode through

JMX_pwdExpireDate) and 5 columns. The columns are Attribute ID (name od the data element), size (width of

the field/data element), Type (data type such as Char or Long), Valid Values (for example, data element

JMX_maxConnect should have a number representing minutes for a user’s session), and Purpose (description of

the data element valid values).

17

Table: Attributes not part of doc_jecmics

Attribute Id Size Type Valid Values Purpose
JMX_imageStatusCode 1 char Image status Code
JMX_hitLimit 4 Long Number Number of hits from a query

Database. default is 1000
JMX_mode 0 Long JMX_HIGH_REV

JMX_ALL_REV
JMX_ONE_REV
JMX_DWG_BOO
K

type of revision. Default is highest
revision.

JMX_drawingCount 4 long Long Number of drawings matching a
criteria

JMX_sheetCount 4 long Long Number of Sheets matching a search
criteria

JMX_frameCount 4 long Long Number of frames matching a search
criteria.

JMX_maxConnect 4 Char Number (min) Identifies the maximum length of
any session for the user, after which
the user will be automatically logged
out of the system.

JMX_maxIdle 4 Char Number (min) Identifies the maximum length of
time in minutes that the user is
permitted to be idle during any log-
on session after which the user is
automatically logged of the system

JMX_pwdExpireDate 18 Char dd-mon-yy The date a password expires.

Figure 3.1-3. Sample Table Attributes not part of doc_jecmics.

Figure 3.1-4 presents a table from a Navy Interface Design Document. The table is numbered 3.2.4.1.2 and is

named Assignment Confirmation Message (ACM) Format. The table has 4 data elements (Message_Type

through Confirmation) and 4 columns. The columns are Item No., Item Name (name of the data element),

Description (of the data element and its expected value), and Format (length of data element and data type)

where 8 char AN indicates 8 alphanumeric characters.

18

Table 3.2.4.1.2. Assignment Confirmation Message (ACM) Format

Item No. Item Name Description Format
1.0 Message_Type Identifies the message as an Assignment Confirmation

(ASSGNCONF).
9 char A

2.0 Message_Date/Time Specifies the date/time the message was generated. Format
is YYMMDDHHMM. Example: (9001020310).

10 char N

3.0 Task_ID Mandatory for all messages. The Task ID consists of:
Originating Segment (1 char)
D - DIWSA
N - NIPS
Task Category (1 char)
J - JSIPS-N
I - Training
Task Type (1 char)
D - Detailing Only
S - Screening and Detailing
Q - Database Query
Sequence Number (5 char)
Any unique alphanumeric combination. Valid characters
are A-Z and 0-9. Example
NJDABCD1

8 char AN

4.0 Confirmation Indicates whether the task Assignment has been accepted.
A - Task Assignment Message and file received; task
accepted
Q - Queue limit exceeded; task not accepted
F - Non-existent file/directory error
N - Non-existent node
D - Insufficient disk space
P - Insufficient privilege on file/directory (file protection
violation) I -
Internal Error; resend the Task Assignment Message R -
Reduced Capability Mode - Task rejected

1 char A

Figure 3.1-4. Sample Table 3.2.4.1.2.

Early on in the research, it was envisioned that this problem of heterogeneous specification (table) formats might

be handled by having the user specify the format using yacc. Based on the overarching design goal of

minimizing required user interaction, two informal surveys of over 60 software testers (from across industry and

government), and trials with experienced programmers and experienced testers, the design was changed to expect

documents to conform to a generic format. User guidelines for pre-processing

19

specification tables of any possible format were developed. The IVT method expects a minimum of one data

element per user command language specification table (these are also referred to as “Type 1” tables) and

expects a minimum of three fields for the data element:

1. Data Element Name
2. Data Element Size
3. Expected/Allowable Values

3.2 How To Analyze A User Command Language Specification

A user command language specification defines the requirements that allow the user to interface with the system

to be developed. The integrity of a software system is directly tied to the integrity of the system interfaces, both

internally and externally [15]. There are three well accepted software quality criterion that apply to requirements

specifications and interface requirements specifications: completeness, consistency, and correctness [22, 38, 7].

Requirements are complete if and only if everything that eventual users or customers need is specified [7]. The

goal of minimizing user effort and to use existing textual, English specifications precluded a formal validation of

completeness. Instead, the IVT method assesses the completeness of a user command language specification in

two ways. First, as a specification table is being imported, the IVT method ensures that there are data values

present for every column and row of the table. Second, the IVT method performs static analysis of the imported

specification tables. At that point, the IVT method looks to see if there are hierarchical, recursive, or grammar

production relationships between the table elements. For hierarchical and grammar production relationships, the

IVT method checks to ensure there are no missing hierarchical levels or intermediate productions. If such

defects are detected with the specification table, a “test obligation” will be generated and stored in the test

obligation database. Any recursive relationships detected will be flagged by IVT as confusing to the end user

and having the potential to cause the end user to input erroneous data. If recursive relationships are detected

with the specification table, a “test obligation” will be generated and stored in the test obligation database.

Consistency is exhibited “if and only if no subset of individual requirements conflict” [7]. There are two types

of consistency: internal and external. Internal consistency refers to the lack of conflicts between requirements in

the same document. External inconsistency refers to the lack of conflicts between requirements in related

20

interface documents. In addition to analyzing user command language specification tables, the IVT method also

analyzes input/output (or data flow) tables. These tables (also referred to as “Type 3” tables) are found in

interface requirements specifications (IRS) and interface design documents (IDD) and are often associated with a

data flow diagram. These tables are expected to contain the following fields:

� data element
� data element source
� data element destination

Optionally, the table may specify the data type, precision, accuracy, units, etc. for each data element. Figures 3.2-

5 and 3.2-6 provide examples of such interface specifications (Type 3 tables) extracted from a Tomahawk cruise

missile Software Requirements Specification (Table 3.4.1.40.3-1. Transfer Mission Data to MDDS Outputs) and

a NASA System Requirements Specification (Table 6.5.1.2.2-1. Conceptual EOC Data Flows). Figure 3.2-5

presents a table named Transfer Mission Data to MDDS Outputs and numbered 3.4.1.40.3-1. The table has 3

data elements (user displays, status, Mission Ids) and 5 columns. The columns are Item (sequential item

number), Description (name of the data element), Units of Measure (such as inch, feet, task), Frequency (how

often the data element occurs), and Destination (the function that the data element is passed to).

Table 3.4.1.40.3-1 Transfer Mission Data to MDDS Outputs

Units of

Item Description Measure Frequency Destination(s)

1 User displays N/A Variable User

2 Status N/A Once per Interactive DBA

 task Executive

3 Mission IDs N/A Once per Mission Data Transfer

 task to MDDS

Figure 3.2-5. Sample Table 3.4.1.40.3-1.

Figure 3.2-6 presents the Conceptual EOC Data Flows table, numbered 6.5.1.2.2-1. The table has 3 sets of

related functions (EOS to IMS, IMS to EOC, and EOC to DADS), 7 data elements (DAR_Platform_Info through

21

Mission_Historical_Data), and 4 columns. The columns are FROM (name of the function that generates the data

item), TO (name of function that accepts the data element), data item, and description of the data item.

Table 6.5.1.2.2-1. Conceptual EOC Data Flows.

FROM TO DATA ITEM DESCRIPTION
EOC IMS DAR_Platform_Info Platform, including orbit information used in DAR

generation.
DAR_Status_Dialog Information regarding the status of a DAR, including

current information on when the observation will take
place, why it won’t, etc.

Acq_Plan_Schedule Instrument operations plans and schedules for user
information.

IMS EOC DAR A Data Acquisition Request (DAR), which specifies new
data to be acquired by an instrument, constructed at the IMS
and forwarded to the EOC for further processing. Also
DAR updates.

DAR_Status_Dialog Request for current DAR information.
EOC DADS Platform_Status_Info High-level information about the status of aplatform, US or

foreign, or the SSF.
Mission_Historical_Data Information regarding EOS mission operations, including

mission operations history.

Figure 3.2-6. Sample Table 6.5.1.2.2-1.

Tables generally have the form source, name, type, size, precision, and destination. All the tables of a document

are examined. For each table, each record is examined. The value of the name column is examined along with

its source. Each record in each table is then examined to determine if that same name value exists with the

Destination field matching the Source field. If a match is not found, an error message is produced. If a match is

found, each field in the matching record is compared. If type, size, or precision do not match, an error message

is produced.

For example, if the table for Computer Software Component (CSC) Task Manager states that data element “task

id” has a source of Task Manager and a destination of CSC Task Definition, then the table for CSC Task

Definition must list data element “task id.” In addition, the tables for CSC Task Manager and CSC Task

Definition should have the exact same information for data element “task id” concerning data type, size, and

precision. This is depicted below.

Table for CSC Task Manager:

22

Source Field Type Size Precision Destination
Task Manager task id alpha 15 N/A Task Definition
Task Manager error code integer N/A N/A PC Manager

Table for Task Definition:

Source Field Type Size Precision Destination
Task Manager task id alpha 15 N/A Task Definition

If any of these consistency checks fail, an error report is generated. Note that no “test obligation” is generated.

That is because these data flow tables are not the subject of system level testing, but of integration testing.

23

The algorithm for performing these consistency checks is provided below:

algorithm Type3ConsistencyCheck (A)
output an error report file for tables in A
declare found : boolean

record, current : integer
TabMode : {INTAB, OUTTAB}
name : string
CurRec,NextRec : tablename, io, description, frequency,

source, destination
begin
 /* Read in all Type 3 tables */

 /* Get table name, input/output, description, source, destination of all tables */

 /* Perform consistency check */
 foreach table CurTab in A do
 foreach record CurRec in CurTab do
 if (CurRec.io = “input”) then
 /* Use name in Source field and set Input flag */
 name := CurRec.source

 TabMode := INTAB
 else

 /* Use name in Destination field and set Output flag */
 name := CurRec.destination
 TabMode := OUTTAB

 endif;
 record := current + 1

 /* Loop through all records and look for matches for the Source or Destination of current record*/
 found := false
 foreach record NextRec in CurTab do

if (CurRec.tablename = name) then
 /* If Input then search through all Output records */
 if (TabMode = INTAB) then
 if (CurRec.tablename = NextRec.destination) then

found := true
/* If match found, compare Description, Units of Measure, and Frequency of the 2

records */
if (CurRec.description != NextRec.description OR CurRec.units != NextRec.units OR
 CurRec.frequency != NextRec.frequency) then

 /* If anything does not match, write the 2 records and the error message to the file */
 Write “Inconsistency Found” error message and NextRec and CurRec to report

file
 break /* out of foreach loop */

 endif
 endif

24

 elseif (TabMode = OUTTAB) then
 begin
 if (CurRec.tablename = NextRec.source) then

/* If match found, compare Description, Units of Measure, and Frequency of the 2
records */

 found := true
 if (CurRec.description != NextRec.description OR CurRec.units != NextRec.units OR

 CurRec.frequency != NextRec.frequency) then
 /* If anything does not match, write the 2 records and the error message to the file */
 Write “Inconsistency Found” error message and NextRec and CurRec to report file
 endif

 endif
 end
 endif /*Input or output */
endif /* Table name found */

 endforeach /* Each NextRec in CurTab */
 /* If match is not found, write error message and current record to report file */
 if (not (found)) then
 Write “Source/Destination record not found” message and CurRec to report file
 endif
 endfor /* each record in CurTab */
 endfor /* each table in A */
end Type3ConsistencyCheck (A)

To assist with integration testing as well as the auditing of the integration testing effort, the IVT method provides

reports of all the “From - To” (Source-Destination) relationships, by CSC name. That is, it provides a list of all

the relationships that should be exercised as part of integration testing. A tester could build test cases from this

list. An auditor could use this list when examining the integration test folders and perform spot checks to ensure

that all relationships are indeed being tested.

Based on the two tables shown in Figures 3.2-7 and 3.2-8, the checklists shown in Figures 3.2-9 and 3.2-10 are

generated. The checklist in Figure 3.2-9 indicates that there needs to be a test case for the Route Analysis

Executive to Launch Area Analysis interface, the Route Data Access to Launch Area Analysis interface, and the

Requested subfunction to Launch Area Analysis interface.

25

Table – 1. Launch Area Analysis (Inputs)

Item Description Units of
Measure

Frequency Legality Check Source(s)

1 Analysis Request mixed per request No Route Analysis Executive
2 Route data mixed as needed No Route Data Access
3 Status message mixed per request No Requested subfunction

Figure 3.2-7. Sample Table - 1.

Table – 2. Route Analysis Executive (Outputs)

Item Description Units of Measure Frequency Destinations

1 Analysis Request mixed as needed Automatic Vertical Profile
Executive, Navigation Accuracy
Module, CAPTAIN Launch
Footprint Analysis, Flight
Simulation, Fast Clobber, Single
Mission Attrition Analysis, GPS
Jamming Analysis, Performance
Analysis, Launch Area Analysis
Flexible Targeting Grid Generation

2 Mission ID Request mixed as needed DM
3 Retrieve route

request
mixed as needed Route Data Retrieval

4 Store route request mixed as needed Route Data Storage
5 DIWS product

status request
mixed per request PC

6 Set current route
request

mixed as needed Route Data Editor

7 Route object edit mixed per request Route Data Editor
8 Route data request mixed per route Route Data Access
9 Test error flag

request
mixed as needed Route Data Error Handler

10 Report containing
summary of
analysis results

mixed as needed user

11 Status message mixed per request Requesting subfunction

Figure 3.2-8. Sample Table - 2.

26

Required Tests for Launch Area Analysis (Inputs)

Route Analysis Executive to Launch Area Analysis interface
Route Data Access to Launch Area Analysis interface
Requested subfunction to Launch Area Analysis interface

Figure 3.2-9. Required Tests Report for Launch Area Analysis.

Required Tests for Route Analysis Executive (Outputs)

Route Analysis Executive to Automatic Vertical Profile Executive interface
Route Analysis Executive to Navigation Accuracy Module interface
Route Analysis Executive to CAPTAIN Launch Footprint Analysis interface
Route Analysis Executive to Flight Simulation interface
Route Analysis Executive to Fast Clobber interface
Route Analysis Executive to Single Mission Attrition Analysis interface
Route Analysis Executive to GPS Jamming Analysis interface
Route Analysis Executive to Performance Analysis interface
Route Analysis Executive to Launch Area Analysis interface
Route Analysis Executive to Flexible Targeting Grid Generation interface
Route Analysis Executive to DM interface
Route Analysis Executive to Route Data Retrieval interface
Route Analysis Executive to Route Data Storage interface
Route Analysis Executive to PC interface
Route Analysis Executive to Route Data Editor interface
Route Analysis Executive to Route Data Access interface
Route Analysis Executive to Route Data Error Handler interface
Route Analysis Executive to user interface
Route Analysis Executive to Requesting subfunction interface

Figure 3.2-10. Required Tests for Route Analysis Executive.

In addition, for tables such as the one shown in Figure 3.2-9:

Table – 3. Launch Area Analysis (Inputs)

Item Description Units of Measure Frequency Legality Check

1 Analysis Request mixed per request No

2 Route data mixed as needed No

3 Status message mixed per request No

Figure 3.2-11. Sample Table - 3.

the IVT method will generate a list of every data element that has Legality Check marked “No.” The “No”

indicates that the software is not designed to perform a legality check on the data element, to see if it is the

27

correct data type, has the appropriate units of measure, etc. This list can be used to ensure that input validation

testing is performed during integration testing for these data elements.

Software correctness is defined in IEEE 729-1983 as “The extent to which software meets user expectations”

[21]. Davis defines correctness as existing “if and only if every requirement stated represents something that is

required” [7]. Although this sounds circular, the intent is that every statement in a set of requirements says

something that is necessary to the functionality of the system. Note that this is completely divorced from

completeness. The IVT method does not address correctness of requirements.

In addition to the three quality criteria of completeness, consistency, and correctness, the IVT method performs

three additional checks on Type 1 tables (user command language specification tables containing syntactic

information).

1) Examine data elements that are adjacent to each other. If no delimiters are specified (such as ‘]’, ‘/’,

‘,’, ‘]’), the IVT method will look to see if the same data type or expected value are adjacent. If the

elements have identical expected values, or if they have identical data types with no expected values, a

“test obligation” is generated. The danger of such interface design is that the two elements might be

concatenated if the user “overtypes” one element and runs into the next element, and catenation of the

two might be incorrectly processed. This check lends its roots to a grammatical catenation check that

ensures that catenation of adjacent pairs of tokens are not incorrectly parsed and/or scanned.

2) Check to see if a data element appears as the data type of another data element. For example,

suppose data element 1 is named All_Alpha and has these properties: data type: not specified, size: 5,

expected value: AAAAA. Data element 5 is named Alpha_Too and has these properties: data type:

All_Alpha, size: not specified, expected value: not specified. If IVT detects such a case, it informs the

user that the table elements are potentially ambiguous and a test obligation is generated. The algorithm

for performing the ambiguous grammar check is provided below:

foreach record in CurTab do
 if (record.name = NextRec.name) then
 Write error message and write entry to test obligation database
 endif
 if (record.class_values = Yes) then

28

 if (record.class = NextRec.class) then
 Write error message and entry to test obligation database
 endif
 endif
endforeach

3) Check to see if the expected value is duplicated for different data elements. For example, the

expected values “D” and “J” are repeated for elements Originating Segment and Task Type in the

following table:

Character
Number

Description Value Value Description

1 ORIGINATING SEGMENT D DIWSA
1 ORIGINATING SEGMENT N NIPS
2 TASK CATEGORY J JSIPS-N
2 TASK CATAGORY I Training
2 TASK CATEGORY P Production
3 TASK TYPE D Detailing Only
3 TASK TYPE J Screening and Detailing
3 TASK TYPE C Image Catalog Update Only
3 TASK TYPE Q Database Query

This is a potential poor interface design because the user might type a “D” in the Task Type slot, but

meant to indicate “DIWSA” for originating Segment. Or the user might type a “J” in the Originating

Segment position, but really meant “Screening and Detailing” for Task Type. This is synonymous to a

grammar having overloaded token values. If IVT detects such a case, it informs the user that the table

elements are potentially ambiguous and a test obligation is generated.

29

The data structure that stores the table information is defined below:

define
Record: element #, elementname, position, class_of_values, size, class, value #, value
CurRec: Record
CurTab: Table of Records
AllTabs: Table of CurTab

enddefine

For the table shown in Figure 3.2-12 above, a graphical representation might be depicted as shown in Figure 3.2-

13.

Table 3.2.2-1

TASK IDENTIFICATION (TASK ID)

CHARACTER
NUMBER DESCRIPTION VALUES

1 ORIGINATING SEGMENT D=DIWSA
N=NIPS

2 TASK CATEGORY J=JSIPS-N
I=TRAINING
*P=PRODUCTION (ICU ONLY)

3 TASK TYPE D=DETAILING ONLY
S=SCREENING AND DETAILING
*C=IMAGE CATALOG UPDATE ONLY
Q=DATA BASE QUERY

4 THRU 8 SEQUENCE NUMBER ALPHANUMERIC

Figure 3.2-12. Sample Type 1 Table 3.2.2-1.

30

D N

 J I P

 D S C Q

alphanumeric
X=5

Figure 3.2-13. A Graphical Representation of Type 1 Table 3.2.2-1.

The above mentioned static checks of the Type 1 Tables (overloaded token value, ambiguous grammar) are
performed using the following two algorithms, Overloaded Token Value and Ambiguous Grammar:

algorithm OverloadedTokenValue
define

Element: Record of element #, elementname, position, class_of_values, size, class,
value #, value

CurTab: Table of elements
i, j, c: integer
v: value
A: array of values

begin /* overloaded token */

read in CurTab
c = 1
foreach Element in CurTab do
 V = GetValue (Element)
 A[C] = V
 C = C + 1
endforeach

for I = 1 to Size (A) do
 for J = 2 to Size (A) do
 if (A[I] = A[J]) then
 Write error message and record to test obligation database
endfor /* J */
endfor /* I */

end OverloadedTokenValue /* overloaded token */

31

algorithm AmbiguousGrammar
define

class_of_values = {true, false}
Element: Record of element #, elementname, position, class_of_values, size, class,

value #, value
CurTab: Table of elements
i,j,c: integer
v: value
A: array of v
X: class_of_values
Y: class
B: array of X
D: array of Y

begin /* ambiguous grammar */

read in CurTab

c = 1
foreach Element in CurTab do
 V = GetName (Element)
 A[C] = V
 X = GetClassofValue (Element)
 Y = GetClass (Element)
 B[C] = X
 D[C] = Y
 C = C + 1
endforeach

for I = 1 to Size(A) do
 for J = 2 to Size(A) do
 if A[I] = A[J] then
 Write error message and record to test obligation database
 endif
 if (B[I] = Yes) then
 if (D[I] = A[J]) then
 Write error message and record to test obligation database
 endif
 endif
endfor /* J */
endfor /* I */

end AmbiguousGrammar /* ambiguous grammar */

32

3.3 How To Generate Valid Test Cases for a User Command Language Specification

The user command language specification is used to generate a covering set of test cases. One can think of the

syntax graph as being similar to a program control flowgraph [5,11,12,18]. The all-edges testing criterion [11] is

adapted to generate test cases that cover the syntax graph. The processing involves traversing the syntax graph

and generating test cases to satisfy the all-edges testing criterion. Each data element is considered a node in the

syntax graph. Valid, covering test cases are annotated as such. Many user command specifications contain

loops. To ensure the IVT method is as general as possible, it has been designed to handle loops. To handle

loops, the following heuristic will be used [5, 26]:

0 times through the loop
1 time through the loop
X times through the loop
X+1 times through the loop

After the user command specification (table information) has been read in and statically analyzed, the following

algorithm is used to generate covering test cases and expected results:

define

 Record: TableName, Element_Num, ElementName, Position, Class_of_Values, Size,
Class,Value_Num, Value

 CurRec: Record
 CurTab: Table of Record
 AllTabs: Table of CurTab
 V: TableName
 W, CurValue: CurRec.Value
 I: Integer
 Loop_Handler: [Once, X, X_Plus_One, Zero]
 Expected_Outcome: [Valid, Invalid]

begin /* covering test cases */
 foreach Table CurTab in AllTabs do
 V = Get(CurTab.TableName)
 write V to MS Word file and test case table
 foreach Record CurRec in CurTab do
 while (CurRec.ElementName != PrevRec.ElementName) do
 write CurRec.ElementName to MS Word file and test case table
 I = 1

 /* If not Class of Values (e.g., expected values given instead of class like char, alpha, integer), write
 the current expected value (CurRec.Value[I] to MS Word file */

33

 if (CurRec.Class_of_Values = No) then
 write CurRec.Value[I] to MS Word file and test case table
 CurValue = CurRec.Value[I]
 I = I + 1
 else /* it is Class of Values */
 for Loop_handler = Once to Zero do

 /* Handle the loop 0, 1, X, and X + 1 times test cases */
 CASE Loop_handler of
 Once: /* 1 time through loop */
 begin

/* Select_Value selects a value from the class of values (an integer or alpha, e.g.) */
 W = Select_Value(CurRec.Value)
 write W to MS Word file and test case table
 /* Size_Check returns VALID if I is =< CurRec.Size and INVALID otherwise */

 Expected_Outcome = Size_Check(I)
 I = I + 1

 end; /* Once */
 X: /* X times through the loop */
 begin
 while (CurRec.ElementName != PrevRec.ElementName) do
 W = Select_Value(CurRec.Value)
 write W to MS Word file and test case table
 I = I + 1
 CurRec = GetNext(CurTab)
 endwhile
 Expected_Outcome = Valid
 end /* X */
 X_Plus_One: /* X + 1 times through the loop */
 begin
 while (CurRec.ElementName != PrevRec.ElementName) do
 W = Select_Value(CurRec.Value)
 write W to MS Word file and test case table
 I = I + 1
 CurRec = GetNext(CurTab)

 endwhile
 W = Select_Value(CurRec.Value)
 I = I + 1
 Expected_Outcome = Invalid
 end /* X_Plus_One */
 Zero: Expected_Outcome = Invalid
 endcase
 endfor /* Loop_Handler */
 endif /* Class of Values = No */
 endwhile /* ElementNames not equal */
 endforeach /* Record CurRec */
 write Expected_Outcome to MS Word file and test case table
 endforeach /* Table CurTable */
end /* covering test cases */

34

Example

Assume a specification table with four data elements (see figure 3.2-12): Originating Segment, Task Category,

Task Type, and Sequence Number. Sequence Number is represented by a class of values (loop), it is

ALPHANUMERIC and has a size of 5. Recall that static analysis must be run prior to test case generation.

During static analysis, checks are made to ensure that there are no blank fields in the table and checks are made

to determine whether or not a data element is represented by a class of values.

The procedure starts by reading in the table and writing the table name to the MS Word file and to the

MS Access test case table. The procedure then processes each data element in the table.

First Three Data Elements. The first element name (Originating Segment) is written to the MS Word

file and test case table. Class of Values is NO for Originating Segment so the Ith actual value for Originating

Segment (I is 1, so the value from the table is D) is written to the MS Word file and test case table. The

procedure moves to the next data element, Task Category. The element name (Task Category) is written to the

MS Word file and test case table. Class of Values is NO for Task Category so the Ith actual value for Task

Category (I is 1, so the value from the table is J) is written to the MS Word file and test case table. The

procedure moves to the next data element, Task Type. The element name (Task Type) is written to the MS Word

file and test case table. Class of Values is NO for Task Type so the Ith actual value for Task Type (I is 1, so the

value from the table is D) is written to the MS Word file and test case table. The procedure moves to the next

data element, Sequence Number. The element name (Sequence Number) is written to the MS Word file and test

case table. Class of Values is YES for Sequence Number.

For Loop_Handler. At this point, the For loop commences. The CASE statement is executed the first

time with Loop_handler equal to Once. Sequence Number is type ALPHANUMERIC. Routine Select_Value is

called and randomly selects an ALPHANUMERIC value, A in this case. A is written to the MS Word file and

test case table. Expected_Outcome is set to Invalid because Size_Check sees that I is not equal to the current

record size of 5. “Invalid” is written to the MS Word file and test case table. The processing described above

under First Three Data Elements is performed at the bottom of the loop, and then the For loop is executed again

35

for Loop_handler equal to X. This time, the while loop is executed, with Select_Value being called 5 times (the

master table that was built during static analysis contains five records numbered 4 through 8 with Element Name

of Sequence Number). Expected_Outcome is set to Valid and is written to the MS Word file and test case table.

The processing described above under First Three Data Elements is performed at the bottom of the

loop, and then the For loop is executed again for Loop_handler equal to X_Plus_One. This time, the while loop

is executed, with Select_Value being called 5 times (the master table that was built during static analysis contains

five records numbered 4 through 8 with Element Name of Sequence Number). After the while loop,

Select_Value is called one more time and a 6th value is written to the MS Word file and test case table. The

Expected_Outcome is set to Invalid and is written to the MS Word file and test case table. The processing

described above under First Three Data Elements is performed at the bottom of the loop, and then the For loop is

executed a final time for Loop_handler equal to Zero. This time, no value for Sequence Number is written to the

MS Word file or test case table. The Expected_Outcome is set to Invalid and is written to the MS Word file and

test case table.

36

For the example above, the following information would be written to the MS Word file:

Covering Test Cases for Table 3.2.2-1

Case 1
Originating Segment = D
Task Category = J
Task Type = D (Loop = Once)
Sequence Number = A Expected_Outcome = Invalid

Case 2
Originating Segment = D
Task Category = J
Task Type = D (Loop = X)
Sequence Number = A Expected_Outcome = Valid
Sequence Number = 1
Sequence Number = R
Sequence Number = 3
Sequence Number = Z

Case 3
Originating Segment = D
Task Category = J
Task Type = D (Loop = X+1)
Sequence Number = T Expected_Outcome = Invalid
Sequence Number = 7
Sequence Number = 8
Sequence Number = P
Sequence Number = Z
Sequence Number = 3

Case 4
Originating Segment = D
Task Category = J (Loop = Zero)
Task Type = D Expected_Outcome = Invalid

In addition, the following would be written to the Test Case Table:

Table 3.2.2-1

DJDA Invalid
DJDA1R3Z Valid
DJDT78PZ3 Invalid
DJD Invalid

37

Consider the following table with no loops in the syntax graph (expected values such as “D”, “N”, “J” are
specified as opposed to alpha, char, real).

Record
Number

Character
Number Description Values

Class of
Values

1 1 ORIGINATING SEGMENT D No
2 1 ORIGINATING SEGMENT N No
3 1 ORIGINATING SEGMENT J No
4 2 TASK CATEGORY I No
5 2 TASK CATEGORY P No
6 3 TASK TYPE S No
7 3 TASK TYPE C No
8 4 TASK NUMBER 1 No
9 4 TASK NUMBER 2 No

For this table, the following information would be written to the MS Word file:

Covering Test Cases for Table 3.2.2-1

Originating Segment = D
Task Category = I (No Loop)
Task Type = S Expected_Outcome = Valid
Task Number= 2

In addition, the following would be written to the Test Case table:

Table 3.2.2-1

DIS2 Valid

3.4 How To Generate Erroneous Test Cases for a User Command Language Specification

There are two sources of rules for generating erroneous test cases: the error condition rule base; and the test

obligation database. The error condition rule base is based on the Beizer [5] and Marick [26] lists of practical

error cases discussed in Section 2.5. The test obligation database is built during static analysis as discussed in

section 3.2. Error case generation is discussed below.

38

1) Error Condition Rule Base. Four types of error test cases are generated based on the error condition rule

base:

� Violation of looping rules when generating covering test cases. The rules for modifying graphs with loops

(field length) were provided in Section 3.1 in the Covering Test Cases algorithm

� Top, intermediate, and field-level syntax errors. A wrong combination is used for 3 different fields, the

fields are inverted (left half of string and right half of string are swapped with the first character moved to

the middle) and then the three inverted fields are swapped with each other (reference 5 suggests using a

wrong combination and reference 26 suggests a sequence order, our method extends these with the

inversion and swap) – the algorithm is presented below

� Delimiter errors. Two delimiters are inserted into the test case in randomly selected locations (reference 5

suggests violating delimiter rules) - the algorithm is presented below

� Violation of expected values. An expected numeric value will be replaced with an alphabetic value, and an

expected alphabetic value will be replaced with a number (reference 26 suggests violating allowable

alternatives) – the algorithm is given below.

algorithm TopIntermediateFieldSyntaxErrors
define

 Record: TableName, Element_Num, ElementName, Position, Class_of_Values,
Size, Class,Value_Num, Value

 CurRec: Record
 I: Integer
 Lefthalfstring, Righthalfstring: String
 First_character: Char
 First_several_characters: String
 TmpStr: String
 TestCaseSet: Array of String

TestCaseSet = 0
begin /* top, intermediate, and field-level syntax errors */
 store old test
 for I = 1 to 2 do
 randomly select Element_Num /* an element to be manipulated */
 /* random number generated that indexes into CurRec*/
 store the random number
 /* to ensure same value not selected second time through loop */

39

 if (CurRec.Class_of_Values = Yes and CurRec.Class = alphanumeric) then
 make copy of CurRec.Value
 /* get right half of string */
 RightHalfStr = right half of CurRec.Value
 /* get the first character of string */
 First_character = first character of CurRec.Value
 /* get the left half of string minus the first character */
 Lefthalfstring = left half of string minus the first character
 /* reassemble string */
 TmpStr = lefthalfstring + first_character + righthalfstring
 else
 make copy of CurRec.Value
 /* get right half of string */
 RightHalfStr = right half of CurRec.Value
 /* get the first character of string */
 First_character = first character of CurRec.Value
 /* get first several characters of string */
 First_several_characters = left half of string minus the first several characters
 /* reassemble string */
 TmpStr = lefthalfstring + first_ several_characters + righthalfstring
 endif
 /* compare new test case to old test case to ensure not duplicate */
 if (TmpStr != TestCaseSet) then
 /* write test case to test case table */
 TestCaseSet = TestCaseSet U {TmpStr}
 endif
 endloop
end TopIntermediateFieldSyntaxErrors /* top, intermediate, field-level syntax errors */

algorithm DelimiterErrors
define
 RandNum1, RandNum2: Integer
 Firstthird, secondthird: String
 RandSet: Array of integer
 Record: TableName, Element_Num, ElementName, Position, Class_of_Values,

Size, Class,Value_Num, Value
 CurRec: Record
 FirstThirdStr, SecondThirdStr: String
 RestStr, TmpStr: String
 TestCaseSet: Array of String

RandSet = 0
TestCaseSet = 0
begin /* delimiter errors */
 / *randomly select 1 number, these character numbers will be manipulated */
 RandSet = RandSet U {GetRandNum()}
 /* to ensure same values not selected second time through loop */

40

 if (RandNum1 > RandNum2) then
 switch the values
 /* want RandNum1 to be less than RandNum2 */
 endif
 /* get first third of test */
 FirstThirdStr = First third of CurRec.Value /* (from character 1 to RandNum1) */
 /* get second third of test */
 SecondThirdStr = Second third of CurRec.Value /* (from RandNum1 to RandNum2)*/
 /* get rest of the test */
 RestStr = Remainder of CurRec.Value /* (from RandNum2 to end)*/
 TmpStr = FirstThirdStr + randDel() + SecondThirdStr + randDel() + RestStr
 /* RandDel() returns a randomly selected delimiter */
 /* write test case to test case table*/
 TestCaseSet = TestCaseSet U {TmpStr}
end DelimiterErrors /* delimiter error */

algorithm ViolateAllowableValues
define
 Record: TableName, Element_Num, ElementName, Position, Class_of_Values,

Size, Class,Value_Num, Value
 CurRec: Record
 CurTab: Table of Record
 RandNum1, RandNum2, I: Integer
 Firstthird, secondthird: String
 X: Char

begin /* violate allowable values */
foreach CurRec in CurTab do
 randomly select Element_Num /* an element to be manipulated */
 /* random number generated that indexes into CurRec*/
 if CurRec.Values = (integer, number, numeric, real, float,decimal, binary) then
 /* get random alphabetic value, X */
 X = RandAlpha()
 else
 /* get random numeric value, X */
 X = RandNum()
 /* replace randomly selected position of CurRec.Value with X */
 I = GetRand(1,size(CurRec())
 CurRec[I] = X
 write test case to test case table
 endforeach
end ViolateAllowableValues /* violate allowable rules */

2) Test Obligation Database. Two types of error test cases are generated based on the test obligation database:

� Overloaded token static error/ambiguous grammar static error. An overloaded token is inserted into the

ambiguous elements of a test case, based on the ambiguous value and the ambiguous character numbers

identified during static analysis (section 3.2). The algorithm for generating these test cases is given below

41

� Catenation static error. The values that were identified as possibly catenating each other (user accidentally

“types” information into the next field since adjacent fields have the same data type, no expected values, and

no delimiters) are duplicated into the adjacent fields – the algorithm is given below.

define
 Record: TableName, Element_Num, ElementName, Position, Class_of_Values,

Size, Class,Value_Num, Value
 CurRec: Record
 CurTab: Table of Record
 TestObRecord: ErrorCode, AmbCharNum, AmbigValue, CharNum
 TestObRec: TestObRecord
 TestObTab: Table of TestObRec
 RandNum1, RandNum2: Integer
 Firstthird, secondthird: String
 tempvalue: Char

begin /* static error test cases */
foreach TestObRec in TestObTab do
 load current test case for CurRec corresponding to TestObRec
 if TestObRec.ErrorCode = 1 then
 current test case(TestObRec.AmbCharNum) = TestObRec.AmbigValue
 current test case(TestObRec.CharNum) = TestObRec.AmbigValue
 write new test case and “Valid/Overloaded Token Static Error” to test case table
 elseif TestObRec.ErrorCode = 2 then
 tempvalue = current test case(TestObRec.CharNum)
 current test case(TestObRec.AmbigCharNum) = tempvalue
 write new test case and “Invalid/Catenation Static Error” to test case table
 endif
write test case to test case table
endforeach
end /* static error test cases */

Appendix A presents the MS Word file as well as the test case report (includes the covering test cases and the

error test cases) for a sample interface specification table (also in Appendix A).

In summary, Chapter 3 has presented the general concepts of the IVT method: test obligation database, MS

Word file, and the test case table. In addition, algorithms and examples were presented for how the IVT method

handles specifying the format of information in specifications and/or designs, analyzing a user command

language specification, generating valid test cases for a user command language specification, and generating

erroneous test cases for a user command language specification.

42

Chapter 4

4.0 MICASA: A PROTOTYPE SYSTEM

In order to demonstrate the effectiveness of the IVT method, a prototype system was developed. This enabled us

to evaluate the method and examine its usefulness for real-life interface specifications. This chapter describes

the design and implementation of the prototype system, Method for Input Cases and Static Analysis (MICASA,

pronounced Me-Kass-Uh) based on the IVT method.

System Description

MICASA runs under Windows NT. It is written in Visual C++ and relies heavily on MS Access tables and

databases. The system was developed to meet two major objectives:

1) To implement and demonstrate the feasibility and effectiveness of the IVT method; and

2) To minimize the inputs needed from the user.

A high level architecture was defined and is shown in Figure 4.0-1.

Warnings/Error
Msgs, Test
Oblig. DB

Import
Spec
Tables

Perform
Static
Analysis

Generate
Covering
Test Cases

Generate
Error
Cases

Interface
Spec
Tables

Database
of Tables

Test Oblig.
DB, Heuristic
Data Base

 Database
of Tables

All-Edges
Test Cases

Error
Test Cases

Figure 4.0-1. MICASA Architecture.

43

To achieve the second goal, a small graphical user interface was designed for MICASA. The typical screen has

four clickable buttons and options of <Cancel>, <Back>, <Next>, and <Finish> available to the user. Very little

input is required from the user, most of the interaction is with radio buttons. MICASA leads users sequentially

through the steps of the IVT method. The flow of the screens of IVT is shown in Figure 4.0-2.

Figure 4.0-2. MICASA Screen Flow.

Open File
Dialog
Screen

Introduction
Screen

File Type

Static
Analysis
Screen

Import Spec
Table Screen

Table Name

File Name

Overloaded
Token Check
Screen

Cons. Check
for Type 3
Table Screen

Ambiguous
Grammar
Screen

Catenation
Check Screen

Generate Test
Cases Screen

Table Name, Test
Oblig. Table

Table Name

Table Name

Table Name

Table Name

44

Import Specification Tables

As described in Chapter 3, the Import Spec Tables function allows the user to import information from a digital

interface specification. MICASA accepts flat files and MS Word files of the interface specification tables. The

processing steps performed by this function are:

a) In the introduction screen (figure 4.0-3), the user is asked if the table is type 1 or 3 (defined in section 3.1

and 3.2). If the user indicates it is a type 3 table, MICASA asks if consistency checking is to be performed

on an entire Computer Software Configuration Item (CSCI).

b) The user specifies the name of the file(s) to be imported.

c) MICASA imports the provided file(s) into MS Access tables. The output from this function is an MS

Access database of tables for the interface specification. Figure 4.0-4 depicts the MICASA screen for the

Import Spec Tables function.

Figure 4.0-3. Introduction Screen.

45

Figure 4.0-4. Import Data into Tables.

Perform Static Analysis

As described in Chapter 3, the Perform Static Analysis function allows the user to perform a number of static

checks on the interface tables: consistency, completeness, ambiguous grammar, overloaded token, and potential

catenation. The input is the interface table information that is created by Import Spec Tables and is stored in the

MS Access database. The processing steps performed by this function are:

a) The user can perform static analysis as shown in Figure 4.0-5.

b) When the main table is created, the user can initiate a consistency check on the table, as shown in Figure

4.0-6.

c) The user can check for overloaded tokens, as shown in Figure 4.0-7.

d) The user can check for ambiguous grammar, as shown in Figure 4.0-8.

e) The user can check for possible catenation errors, as shown in Figure 4.0-9.

The output from this function is a set of MS Access database tables containing error records, as well as printouts

of these error reports. The Ambiguous Grammar Error report format is shown in Figure 4.0-10. The Overloaded

Token Error report format is shown in Figure 4.0-11. The Catenation Error report format is shown in Figure 4.0-

12.

46

Figure 4.0-5. Static Analysis.

Figure 4.0-6. Consistency Check.

47

Figure 4.0-7. Overloaded Token Check.

Figure 4.0-8. Ambiguous Grammar Check.

Figure 4.0-9. Check for Possible Catenation Errors.

48

Figure 4.0-10. Ambiguous Grammar Report.

Figure 4.0-11. Overloaded Token Error Report.

49

Possible Catenation Error

Wednesday, June 17, 1998

Table Name Id Field Error Type Error Ambiguous Char # Char #

Table___doc_jecmics 0 Warning Catenation Warning: Possible 422 421
Catenation Error.

Table___doc_jecmics 0 Warning Catenation Warning: Possible 400 399
Catenation Error.

Table___doc_jecmics 0 Warning Catenation Warning: Possible 368 367
Catenation Error.

Table___doc_jecmics 0 Warning Catenation Warning: Possible 263 262
Catenation Error.

Table___doc_jecmics 0 Warning Catenation Warning: Possible 220 219
 Catenation Error.

Figure 4.0-12. Catenation Error Report.

Generate Covering Test Cases

As described in Chapter 3, the Generate Covering Test Cases function allows the user to generate all-edges test

cases for the Type 1 interface tables stored in the MS Access tables. The input is the interface table information

as stored in the MS Access database. The processing performed by this function is that the all-edges testing

criterion is applied to generate covering test cases. If there is a loop in the syntax graph (field length (X) is

greater than 1 and only a data type is specified) for one of the tables, a heuristic is used. The loop is executed 0

times, 1 time, X times, and X+1 times.

The user will be asked to enter the document and system name, as shown in Figure 4.0-13. The output from this

function is a set of MS Access database tables containing test cases. These can be displayed in MS Access, or

can be formatted as Test Plans using a MS Word template. A sample Test Plan is shown in the Appendix.

50

Figure 4.0-13. Generate Test Cases.

Generate Error Test Cases

As described in Chapter 3, the Generate Error Test Cases function allows the user to generate error test cases for

the Type 1 interface tables stored in the MS Access tables. The input is the interface table information as stored

in the MS Access database, the test obligation database generated during static analysis, and the Beizer [5] and

Marick [26] heuristics for error cases. The processing performed by this function is that an error test case is

generated for each test obligation in the test obligation database. Next, the Beizer, Marick heuristics are used to

generate error cases. Chapter 3 describes the error categories that are applied. This function is automatically

performed after Generate Covering Test Cases. The user will be shown the number of test cases that have

already been generated (under Generate Covering Test Cases function), giving the user the option to generate

error cases or to return to the previous function. After the Generate Error Test Cases function is complete, all

duplicate test cases are deleted. The output from this function are additions to the MS Access database tables

containing test cases. These can be displayed in MS Access or can be formatted as Test Plans using a MS Word

template. A sample Test Plan is shown in the Appendix.

51

Chapter 5

5.0 VALIDATION

One common criticism of academic research is that it is often not validated, or is validated using unrealistic,

simplistic conditions or tests. With this in mind, we considered a number of validation methods. Formal

mathematical validation was not appropriate because the specifications used (as input) are textual and informal.

To validate the IVT method in real-world, industry applications, experimentation was selected as the validation

method. Experimentation allows the environment and confounding factors to be controlled to an extent while

carefully studying the effectiveness and efficiency of the IVT method. The research was validated using a multi-

subject experiment. This Chapter will present the experimental design used to validate the IVT method, and an

overview of the experimental findings. Validation results show that the IVT method, as implemented in the

MICASA tool, found more specification defects than senior testers, generated test cases with higher syntactic

coverage than senior testers, generated test cases that took less time to execute, generated test cases that took less

time to identify a defect than senior testers, and found defects that went undetected by senior testers.

Experimental Design

The goal of the experiment was to examine how well the IVT method performs static analysis and generates test

cases as compared to senior software testers. To accomplish this goal, the experiment was designed to use ten

senior testers, each performing the same activities as the MICASA tool. The experiment was divided into 3

parts:

� Part I – performing analysis of the specifications

� Part II – generating test cases for the specifications

� Part III – executing the test cases

Volunteers were used for the experiment, and many dropped out or did not complete the experiment. The three

experiment parts are discussed below. The overall experimental design is shown in Table 5.0-1.

52

Table 5.0-1. Planned Analysis-of-Variance Model for Overall Experiment.

SOURCES OF
VARIANCE

SYMBOL NUMBER OF
LEVELS

DEGREES OF
FREEDOM

Between-Subjects
Sources
Systems E 3 2
Condition (Exp’l vs.
Control)

C 2 1

Interaction between
systems and
conditions

E*C 6 1

Subjects nested
within systems and
conditions (Between-
Subjects error)

S(EC) n.a. 36

In examining Table 5.0-1, there are a number of terms that must be defined. A factor, variable, or treatment refers to one

of the primary experimental manipulations, of which there were two:

1) assigning participants to systems; System A, B, and/or C, and
2) assigning participants to one of the two conditions, Experimental (MICASA) or Control (manual method).

Participants performed one or more of the three experiment Parts: one having to do with specification review; one relating
to test case generation; and one relating to test case execution/performance.

Interaction refers to the possibility that performance for a particular factor may depend on another factor. For example, it

may be the case that specification review with MICASA was better than using the manual approach, but the difference

between these two conditions was greater for System A than for System B or System C. Were this the case, it could be

said that “there was an interaction between the condition and system factors.”

Significance refers to whether or not an observed difference in performance can be attributed to the manipulations of the

experiment, or is something that could be expected to occur on a chance basis due to the random sampling effects or other

effects of random variables. Most of the statistical analyses performed were concerned with the question of significance

of a particular factor or interaction and computed an estimate of the probability that an observed difference occurred by

chance. By convention, if the computed probability of observed effects was less than 0.05 of having occurred by chance,

expressed as p < 0.05, the performance difference is said to be significant, meaning that it is to be interpreted as arising

not from random events but from the experimental manipulation [30].

Symbol refers to the identifier for the source of variance (for example, condition is C). Number of levels indicates how

many different items there were for that source of variance, for example there were two conditions (experimental and

control). Degrees of freedom refers to pieces of information or observations [43].

53

The expected results of the validation activity were:

a) the all-edges coverage percentage of test cases generated (by automated input
validation test generation) will be at least as high as for the cases generated
manually

b) the time to generate test cases (with automated input validation test generation) will be less than the
time required to generate them manually;

c) the number of specification faults identified (with automated input validation) will be greater than
those found manually

d) the number of defects/test case (with automated input validation test generation) will be greater than
those found by manually generated cases

To determine whether these results were met, the dependent variables shown in Table 5.0-2 were used for the experiment.

Table 5.0-2. Description of the Planned Experiment Dependent Variables.

No. Dependent Variable Description Method (Part)
1 TNSPECDEF Total number of specification defects detected I
2 TNSYNSPECDEF Total number of syntactic specification defects

detected
I

3 TIME Total time for the exercise I, II, III
4 PSYNCOV Percentage of syntax coverage II
5 PEFFTCASE Percentage of effective test cases II
6 TNDEFDET Total number of defects detected III
7 ANDEFDET Average number of defects detected per test case III
8 ATIME Average time to identify a defect I, III

For all parts of the experiment, experienced testers (most had at least 7 years of software development/information

technology experience and 3 years of testing experience) were used as the control condition. The researcher served as the

experiment facilitator and did not serve as an experiment participant. The experiment participant’s key qualifications are

shown in Table 5.0-3.

54

Table 5.0-3. Experiment Participant Key Qualifications.

ID ORGANIZATION EXPERIMENT
PART(S)
PERFORMED

HIGHEST
DEGREE AND
FIELD

YEARS
EXPERIENCE
(SW ENG/TEST)

COMPLETION TESTING
EXPERIENCE

B1 SAIC 1 M.S.; Comp. Sci. 20/3 Completed IV&V, SW
development, QA

B2 Perot Systems 1,2 M.B.A; Mktg and
Finance

12/3 Completed Part
1, Partially
completed Part 2

System testing,
SW development,
thread and
integration
testing

B3 SAIC 1,2 M.S.; Eng. Mgmt. 12/10 Dropped out IV&V,
independent
testing, SW
development, QA

B4 SAIC 1,2 B.A.; English 15/7 Completed System testing,
integration
testing, SW
development

B5 SAIC 1,2 B.S.; CIS 7/5 Dropped out IV&V,
independent
testing

B6 Independent
Consultant

2 M.S.; Ops
Research

40/6 Completed IV&V,
independent
testing

B7 George Mason
University

1,2 M.S. 4/1.5 Completed Software design,
programming,
and testing

B8 SAIC 2,3 B.S. 3/3 Completed IV&V, system
testing, digital
imagery systems,
Navy intelligence
systems

B9 SAIC 1 B.S. 12/12 Completed IV&V,
independent
testing, SW
development

B10 SAIC 1,2 with tool B.S.; CIS 7/5 Completed IV&V,
independent
testing, SW
development

B11 SAIC 2,3 B.A. 9/3 Completed Testing, digital
imagery systems,
Navy intelligence
systems

55

Part I: Static Analysis of Specifications

The design for Part I of the experiment consisted of 4 testers manually analyzing interface specification tables with 1 tester

using the MICASA prototype to automatically analyze the same specifications. Five different tables were analyzed: two

specification tables (3.2.4.2.1.1.3-5, 3.2.4.2.2.1.3-1) for the Tomahawk Planning System (TPS) to Digital Imagery

Workstation Suite (DIWS) interface (Tomahawk document) (System A); two specification tables (Attributes Part of

Doc_Jecmics, Attributes Not Part of Doc_Jecmics) for the commercial version of the Joint Engineering Data Management

Information and Control System (JEDMICS) (System B); and a specification table (3.2.4.2-1) for the Precision Targeting

Workstation (PTW) from the 3900/113 document (U.S. Navy) (System C).

The TPS, DIWS and PTW are subsystems of the Tomahawk Cruise missile mission planning system. The TPS is

comprised of roughly 650,000 lines of code running on HP TAC-4s under Unix. TPS is primarily Ada with some

FORTRAN and C. A number of Commercial Off-the-Shelf (COTS) products have been integrated into TPS including

Informix, Open Dialogue, and Figaro. TPS was developed by Boeing. The DIWS runs under DEC VMS and consists of

over 1 million lines of Ada code. There is also a small amount of Assembler and FORTRAN. Some code runs in multiple

microprocessors. DIWS uses Oracle. General Dynamics Electronics Division is the developer of DIWS. The PTW is

hosted on TAC-4 workstations, running under Unix , and is written in C. The system is roughly 43,000 lines of code, and

was developed by General Dynamics Electronics Division.

The TPS-DIWS specification was “overlapping” (that is, all 5 testers were asked to analyze this document) to allow for

examination of possible “skill level” ambiguities of the various testers. By having all 5 testers analyze the same

specification, a particularly weak or particularly strong tester could be distinguished. For example, if one tester found five

times as many defects as the other testers in the TPS-DIWS document, she would be considered an outlier (very adept

tester). One tester was not able to complete analysis of this document, however.

All defects were naturally occurring, not seeded. Testers B1 and B9 performed thorough reviews of all three subject

system tables to give the researcher a feel for the “quality” of the tables. Analysis was not performed on the number or

percentage of defects found by MICASA and other testers that were not found by Testers B1 and B9, but their reviews

gave the researcher a good idea of how many defects existed in each table.

56

The Part I design is depicted below. The first table describes the specifications that were analyzed by the testers, and

whether or not the analysis was manual (by hand) or automated. The table views Part I of the experiment based on Subject

(Tester) and System. For example, Tester B1 analyzed the TPS-DIWS tables (of System A) by hand, but Tester B10 used

the MICASA tool to examine them.

TPS-DIWS [SYSTEM A] JEDMICS [SYSTEM B] PTW [SYSTEM C]

Tester B1 By hand (control condition) By hand N/A

Tester B2 By hand By hand N/A

Tester B4 By hand N/A By hand

Tester B7 By hand N/A N/A

Tester B9 N/A N/A By hand

Tester B10 MICASA (experimental condition) MICASA MICASA

The next table summarizes the same information, but looks at it from a Condition and System perspective.

 Condition
System

A (TPS-DIWS) B (JEDMICS) C (PTW)

Experimental
(MICASA)

Tester B10 Tester B10 Tester B10

Control (By
Hand)

Testers
B1 B2

Testers
B1

Testers

B4 B7 B2
B4
B9

Part I: Static Analysis

The repeated measures for Part I of the experiment are: number of specification defects detected; number of syntactic

specification defects detected; and time it took to analyze the specification. To minimize confounding effects, each tester

was provided the following set of instructions for performing Part I of the experiment. All communication with the testers

was identical. If one tester asked a question, the question and reply were forwarded to all the testers.

57

Instructions to Testers: “As you are developing test cases for the specification, please note any deficiencies or problems
that you see. Examples of deficiencies include missing information and ambiguous information. For this specification
table:

Table 5.2.3.4 Task Recognizer

Item Description Size Expected Value

1 Task ID 10 A/N/AN
2 Name 20 Blank
3 Task Priority 1
4 Task Complete 1 Y or N

problems or deficiencies might include:

Table 5.2.3.4 Problems

1. For Task ID, in column “Expected Value”, the “A/N/AN” may not be clear.
2. For Name, in column “Expected Value”, does “Blank” mean blank fill?
3. For Task Priority, there is no value in column “Expected Value.”

For each specification table that you develop test cases for, please keep a list of the deficiencies/problems you find. As a
minimum, please provide the information shown above (table number and name; a list of deficiencies found for that
table). Please keep track of how long it takes you to develop the test cases.”

Part II: Generate Test Cases

The design for Part II of the experiment consisted of 6 testers manually generating test cases for interface specification

tables with 1 tester using the MICASA prototype to automatically generate cases. Five different tables were used: two

specification tables (Table 1: 3.2.4.2.1.1.3-5, Table 2: 3.2.4.2.2.1.3-1) for the Tomahawk Planning System to Digital

Imagery Workstation Suite interface (Tomahawk document); two specification tables (Attributes Part of Doc_Jecmics,

Attributes Not Part of Doc_Jecmics) for the commercial version of the Joint Engineering Data Management Information

and Control System (JEDMICS); and a specification table (3.2.4.2-1) for the Precision Targeting Workstation (PTW) from

the 3900/113 document (U.S. Navy). The TPS-DIWS document was overlapping (that is, all 7 testers were asked to use

this document) to allow for examination of possible skill level ambiguities of the various testers. By having all 7 testers

use the same specification, a particularly weak or particularly strong tester could be distinguished. For example, if one

tester generated five times fewer test cases than the other testers for the TPS-DIWS document, she would be considered an

outlier (very weak tester). One tester was not able to complete test cases for this document, however.

The Part II design is depicted below. The first table describes the tables that were analyzed by the testers, the number of

cases generated, and whether or not the test cases were generated manually (by hand) or automatically. The table views

Part II of the experiment based on Subject (Tester) and System. For example, Tester B2 generated test cases for the two

58

TPS-DIWS tables (of System A) by hand, but Tester B10 used the MICASA tool. Note that none of the testers finished

test cases for the JEDMICS specification, so only System A and C were analyzed.

TPS-DIWS [SYSTEM A], # CASES

TABLE 1, # CASES TABLE 2

PTW [SYSTEM C], #

CASES

Tester B2 By hand, N/A, 3 cases N/A

Tester B4 By hand, 3 cases, 4 cases N/A

Tester B6 By hand, N/A, 59 cases N/A

Tester B7 By hand, 25 cases, 11 cases N/A

Tester B8 N/A By hand, 4 cases

Tester B10 MICASA (experimental condition),

33 cases, 16 cases

MICASA, 53 cases

Tester B11 N/A By hand, 3 cases

The next table summarizes the same information, but looks at it from a Condition and System perspective.

The repeated measures were: % syntax coverage; % effective test cases; and time to generate test cases. To minimize

confounding effects, each tester was provided the following set of instructions for performing Part II of the experiment.

All communication with the testers was identical. If one tester asked a question, the question and reply were forwarded to

all the testers.

Instructions to Testers: “System-level interfaces are described in interface requirement specification tables. Suppose
that you are performing system-level testing. Develop test cases that you feel will adequately test each interface (each
interface is described in a specification table). Following the instructions listed above for Part I, note any problems you
find with the specification as you are developing test cases. Even if you find problems or deficiencies with items in the
specification table, such as missing or ambiguous information, still generate a test case to address that item. For this
specification table:

Table 5.2.3.4 Task Recognizer

59

Item Description Size Expected Value

1 Task ID 10 A/N/AN
2 Name 20 Blank
3 Task Priority 1
4 Task Complete 1 Y or N

test cases might include:

Test Cases for Table 5.2.3.4 Task Recognizer

Case 1: Task ID: “Task000001” (10)
Name: “ “ (20 blanks)
Task Priority: “ “ (1 blank)
Task Complete: “Y” (1)

Case 2: Task ID: “Task2” (5)
Name: “ “ (1)
Task Priority: “” (0)
Task Complete: “N” (1)

For each specification table that you develop test cases for, please keep a list of the test cases. As a minimum, please
provide the information shown above (table number and name; a list of test cases for that table). Please keep track of
how long it takes you to develop the test cases.”

Part III: Execute Test Cases

The design for Part III of the experiment consisted of 1 tester executing the manually generated test cases plus the

MICASA generated test cases. The manually generated test cases were formatted to be identical to the MICASA

generated cases. Only the researcher knew which cases came from MICASA and which cases were manually generated.

The JEDMICS system was not available to the researcher for executing test cases because this commercial product is

viewed as proprietary by the developer. The TPS-DIWS software was still under development during the course of the

experiment. As a result, one table was used, a specification table for the Precision Targeting Workstation (PTW).

The Part III design is depicted below. The first table describes the number of cases executed for the PTW system

(whether test cases were generated manually or by MICASA). The table views Part III of the experiment based on Subject

(Tester) and System. Tester B11 executed all her own test cases (3) for the PTW table (of System C), as well as 43 of the

MICASA-generated cases. Tester B8 executed all of his own test cases (4) for System C as well as 10 of the MICASA-

generated cases.

PTW [SYSTEM C], #
CASES EXECUTED

60

B11 By hand test cases, 3
cases

B11 MICASA test cases,
43 cases

B8 By hand test cases, 4
cases

B8 MICASA test cases,
10 cases

The next table summarizes the same information, but looks at it from a Condition and System perspective.

 Condition System

C (PTW)

Experimental
(MICASA Cases) Tester B11, B8

Control
(Manually
Generated Cases)

Tester B11, B8 Part III: Execute Test Cases

The repeated measures were number of defects detected per test case, and time to execute test cases. The testers were

provided the following set of instructions for performing Part III of the experiment.

Instructions to Testers: “Run the test cases and note any failures encountered. Document each failure on a Software
Trouble Report (STR). For example, suppose that when executing the following Table 5.2.3.4 test case:

Case 1: Task ID: “Task000001” (10)
Name: “ “ (20 blanks)
Task Priority: “ “ (1 blank)
Task Complete: “Y” (1)

a failure occurred. The system hung up and had to be rebooted. The STR form might be filled out as follows:

61

(TYPE OR PRINT)

SOFTWARE TROUBLE REPORT [X]
SOFTWARE CHANGE PROPOSAL []

1. DATE:
23 January 1998

2. STR/SCP NUMBER

JEH0001
3.*TITLE (BRIEFLY DESCRIBE IN 80 CHARACTERS OR LESS)

Crash During Task Recognizer Test

4.* ORIGINATOR

J. Hayes

5. ORIGINATOR XREF 6.* PHONE 7.* SITE

8. HOW DETECTED (CHECK ONE)
[X] TESTING [] OPERATIONS [] OTHER

9.* ORIG RECOMMENDED PRIORITY

 1 2 3 4 5

10. FREQUENCY (CHECK ONE)
[X] ONE TIME [] SELDOM [] FREQUENTLY [] CONTINUALLY

11. ORIG RECOMMENDED CATEGORY
[X] SW [] DOC [] DESIGN [] RQMT

12. REFERENCE (STR/SCP OR DOCUMENT)
Table 5.2.3.4

13.* PRODUCT & RELEASE:

 COMPONENT ITEM AFFECTED:
 [] S/W: FUNCTION:
 [] DOC: TITLE/DOC #: Rev:

14.* TROUBLE DESCRIPTION (360 CHARACTERS OR LESS)

While running Case 1 for Table 5.2.3.4 Task Recognizer, a failure occurred. The
software system locked up and had to be rebooted in order to continue.

[] Continued Next Page

15. PROPOSED SOLUTION:

Attachments: [] Continued Next Page

62

For each failure encountered, please complete a software trouble report. Please keep track of how long it takes
you to run the test cases.”

Discussion/Observations

For part I of the experiment, the researcher noted that the senior testers did not find a very high percentage of the

defects present in the poorest quality specification tables. The researcher observed that when specification tables

were of particularly poor quality, the participants seemed to make very little effort to identify defects. Instead

they seemed to assert their effort on the tables that were of higher quality. This phenomenon also showed up in

part II of the experiment. The researcher noted that participants did not even attempt to develop test cases for the

poor quality specification tables. For future research, it may be desirable to formally categorize tables as being

low, moderate, or high quality (perhaps by identifying all present defects and/or seeding additional defects) prior

to asking participants to analyze them. This would permit formal analysis of any possible interaction between

participant’s performance and specification table quality.

For part II of the experiment, a dependent variable was added. Percentage of effective test cases was not

originally part of the experimental design. During part II analysis, the researcher noticed that many test cases

were duplicated (hand generated and MICASA-generated). Though the test cases were not identical to each

other syntactically, the cases were semantically repetitive. For example, one test case modified an alphanumeric

field from “TASK” to “TASP” while a second test case modified the same field to “PASK.” To determine the

percentage of effective test cases, the researcher built a matrix of every data element in the specification table.

Each test case was analyzed to determine the data elements that had been modified and how. Each time a new

combination of changes was used, a test case was counted as an effective test case. Test cases that syntactically

modified the same fields were counted as duplicates.

63

Percentage of effective test cases was calculated as:

Percentage of Effective Test Cases = (Number of Effective Test Cases/Total Number of Test Cases) * 100

Coverage of test cases was measured as described in Section 3.3, with a minimum of four test cases expected for

each specification table containing at least one loop. The four test cases expected were 0 times through the loop,

one time through the loop, X times through the loop (where X is the length of the data element), and X+1 times

through the loop. A set of test cases covering all four of these conditions would receive a 100% coverage

measure (for 4 out of 4 possible conditions).

For all three parts of the experiment, there was interesting synergism between the defects found by the tool and

those found by senior testers. For part I, roughly 5% or less of the defects found by the IVT method (MICASA)

were also found by senior testers (and vice versa). These were obviously syntactic defects. The senior testers

concentrated almost exclusively on semantic defects. Interestingly, the test cases generated by the senior testers

were more syntactically oriented. The researcher noted that the IVT method test cases found 13 of the 21 defects

found by tester B8 and one of the six defects found by tester B11. Also, the MICASA test cases found five

defects that were not detected by the senior tester cases. The senior testers emphasized the semantic aspects of

the system, not the syntactic aspects of the requirements specification.

Overview of Findings

As discussed above, the experiment performed is concerned with two primary factors: condition and system.

The data collected was analyzed by applying the analysis-of-variance (ANOVA) model to the dependent

variables described in Table 5.0-2. The factors were looked at individually, as well as in combination with each

other. Of interest are the significant factors and interactions [30].

Table 5.0-4 presents the dependent variables (rows), the factors (columns), and whether or not the combinations

have statistical significance (cells). For example, the probability of the differences in the total number of

specification defects detected for condition being due to chance is .0042, or 4.2 in 1,000. In other words, this

64

difference is very statistically significant and is interpreted as being attributable to real differences among the

conditions. On the other hand, the differences in total time for exercise for condition could be attributable to

random events and are not significant. A value is not considered to be statistically significant if the probability

of the result being due to chance is greater than 0.05; a dash (--) is entered in the cell whenever the probability is

greater than 0.05.

Because many testers dropped out or did not complete all tasks assigned to them, there were more data values

available for some specification tables and Systems than for others. For example, in part I of the experiment,

only two testers analyzed the JEDMICS specification table, but four testers analyzed the two TPS-DIWS

specifications. For Condition and System, all data values were analyzed using ANOVA Single Factor analysis

(of MS Excel). For SYS*COND, an attempt was made to use all data values with ANOVA Two-Factor Without

Replication. With unequal numbers of values per System, MS Excel would not process this data. Therefore, a

reduced set of values were analyzed using ANOVA Two-Factor with Replication. In order to reduce the data

values (so that there were the same number for each System), the worst values for senior testers were removed

from the set (to improve the results of the senior testers). The best values for the senior testers were kept, so for

TPS-DIWS there were four data values thrown out (where senior testers found 0,0, 1, and 1 defects during part I,

these were the lowest number of defects detected by the senior testers). Similarly, the worst times to complete

tasks were thrown out for senior testers (used only the fastest times for the senior testers). This method of data

reduction clearly skews the data in favor of the control condition and not in favor of the experimental condition.

Appendix B presents all the experimental means (averages) in tabular format as well as data used to obtain the

experimental means. Appendix C presents the defects found during part I of the experiment by MICASA and

senior testers for one JEDMICS (System B) specification table. Appendix D presents the defects detected by

executing MICASA-generated and senior tester-generated test cases on PTW (System C). The remainder of this

section will be dedicated to explaining the findings summarized in the tables.

65

Table 5.0-4. Significance of Findings for the Dependent Variables

FACTORS

DEPENDENT
VARIABLES

COND SYS
SYS*
COND

Total number of
specification
defects detected

.0042 -- --

Total number of
syntactic
specification
defects detected

.0007 -- --

Total time for the
exercise

Given below Given below Given below

Part I -- .015 --
Part II -- .0096 1.44E-05
Part III 6.22E-15 N/A N/A

Percentage of
syntax coverage

1.12E-10 -- --

Percentage of
effective test cases

-- .039 --

Total number of
defects detected

-- N/A N/A

Average number of
defects detected per
test case

.0305 N/A N/A

Average time for
all defects
identified

Given below Given below Given below

Test Case
Execution Time
Only

2.02E-10 N/A N/A

Test Case
Development
and Execution
Time

4.15E-08 N/A N/A

-- Means no statistical significance

66

Condition Effects

A concern for this experiment was the effect of condition. How did the MICASA tool perform as compared to

the participants without a tool? Figures 5.0-1 through 5.0-7 present a graphical depiction of representative

experimental results for condition, discussed below.

37.4

7.5

0

5

10

15

20

25

30

35

40

MICASA Testers

Total Number of Specification Defects Detected

Figure 5.0-1. Total Number of Specification Defects Detected for Condition.

67

37.4

1.5

0

5

10

15

20

25

30

35

40

MICASA Testers

Total Number of Syntactic Specification Defects Detected

Figure 5.0-2. Total Number of Syntactic Defects Detected for Condition.

Specification Analysis (Part I) Findings

 IVT Method (MICASA tool) Found More Specification Defects than Control Condition (Senior Testers). It was
hypothesized that the experimental condition (MICASA tool) would find more defects than the control condition
(manual) and that it would take less time to do so. The MICASA tool, for all systems, found significantly more
total defects than the senior testers with no tool (37.4 as compared to 7.5). The MICASA tool found
significantly more syntactic defects than the senior testers (37.4 as compared to 1.5).

Test Case Generation (Part II) Findings

 IVT Method (MICASA tool) Achieved Higher Test Case Coverage than Control Condition (Senior Testers). It
was hypothesized that the coverage percentage of the test cases generated by the experimental condition
(MICASA tool) would be at least as high as those generated by the control condition (manual) and that it would
take less time to do so. The MICASA tool, for all systems, achieved a higher coverage percentage than the
senior testers with no tool (100% as compared to 31.25%).

68

100

31.25

0

20

40

60

80

100

120

MICASA Testers

Coverage Percentage for Test Cases Developed

Figure 5.0-3. Coverage Percentage of Test Cases Developed for Condition.

Test Case Execution (Part III) Findings

7.9

175.7

0

20

40

60

80

100

120

140

160

180

200

Time to Execute a Test Case (Minutes)

MICASA

Testers

Figure 5.0-4. Average Time to Execute Test Cases for Condition.

69

IVT Method (MICASA tool) Test Cases Faster to Execute Than Those Developed by Control Condition (Senior
Testers). It was hypothesized that the average time required to execute an IVT test case would be less than for
those generated by the control condition (manual). The MICASA test cases were executed in an average of 7.9
minutes as compared to 175.7 minutes for manually generated test cases.

4.6

7.4

0

1

2

3

4

5

6

7

8

Defects Detected per Test Case

MICASA

Testers

Figure 5.0-5. Defects Detected Per Test Case for Condition.

Control Condition (Senior Testers) Found More Defects Per Test Case Than IVT Method (IVT Tool). It was
hypothesized that the test cases generated using the IVT method would find a greater number of defects than
when using manually generated test cases. That was not the case as senior testers found an average of 7.4
defects per test case as opposed to an average of 4.6 defects found by MICASA test cases. It should be noted
that the senior testers rank defects as Priority 1 through 5 as part of standard practice (with Priority 1 being show
stoppers with no work-around possible and Priority 5 being inconveniences to the end user). The defects found
were all considered to be Priority 4 or 5 (senior tester cases and MICASA cases). So it was not the case that
senior testers found more important, higher priority defects than the IVT method.

IVT Method (MICASA tool) Test Cases Require Less Average Execution Time to Identify a Defect Than Those
Developed by Control Condition (Senior Testers). Considering only execution time, the IVT method cases took
only 2.17 minutes to find a defect, as opposed to 30.9 minutes for manually generated test cases.

70

2.17

30.9

0

5

10

15

20

25

30

35

Average Time to Identify a Defect in Minutes (Execution Time Only)

MICASA

Testers

Figure 5.0-6. Average Time to Identify a Defect in Minutes (Execution Time Only).

8.4

72.27

0

10

20

30

40

50

60

70

80

Average Time to Identify a Defect in Minutes (Test Case Development and Execution Time)

MICASA

Testers

Figure 5.0-7. Average Time to Identify a Defect (Test Case Development and Execution Time).

71

IVT Method (MICASA tool) Test Cases Require Less Average Total Time to Identify a Defect Than Those
Developed by Control Condition (Senior Testers). Considering test case development and execution time, the
IVT method cases took only 8.4 minutes to find a defect, as opposed to 72.2 minutes for manually generated test
cases.

System Effects

The specification tables for three different systems (TPS-DIWS, JEDM, and PTW) were examined, to ensure

“generalness” of the IVT method and to ensure that experimental results were not biased by only using one

system’s specifications. How did the systems effect the experimental results? Figures 5.0-8 through 5.0-10

present a graphical depiction of representative experimental results for system, discussed below.

Specification Analysis (Part I) Findings

System C More Difficult to Analyze than Systems A and B. System C (PTW) took significantly more time for
senior testers and MICASA to analyze than the other two systems. It took an average of 59.5 minutes to analyze
System A, while it only took an average of 31.8 minutes to analyze System A and 12.5 minutes to analyze
System B.

31.8

12.5

59.5

0

10

20

30

40

50

60

70

System A System B System C

Total Time to Analyze Specifications

Figure 5.0-8. Total Time to Analyze Specifications for System.

72

Test Case Generation (Part II) Findings

Higher Percentage of Effective Test Cases for System C than for System A. The test cases generated for System
C (PTW) (both by senior testers and MICASA) were more effective than those developed for System A. The
System C test cases were 92.4% effective, while the System A test cases on average were 62.9% effective.

62.9

32.4

0

10

20

30

40

50

60

70

System A System C

Percentage of Effective Test Cases Developed

Figure 5.0-9. Percentage Effective Test Cases Developed by System.

More Minutes Required to Develop a Test Case for System C than for System A. The test cases generated for
System C (PTW) (both by senior testers and MICASA) took more than 12 times as long to develop as those for
System A. The average time to develop a test case for System A was 5 minutes, while it took, on average, 67.7
minutes to develop a test case for System C.

73

5

67.7

0

10

20

30

40

50

60

70

80

System A System C

Time to Develop a Test Case (in Minutes)

Figure 5.0-10. Average Time to Develop a Test Case by System.

Test Case Execution (Part III) Findings

As only System C was used for Part III of the experiment, there are no System results.

System and Condition Effects

Next we combined the factors of system (systems A, B, and C) and condition (experimental and control). How

did the MICASA tool perform as compared to the participants without a tool, from both a system and condition

perspective? Figure 5.0-11 presents a graphical depiction of representative experimental results for system,

discussed below.

Specification Analysis (Part I) Findings

None of the part I findings for System and Condition were statistically significant.

Test Case Generation (Part II) Findings

 Time to Develop a Test Case Higher for System C and for Senior Testers. The System*Condition interaction for
Time to Develop a Test Case was statistically significant. System C required 135 minutes for senior testers to
develop test cases and 0.47 minutes for MICASA to generate a test case. System A required 7.55 minutes for a
senior tester to develop a test case and 0.06 minutes for MICASA to develop a test case.

74

0.06

7.55

0.47

135

0

15

30

45

60

75

90

105

120

135

MICASA
Time to Develop a Test Case (in Minutes)

Testers
Time to Develop a Test Case (in Minutes)

System A

System C

Figure 5.0-11. Average Time to Develop a Test Case by System and Condition.
Test Case Execution (Part III) Findings

As only System C was used for Part III of the experiment, there are no System and Condition results.

75

Chapter 6

6.0 CONCLUSIONS AND FUTURE RESEARCH

Validation results show that the IVT method, as implemented in the MICASA tool, found more

specification defects than senior testers, generated test cases with higher syntactic coverage than senior testers,

generated test cases that took less time to execute, generated test cases that took less time to identify a defect

than senior testers, and found defects that went undetected by senior testers.

The results indicate that static analysis of requirements specifications can detect syntactic defects, and

do it early in the lifecycle. More importantly, these syntactic defects can be used as the basis for generating test

cases that will identify defects once the software application has been developed, much later in the lifecycle.

The requirements specification defects identified by this method were not found by senior testers. Half of the

software defects found by this method were not found by senior testers. And this method took on average 8.4

minutes to identify a defect as compared to 72.27 minutes for a senior tester. So the method is efficient enough

to be used in addition to testing activities already in place.

There were several inefficiencies in the implementation and algorithms used to detect syntactic defects

in the requirements specifications (particularly between overloaded token and ambiguous grammar). This

resulted in a number of extremely similar entries in the Test Obligation Database. As a result, the test cases

generated for these entries were not effective. The researcher is confident that changes to this portion of

MICASA will result in a smaller number of test cases being generated with a higher percentage of the test cases

being effective.

What do the research results mean to us? To testers, it means that they should not overlook syntactic-

oriented test cases, and that they should consider introducing syntactic static analysis of specifications into their

early life cycle activities. To developers, it means that emphasis must be put on specifying and designing robust

interfaces. Developers may also consider introducing syntactic deskchecks of their interface specifications into

76

their software development process. To project managers, it means that interface specifications are a very

important target of verification and validation activities. Project managers must allow testers to begin their tasks

early in the life cycle. Managers should also require developers to provide as much detail as possible in the

interface specifications, facilitating automated analysis as much as possible. Similarly, customers should require

interface specifications to include as much information as possible, such as expected data values and whether or

not a field is required or optional.

One area for future research is that of sequencing of commands. The IVT method views commands in

isolation, not as a sequence. This is particularly important for highly automated software systems (like the Apple

Macintosh operating system) that rely heavily on user selections (mouse clicks). When combining sequences of

commands, a combinatorial explosion can quickly occur. Scripting may be the solution to the sequencing

challenge as discussed in the Sleuth paper [40].

The handling of masks (such as DD-MM-YYYY and XXX.XX) is a possible area for future research.

Date masks are an important area due to the emphasis on ensuring that software systems are Year 2000

compliant. MICASA currently treats date masks and real or float masks as numeric data types. In solving this

challenge, user interaction may be required to ensure that masks are correctly parsed.

Another area for future research is that of table elements that are automatically generated by the subject

software as opposed to being entered by the user. The IVT method automatically generates test case values for

every element in a table. The user must ignore those elements when executing the test case. To build an

automated solution to this, a field must be added to requirements specifications indicating whether a data

element is manually entered or automatically generated.

77

The IVT method may adapt well to the analysis and testing of graphical user interfaces (GUIs). The

GUI specifications could be analyzed and then used as the basis for test case generation, with mouse clicks and

menu picks replacing keyboard keystrokes.

Careful analysis of each of the static anomalies (overloaded token, ambiguous grammar, etc.) and the

effectiveness of the test cases generated based on that test obligation is another area for future research. It may

be the case that some test obligation types generate test cases that find many defects, while others may not be as

effective. Similarly, the semantic-oriented static defects detected by senior testers could be examined to

determine if additional semantic-type checks can be added to the IVT method.

Another possible future research area involves data element dependencies. Some specification table

data elements depend on the values of other elements (this relationship is generally not stated in the specification

table). To help solve this, a dependency field should be added to requirements specification tables. This field

(semantic rules) could then be used to drive test case generation.

78

Appendix A

Table 3.2.4.1-10. ETF Weaponeering Dataset
Description Size Values
TABLE_ID 12 varchar
FORMAT_VERSION_ID 4 int
DAMAGE_CRITERION 15 varchar
DAMAGE_CRITERION_SEQUENCE_NO 2 varchar
SECURITY_CATEGORY (Weaponeering Dataset) 2 varchar
CLASSIFICATION_LEVEL (Weaponeering Dataset)) 1 char
NUMBER_OF_SEC_HANDLING_INSTR 1 tinyint
SEC_CONTROL_HANDLING_INSTR (Weaponeering Dataset) 40 null
NUMBER_OF_LINES (Aimpoint Strike Objective) 3 varchar
AIMPOINT_OBJECTIVE 128 (U)
WEAPON_TO_TARGET_FLAG 1 null
PREDICTED_PROB_OF_DAMAGE (SSPD or SSFD) 3 null
NUMBER_OF_LINES (Expected Results) 3 varchar
EXPECTED_RESULTS 128 (U)
NUMBER_OF_LINES (Related Aimpoints) 3 varchar
RELATED_AIMPOINTS 132 null
NUMBER_OF_LINES (BDA Visible Damage) 3 varchar
BDA_VISIBLE_DAMAGE 128 (U)
NUMBER_OF_LINES (BDA Sensor Requirements) 3 varchar
BDA_SENSOR_REQUIREMENTS 128 (U)
NUMBER_OF_LINES (BDA EEI) 3 varchar
BDA_ESSENTIAL_ELEMENTS_INFO 128 (U)
ERROR_TYPE 1 null
CEP_PLANE 1 char
NOMINAL_CEP 4 CEP_MAXIMUM
NOMINAL_REP 4 null
NOMINAL_DEP 4 null
NOMINAL_IMPACT_ANGLE 3 null
EFFECTIVENESS_INDEX_TYPE 1 null
MAE_VALUE_OR_VAN 4 null
EFFECTIVE_MISS_DISTANCE (EMD) 2 0

PERCENT_BURIAL 1 0
PROB_OF_DAMAGE_GIVEN_A_HIT 3 1.00
ELEMENT_LENGTH_OR_RADIUS 4 OBJECT_LENGTH_OR_RADIUS
ELEMENT_WIDTH 4 OBJECT_WIDTH
ELEMENT_HEIGHT 2 OBJECT_HEIGHT
ELEMENT_AZIMUTH 2 OBJECT_AZIMUTH
ELEMENT_AREA_LENGTH_RADIUS 4 OBJECT_AREA_LENGTH_

OR_RADIUS
ELEMENT_AREA_WIDTH 4 OBJET_AREA_WIDTH

WEAPON_RELIABILITY 3 0.99
RANGE_OFFSET_FROM_DMPI 4 0

1
DEFLECTION_OFFSET_FROM_DMPI 4 0
PATTERN_TYPE 1 0

3
PROB_ DAMAGE_OR_AVAIL_PASSES 3 null
NUMBER_OF_PASSES_REQUIRED 3 null
EXPECTED_PD_FROM_NUM_PASSES 3 null
WEAPON_TYPE 1 6
MISSILE_VELOCITY 2 430
NUMBER_OF_GS_PULLED 2 0.0
RELEASE_ALT_OF_FIRST_WEAPON 4 null
DIVE_ANGLE 2 null
NUMBER_OF_RELEASE_PULSES 2 null
WEAPONS_RELEASED_PER_PULSE 2 2
INTERVALOMETER_SETTING 2 null
DISTANCE_BTWN_STATIONS 2 smallint
MER_TER_RELEASE 1 N
TARGET_ALTITUDE 4 0
WEAPON_OR_DISPENSER_TERMINAL_VELOCITY 4 250
SECOND_LEG_TERMINAL_VELOCITY 2 135
EJECTION_VELOCITY 3 0
FUNCTIONING_TIME 4 0.50
SLANT_RANGE 4 null
JMEM_IMPACT_ANGLE 3 null

STICK_LENGTH 2 null
STICK_WIDTH 2 null
BALLISTIC_ERROR 1 tinyint
SUBMUNITION_RELIABILITY 3 numeric
NUMBER_OF_SUBMUNIT_DISPENSER 2 7
PATTERN_LENGTH 2 smallint
PATTERN_WIDTH 2 smallint
PROBABILITY_OF_NEAR_MISS 3 1.00
PROBABILITY_OF_DIRECT_HIT 3 0.00
RANGE_BIAS 3 0.00
PROBABILITY_OF_RELEASE 3 1.00
INTERPOLATION_FLAG 1 N
INTERPOLATION_POINT 3 null
INTERP_LOWER_BOUND 3 null
MAE_AT_LOWER_BOUND 4 null
INTERP_UPPER_BOUND 3 null
MAE_AT_UPPER_BOUND 4 null
NUMBER_OF_LINES (Weaponeering Notes) 3 varchar
WEAPONEERING_NOTES_1 255 (U)
WEAPONEERING_NOTES_2 145 null

82

Input Validation for
Table_3_2_4_1_10___ETF_Weaponeering_Dataset

Test ID: Tx.xxx

Criticality:

System & Build: TEST 6.9.98

DR Number:

Requirements/Documentation

EFT

Purpose

The purpose of this test is to verify correct operation of the input validation capabilities.

Procedure

The test cases for table Table_3_2_4_1_10___ETF_Weaponeering_Dataset are defined
as follows:

Case 1064 : Invalid

Case 1065 : Invalid

Case 1066 : Valid

Case 1067 : Invalid

Case 1064 : Invalid

The purpose of this test case is to verify that the input validation capability recognizes
incorrect input.

Test Case~ (U)
(U) (U)
(U) (U)
CEP_MA0 0 1.00OBJECOBJECOBJEOBJOBJECOBJET0.990 1 0 064300.02 Y0
250 1350 0.50 7 1.000.000.00 1.00N(U)

Test Case Breakdown:

AIMPOINT_OBJECTIVE ~(U)

EXPECTED_RESULTS ~(U)

BDA_VISIBLE_DAMAGE ~(U)

BDA_SENSOR_REQUIREMENTS ~(U)

83

BDA_ESSENTIAL_ELEMENTS_INFO ~(U)

NOMINAL_CEP ~CEP_MA

EFFECTIVE_MISS_DISTANCE (EMD) ~0

PERCENT_BURIAL ~0

PROB_OF_DAMAGE_GIVEN_A_HIT ~1.00

ELEMENT_LENGTH_OR_RADIUS ~OBJEC

ELEMENT_WIDTH ~OBJEC

ELEMENT_HEIGHT ~OBJE

ELEMENT_AZIMUTH ~OBJ

ELEMENT_AREA_LENGTH_RADIUS ~OBJEC

ELEMENT_AREA_WIDTH ~OBJET

WEAPON_RELIABILITY ~0.99

RANGE_OFFSET_FROM_DMPI ~0 1

DEFLECTION_OFFSET_FROM_DMPI ~0

PATTERN_TYPE ~0

WEAPON_TYPE ~6

MISSILE_VELOCITY ~430

NUMBER_OF_GS_PULLED ~0.0

WEAPONS_RELEASED_PER_PULSE ~2

MER_TER_RELEASE ~Y

TARGET_ALTITUDE ~0

WEAPON_OR_DISPENSER_TERMINAL_VELOCITY ~250

SECOND_LEG_TERMINAL_VELOCITY ~135

EJECTION_VELOCITY ~0

FUNCTIONING_TIME ~0.50

NUMBER_OF_SUBMUNIT_DISPENSER ~7

PROBABILITY_OF_NEAR_MISS ~1.00

PROBABILITY_OF_DIRECT_HIT ~0.00

RANGE_BIAS ~0.00

PROBABILITY_OF_RELEASE ~1.00

INTERPOLATION_FLAG ~N

WEAPONEERING_NOTES_1 ~(U)

84

Case 1065 : Invalid

The purpose of this test case is to verify that the input validation capability recognizes
incorrect input.

Test Case~ Z23VKX2KQ(U)
R4T(U)
V47(U)
N(U) I(U)
5VCEP_MA228660 0 1.00OBJECOBJECOBJEOBJOBJECOBJET0.990 1 0
096464300.02492 56Y0 250 1350 0.50 2850297 171.000.000.00 1.00N21841T(U)
A

Test Case Breakdown:

TABLE_ID ~Z

FORMAT_VERSION_ID ~2

DAMAGE_CRITERION ~3

DAMAGE_CRITERION_SEQUENCE_NO ~V

SECURITY_CATEGORY (Weaponeering Dataset) ~K

CLASSIFICATION_LEVEL (Weaponeering Dataset)) ~X

NUMBER_OF_SEC_HANDLING_INSTR ~2

SEC_CONTROL_HANDLING_INSTR (Weaponeering Dataset) ~K

NUMBER_OF_LINES (Aimpoint Strike Objective) ~Q

AIMPOINT_OBJECTIVE ~(U)

WEAPON_TO_TARGET_FLAG ~R

PREDICTED_PROB_OF_DAMAGE (SSPD or SSFD) ~4

NUMBER_OF_LINES (Expected Results) ~T

EXPECTED_RESULTS ~(U)

NUMBER_OF_LINES (Related Aimpoints) ~V

RELATED_AIMPOINTS ~4

NUMBER_OF_LINES (BDA Visible Damage) ~7

BDA_VISIBLE_DAMAGE ~(U)

NUMBER_OF_LINES (BDA Sensor Requirements) ~N

BDA_SENSOR_REQUIREMENTS ~(U)

NUMBER_OF_LINES (BDA EEI) ~I

BDA_ESSENTIAL_ELEMENTS_INFO ~(U)

ERROR_TYPE ~5

CEP_PLANE ~V

NOMINAL_CEP ~CEP_MA

85

NOMINAL_REP ~2

NOMINAL_DEP ~2

NOMINAL_IMPACT_ANGLE ~8

EFFECTIVENESS_INDEX_TYPE ~6

MAE_VALUE_OR_VAN ~6

EFFECTIVE_MISS_DISTANCE (EMD) ~0

PERCENT_BURIAL ~0

PROB_OF_DAMAGE_GIVEN_A_HIT ~1.00

ELEMENT_LENGTH_OR_RADIUS ~OBJEC

ELEMENT_WIDTH ~OBJEC

ELEMENT_HEIGHT ~OBJE

ELEMENT_AZIMUTH ~OBJ

ELEMENT_AREA_LENGTH_RADIUS ~OBJEC

ELEMENT_AREA_WIDTH ~OBJET

WEAPON_RELIABILITY ~0.99

RANGE_OFFSET_FROM_DMPI ~0 1

DEFLECTION_OFFSET_FROM_DMPI ~0

PATTERN_TYPE ~0

PROB_ DAMAGE_OR_AVAIL_PASSES ~9

NUMBER_OF_PASSES_REQUIRED ~6

EXPECTED_PD_FROM_NUM_PASSES ~4

WEAPON_TYPE ~6

MISSILE_VELOCITY ~430

NUMBER_OF_GS_PULLED ~0.0

RELEASE_ALT_OF_FIRST_WEAPON ~2

DIVE_ANGLE ~4

NUMBER_OF_RELEASE_PULSES ~9

WEAPONS_RELEASED_PER_PULSE ~2

INTERVALOMETER_SETTING ~5

DISTANCE_BTWN_STATIONS ~6

MER_TER_RELEASE ~Y

TARGET_ALTITUDE ~0

WEAPON_OR_DISPENSER_TERMINAL_VELOCITY ~250

SECOND_LEG_TERMINAL_VELOCITY ~135

86

EJECTION_VELOCITY ~0

FUNCTIONING_TIME ~0.50

SLANT_RANGE ~2

JMEM_IMPACT_ANGLE ~8

STICK_LENGTH ~5

STICK_WIDTH ~0

BALLISTIC_ERROR ~2

SUBMUNITION_RELIABILITY ~9

NUMBER_OF_SUBMUNIT_DISPENSER ~7

PATTERN_LENGTH ~1

PATTERN_WIDTH ~7

PROBABILITY_OF_NEAR_MISS ~1.00

PROBABILITY_OF_DIRECT_HIT ~0.00

RANGE_BIAS ~0.00

PROBABILITY_OF_RELEASE ~1.00

INTERPOLATION_FLAG ~N

INTERPOLATION_POINT ~2

INTERP_LOWER_BOUND ~1

MAE_AT_LOWER_BOUND ~8

INTERP_UPPER_BOUND ~4

MAE_AT_UPPER_BOUND ~1

NUMBER_OF_LINES (Weaponeering Notes) ~T

WEAPONEERING_NOTES_1 ~(U)

WEAPONEERING_NOTES_2 ~A

Case 1066 : Valid

The purpose of this test case is to verify that the input validation capability recognizes
correct input.

Test Case~
ZTU237073ZBO52N85C8NS1BVQKWX2K33V96IZ9ITD9YAUDD2KBKNK89OKF
FXOOZLWHGVCQ6J(U)
R4614T3T(U)
VNO4V7SL(U)
NO4(U)
IMT(U)
5VCEP_MA288530216932815666803820 0

87

1.00OBJECOBJECOBJEOBJOBJECOBJET0.990 1 0
091561677404564300.02440449212 5320635Y0 250 1350 0.50
26432814657130792291437 180772941.000.000.00
1.00N280198892669408126359T81(U)
AX8ENR6G3XIB6RYCA8H6QGK14JM54OVG7JALVNX0ZGCIH9GX6JJ11OFUEJ4
YQUIAJ8B4CZJ6BVR5Q33CUS2P9FYY0R94GXJ50ODWDYLDWTU47HFZ3L42N
VNSRV1LJ5JFFIGS8OKYIYLB8JY9N

Test Case Breakdown:

TABLE_ID ~ZTU

FORMAT_VERSION_ID ~23707

DAMAGE_CRITERION ~3ZBO52N85C8NS1B

DAMAGE_CRITERION_SEQUENCE_NO ~VQ

SECURITY_CATEGORY (Weaponeering Dataset) ~KW

CLASSIFICATION_LEVEL (Weaponeering Dataset)) ~X

NUMBER_OF_SEC_HANDLING_INSTR ~2

SEC_CONTROL_HANDLING_INSTR (Weaponeering Dataset)
~K33V96IZ9ITD9YAUDD2KBKNK89OKFFXOOZLWHGVC

NUMBER_OF_LINES (Aimpoint Strike Objective) ~Q6J

AIMPOINT_OBJECTIVE ~(U)

WEAPON_TO_TARGET_FLAG ~R

PREDICTED_PROB_OF_DAMAGE (SSPD or SSFD) ~4614

NUMBER_OF_LINES (Expected Results) ~T3T

EXPECTED_RESULTS ~(U)

NUMBER_OF_LINES (Related Aimpoints) ~VNO

RELATED_AIMPOINTS ~4V

NUMBER_OF_LINES (BDA Visible Damage) ~7SL

BDA_VISIBLE_DAMAGE ~(U)

NUMBER_OF_LINES (BDA Sensor Requirements) ~NO4

BDA_SENSOR_REQUIREMENTS ~(U)

NUMBER_OF_LINES (BDA EEI) ~IMT

BDA_ESSENTIAL_ELEMENTS_INFO ~(U)

ERROR_TYPE ~5

CEP_PLANE ~V

NOMINAL_CEP ~CEP_MA

NOMINAL_REP ~288530

NOMINAL_DEP ~216932

88

NOMINAL_IMPACT_ANGLE ~8156

EFFECTIVENESS_INDEX_TYPE ~6

MAE_VALUE_OR_VAN ~680382

EFFECTIVE_MISS_DISTANCE (EMD) ~0

PERCENT_BURIAL ~0

PROB_OF_DAMAGE_GIVEN_A_HIT ~1.00

ELEMENT_LENGTH_OR_RADIUS ~OBJEC

ELEMENT_WIDTH ~OBJEC

ELEMENT_HEIGHT ~OBJE

ELEMENT_AZIMUTH ~OBJ

ELEMENT_AREA_LENGTH_RADIUS ~OBJEC

ELEMENT_AREA_WIDTH ~OBJET

WEAPON_RELIABILITY ~0.99

RANGE_OFFSET_FROM_DMPI ~0 1

DEFLECTION_OFFSET_FROM_DMPI ~0

PATTERN_TYPE ~0

PROB_ DAMAGE_OR_AVAIL_PASSES ~915

NUMBER_OF_PASSES_REQUIRED ~61677

EXPECTED_PD_FROM_NUM_PASSES ~4045

WEAPON_TYPE ~6

MISSILE_VELOCITY ~430

NUMBER_OF_GS_PULLED ~0.0

RELEASE_ALT_OF_FIRST_WEAPON ~2440

DIVE_ANGLE ~44

NUMBER_OF_RELEASE_PULSES ~921

WEAPONS_RELEASED_PER_PULSE ~2

INTERVALOMETER_SETTING ~5320

DISTANCE_BTWN_STATIONS ~635

MER_TER_RELEASE ~Y

TARGET_ALTITUDE ~0

WEAPON_OR_DISPENSER_TERMINAL_VELOCITY ~250

SECOND_LEG_TERMINAL_VELOCITY ~135

EJECTION_VELOCITY ~0

FUNCTIONING_TIME ~0.50

89

SLANT_RANGE ~26432

JMEM_IMPACT_ANGLE ~8146

STICK_LENGTH ~5713

STICK_WIDTH ~079

BALLISTIC_ERROR ~22

SUBMUNITION_RELIABILITY ~9143

NUMBER_OF_SUBMUNIT_DISPENSER ~7

PATTERN_LENGTH ~1807

PATTERN_WIDTH ~7294

PROBABILITY_OF_NEAR_MISS ~1.00

PROBABILITY_OF_DIRECT_HIT ~0.00

RANGE_BIAS ~0.00

PROBABILITY_OF_RELEASE ~1.00

INTERPOLATION_FLAG ~N

INTERPOLATION_POINT ~280

INTERP_LOWER_BOUND ~198

MAE_AT_LOWER_BOUND ~892669

INTERP_UPPER_BOUND ~408

MAE_AT_UPPER_BOUND ~126359

NUMBER_OF_LINES (Weaponeering Notes) ~T81

WEAPONEERING_NOTES_1 ~(U)

WEAPONEERING_NOTES_2
~AX8ENR6G3XIB6RYCA8H6QGK14JM54OVG7JALVNX0ZGCIH9GX6JJ11OFUEJ
4YQUIAJ8B4CZJ6BVR5Q33CUS2P9FYY0R94GXJ50ODWDYLDWTU47HFZ3L42
NVNSRV1LJ5JFFIGS8OKYIYLB8JY9N

Case 1067 : Invalid

The purpose of this test case is to verify that the input validation capability recognizes
incorrect input.

Test Case~
ZTUN2370743ZBO52N85C8NS1BZVQJKW5X224K33V96IZ9ITD9YAUDD2KBKN
K89OKFFXOOZLWHGVCEQ6JH(U)
RI46149T3TA(U)
VNOL4VZ7SLK(U)
NO4L(U)
IMTF(U)
53VRCEP_MA28853092169320815676068038260 0

90

1.00OBJECOBJECOBJEOBJOBJECOBJET0.990 1 0
091566167774045464300.02440744192192 532036350Y0 250 1350 0.50
26432281466571310798221914347 18079729441.000.000.00
1.00N28091984892669740871263592T81F(U)
AX8ENR6G3XIB6RYCA8H6QGK14JM54OVG7JALVNX0ZGCIH9GX6JJ11OFUEJ4
YQUIAJ8B4CZJ6BVR5Q33CUS2P9FYY0R94GXJ50ODWDYLDWTU47HFZ3L42N
VNSRV1LJ5JFFIGS8OKYIYLB8JY9NX

Test Case Breakdown:

TABLE_ID ~ZTUN

FORMAT_VERSION_ID ~237074

DAMAGE_CRITERION ~3ZBO52N85C8NS1BZ

DAMAGE_CRITERION_SEQUENCE_NO ~VQJ

SECURITY_CATEGORY (Weaponeering Dataset) ~KW5

CLASSIFICATION_LEVEL (Weaponeering Dataset)) ~X2

NUMBER_OF_SEC_HANDLING_INSTR ~24

SEC_CONTROL_HANDLING_INSTR (Weaponeering Dataset)
~K33V96IZ9ITD9YAUDD2KBKNK89OKFFXOOZLWHGVCE

NUMBER_OF_LINES (Aimpoint Strike Objective) ~Q6JH

AIMPOINT_OBJECTIVE ~(U)

WEAPON_TO_TARGET_FLAG ~RI

PREDICTED_PROB_OF_DAMAGE (SSPD or SSFD) ~46149

NUMBER_OF_LINES (Expected Results) ~T3TA

EXPECTED_RESULTS ~(U)

NUMBER_OF_LINES (Related Aimpoints) ~VNOL

RELATED_AIMPOINTS ~4VZ

NUMBER_OF_LINES (BDA Visible Damage) ~7SLK

BDA_VISIBLE_DAMAGE ~(U)

NUMBER_OF_LINES (BDA Sensor Requirements) ~NO4L

BDA_SENSOR_REQUIREMENTS ~(U)

NUMBER_OF_LINES (BDA EEI) ~IMTF

BDA_ESSENTIAL_ELEMENTS_INFO ~(U)

ERROR_TYPE ~53

CEP_PLANE ~VR

NOMINAL_CEP ~CEP_MA

NOMINAL_REP ~2885309

NOMINAL_DEP ~2169320

91

NOMINAL_IMPACT_ANGLE ~81567

EFFECTIVENESS_INDEX_TYPE ~60

MAE_VALUE_OR_VAN ~6803826

EFFECTIVE_MISS_DISTANCE (EMD) ~0

PERCENT_BURIAL ~0

PROB_OF_DAMAGE_GIVEN_A_HIT ~1.00

ELEMENT_LENGTH_OR_RADIUS ~OBJEC

ELEMENT_WIDTH ~OBJEC

ELEMENT_HEIGHT ~OBJE

ELEMENT_AZIMUTH ~OBJ

ELEMENT_AREA_LENGTH_RADIUS ~OBJEC

ELEMENT_AREA_WIDTH ~OBJET

WEAPON_RELIABILITY ~0.99

RANGE_OFFSET_FROM_DMPI ~0 1

DEFLECTION_OFFSET_FROM_DMPI ~0

PATTERN_TYPE ~0

PROB_ DAMAGE_OR_AVAIL_PASSES ~9156

NUMBER_OF_PASSES_REQUIRED ~616777

EXPECTED_PD_FROM_NUM_PASSES ~40454

WEAPON_TYPE ~6

MISSILE_VELOCITY ~430

NUMBER_OF_GS_PULLED ~0.0

RELEASE_ALT_OF_FIRST_WEAPON ~24407

DIVE_ANGLE ~441

NUMBER_OF_RELEASE_PULSES ~9219

WEAPONS_RELEASED_PER_PULSE ~2

INTERVALOMETER_SETTING ~53203

DISTANCE_BTWN_STATIONS ~6350

MER_TER_RELEASE ~Y

TARGET_ALTITUDE ~0

WEAPON_OR_DISPENSER_TERMINAL_VELOCITY ~250

SECOND_LEG_TERMINAL_VELOCITY ~135

EJECTION_VELOCITY ~0

FUNCTIONING_TIME ~0.50

92

SLANT_RANGE ~264322

JMEM_IMPACT_ANGLE ~81466

STICK_LENGTH ~57131

STICK_WIDTH ~0798

BALLISTIC_ERROR ~221

SUBMUNITION_RELIABILITY ~91434

NUMBER_OF_SUBMUNIT_DISPENSER ~7

PATTERN_LENGTH ~18079

PATTERN_WIDTH ~72944

PROBABILITY_OF_NEAR_MISS ~1.00

PROBABILITY_OF_DIRECT_HIT ~0.00

RANGE_BIAS ~0.00

PROBABILITY_OF_RELEASE ~1.00

INTERPOLATION_FLAG ~N

INTERPOLATION_POINT ~2809

INTERP_LOWER_BOUND ~1984

MAE_AT_LOWER_BOUND ~8926697

INTERP_UPPER_BOUND ~4087

MAE_AT_UPPER_BOUND ~1263592

NUMBER_OF_LINES (Weaponeering Notes) ~T81F

WEAPONEERING_NOTES_1 ~(U)

WEAPONEERING_NOTES_2
~AX8ENR6G3XIB6RYCA8H6QGK14JM54OVG7JALVNX0ZGCIH9GX6JJ11OFUEJ
4YQUIAJ8B4CZJ6BVR5Q33CUS2P9FYY0R94GXJ50ODWDYLDWTU47HFZ3L42
NVNSRV1LJ5JFFIGS8OKYIYLB8JY9NX

Test Case Report
Date: Tuesday, June 09, 1998

NOTE: ~~ is used to separate out the test case

Id Table Name Type of Test Case Test Case

1064 Table_3_2_4_1_10___ETF_Weaponeering_Datas Invalid (U)
et (U)

 (U)
 (U)
 (U)
 CEP_MA0 0
1.00OBJECOBJECOBJEOBJOBJECOBJET0.990 1 0 064300.02 Y0
250 1350 0.50 7 1.000.000.00 1.00N(U)

1065 Table_3_2_4_1_10___ETF_Weaponeering_Datas Invalid Z23VKX2KQ(U)
et R4T(U)

 V47(U)
 N(U)
 I(U)
 5VCEP_MA228660 0
1.00OBJECOBJECOBJEOBJOBJECOBJET0.990 1 0 096464300.02492
56Y0 250 1350 0.50 2850297 171.000.000.00 1.00N21841T(U)

 A

Tuesday, June 09, 1998 Page 1 of 51
NOTE: ~~ is used to separate out the test case

Id Table Name Type of Test Case Test Case

1066 Table_3_2_4_1_10___ETF_Weaponeering_Datas Valid ZTU237073ZBO52N85C8NS1BVQKWX2K33V96IZ9ITD9YAUDD2KBKNK89
et OKFFXOOZLWHGVCQ6J(U)

 R4614T3T(U)
 VNO4V7SL(U)
 NO4(U)
 IMT(U)

5VCEP_MA288530216932815666803820 0
1.00OBJECOBJECOBJEOBJOBJECOBJET0.990 1 0
091561677404564300.02440449212 5320635Y0 250 1350 0.50
26432814657130792291437 180772941.000.000.00
1.00N280198892669408126359T81(U)

AX8ENR6G3XIB6RYCA8H6QGK14JM54OVG7JALVNX0ZGCIH9GX6JJ11OF
UEJ4YQUIAJ8B4CZJ6BVR5Q33CUS2P9FYY0R94GXJ50ODWDYLDWTU47
HFZ3L42NVNSRV1LJ5JFFIGS8OKYIYLB8JY9N

10
67

T
ab

le
_3

_2
_4

_1
_1

0_
__

E
T

F
_W

ea
po

ne
er

in
g_

D
at

as
In

va
lid

Z
T

U
N

23
70

74
3Z

B
O

52
N

85
C

8N
S

1B
Z

V
Q

JK
W

5X
22

4K
33

V
96

IZ
9I

T
D

9Y
A

U
D

D
2K

et
B

K
N

K
89

O
K

F
F

X
O

O
Z

LW
H

G
V

C
E

Q
6J

H
(U

)

 R
I4

61
49

T
3T

A
(U

)

V
N

O
L4

V
Z

7S
LK

(U
)

N
O

4L
(U

)

 I

M
T

F
(U

)

53
V

R
C

E
P

_M
A

28
85

30
92

16
93

20
81

56
76

06
80

38
26

0
 0

1.
00

O
B

JE
C

O
B

JE
C

O
B

JE
O

B
JO

B
JE

C
O

B
JE

T
0.

99
0

 1

0
09

15
66

16
77

74
04

54
64

30
0.

02
44

07
44

19
21

92
 5

32
03

63
50

Y
0

25

0
13

50
 0

.5
0

26
43

22
81

46
65

71
31

07
98

22
19

14
34

7
 1

80
79

72
94

41
.0

00
.0

00
.0

0
1.

00
N

28
09

19
84

89
26

69
74

08
71

26
35

92
T

81
F

(U
)

A
X

8E
N

R
6G

3X
IB

6R
Y

C
A

8H
6Q

G
K

14
JM

54
O

V
G

7J
A

LV
N

X
0Z

G
C

IH
9G

X
6J

J1
1O

F
U

E
J4

Y
Q

U
IA

J8
B

4C
Z

J6
B

V
R

5Q
33

C
U

S
2P

9F
Y

Y
0R

94
G

X
J5

0O
D

W
D

Y
LD

W
T

U
47

H
F

Z
3L

42
N

V
N

S
R

V
1L

J5
JF

F
IG

S
8O

K
Y

IY
LB

8J
Y

9N
X

Tuesday, June 09, 1998 Page 2 of 51
NOTE: ~~ is used to separate out the test case

Id Table Name Type of Test Case Test Case

1084 Table_3_2_4_1_10___ETF_Weaponeering_Datas Valid/Overloaded ZTU~~23707~~3ZBO52N85C8NS1B~~VQ~~KW~~X~~2~~K33V96IZ9ITD9Y
et Token Static Error AUDD2KBKNK89OKFFXOOZLWHGVC~~Q6J~~(U)

 ~~R~~4614~~T3T~~(U)

~~VNO~~4V~~7SL~~(U)
 ~~NO4~~(U)
 ~~IMT~~(U)

~~5~~V~~CEP_MA~~288530~~216932~~8156~~6~~680382~~0 ~~0
~~1.00~~OBJEC~~OBJEC~~OBJE~~OBJ~~OBJEC~~OBJET~~0.99~~0
~~1 ~~0 ~~0~~915~~61677~~4045~~6~~430~~0.0~~2440~~44~~921~~2
~~5320~~635~~Y~~0 ~~250 ~~135~~0 ~~0.50
~~26432~~8146~~5713~~079~~22~~9143~~7
~~1807~~7294~~1.00~~0.00~~0.00
~~1.00~~N~~280~~198~~892669~~408~~12635(~~T81~~(U)

~~AX8ENR6G3XIB6RYCA8H6QGK14JM54OVG7JALVNX0ZGCIH9GX6JJ11
OFUEJ4YQUIAJ8B4CZJ6BVR5Q33CUS2P9FYY0R94GXJ50ODWDYLDWTU
47HFZ3L42NVNSRV1LJ5JFFIGS8OKYIYLB8JY9N~~

Tuesday, June 09, 1998 Page 3 of 51
NOTE: ~~ is used to separate out the test case

Id Table Name Type of Test Case Test Case

1085 Table_3_2_4_1_10___ETF_Weaponeering_Datas Valid/Overloaded ZTU~~23707~~3ZBO52N85C8NS1B~~VQ~~KW~~X~~2~~K33V96IZ9ITD9Y
et Token Static Error AUDD2KBKNK89OKFFXOOZLWHGVC~~Q6J~~(U)

 ~~R~~4614~~T3T~~(U)

~~VNO~~4V~~7SL~~(U)
 ~~NO4~~(U)
 ~~IMT~~(U)

~~5~~V~~CEP_MA~~288530~~216932~~8156~~6~~680382~~0 ~~0
~~1.00~~OBJEC~~OBJEC~~OBJE~~OBJ~~OBJEC~~OBJET~~0.99~~0
~~1 ~~0 ~~0~~915~~61677~~4045~~6~~430~~0.0~~2440~~44~~921~~2
~~5320~~635~~Y~~0 ~~250 ~~135~~0 ~~0.50
~~26432~~8146~~5713~~079~~22~~9143~~7
~~1807~~7294~~1.00~~0.00~~0.00
~~1.00~~N~~280~~198~~892669~~408~~126359~~U81~~(U)

~~AX8ENR6G3XIB6RYCA8H6QGK14JM54OVG7JALVNX0ZGCIH9GX6JJ11
OFUEJ4YQUIAJ8B4CZJ6BVR5Q33CUS2P9FYY0R94GXJ50ODWDYLDWTU
47HFZ3L42NVNSRV1LJ5JFFIGS8OKYIYLB8JY9N~~

98

Appendix B

Table B1. Condition Means (if Condition is significant)

NUMBER DEPENDENT
VARIABLE

CONTROL
CONDITION
(MANUAL)

EXPERIMENTAL
CONDITION
(MICASA)

1 Total number of
specification defects
detected

7.5 37.4

2 Total number of
syntactic specification
defects detected

1.5 37.4

3 Total time for the
exercise

Given below Given below

Part I -- --
Part II -- --
Part III 175.7 7.9

4 Percentage of syntax
coverage

 31.25 100

5 Percentage of effective
test cases

-- --

6 Total number of defects
detected

-- --

7 Average number of
defects detected per test
case

 7.4 4.6

8 Average time for all
defects identified

Given below Given below

Test Case Execution
Time Only

30.9 2.17

Test Case
Development and
Execution Time

72.2 8.4

99

Table B2. System and Condition Means (if significant)

NUMBER DEPENDENT
VARIABLE

SYSTEM A SYSTEM B SYSTEM C

Manual MICASA Manual MICASA Manual MICASA
1 Total number

of specification
defects detected

-- -- -- -- -- --

2 Total number
of syntactic
specification
defects detected

-- -- -- -- -- --

3 Total time for
the exercise

 Given
below

 Given
below

 Given
below

 Given
below

 Given
below

 Given
below

Part I -- -- -- -- -- --
Part II 7.55 0.06 N/A N/A 135 0.47
Part III N/A N/A N/A N/A N/A N/A

4 Percentage of
syntax coverage

 -- -- -- -- -- --

5 Percentage of
effective test
cases

-- -- -- -- -- --

6 Total number
of defects
detected

N/A N/A N/A N/A N/A N/A

7 Average
number of
defects detected
per test case

N/A N/A N/A N/A N/A N/A

8 Average time
for all defects
identified

N/A N/A N/A N/A N/A N/A

100

Table B3. System Means (if significant)

NUMBER DEPENDENT
VARIABLE

SYSTEM A SYSTEM B SYSTEM C

1 Total number of
specification defects
detected

-- -- --

2 Total number of
syntactic specification
defects detected

-- -- --

3 Total time for the
exercise

Given below Given below Given below

Part I -- -- --
Part II 31.8 12.5 59.5
Part III N/A N/A N/A

4 Percentage of syntax
coverage

-- -- --

5 Percentage of effective
test cases

62.9 N/A 92.4

6 Total number of defects
detected

N/A N/A N/A

7 Average number of
defects detected per test
case

N/A N/A N/A

8 Average time for all
defects identified

N/A N/A N/A

101

Part III of Experiment
Time to Execute Test Cases (in minutes)

Tester’s Case Minutes for Minutes for
(for Control) Control (Senior Tester) Experimental (MICASA)

B11 77 29
B11 46 38
B8 70 31
B8 286 45
B8 201 5
B8 258 25
B8 292 7

4
3
2
2
2
4
2
3
2
2
2
2
2
2
2
2
2
1
2
2
1
2
1
2
2
2
2
1
2
1
2
1
2
1
1
1
57
23
29
13
9

102

Part III of Experiment
Number of Defects Detected Per Case

Tester’s Case # Defects for # Defects for
(for Control) Control Case (Senior Tester) Experimental Case (MICASA)

B11 2 0
B11 3 3
B8 1 4
B8 15 1
B8 2 4
B8 0 5
B8 4 4

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
11
11
12
14
11

103

Part III of Experiment
Average Time (minutes) to Identify a Defect (Execution Only) - Condition

Tester’s Case # Min. per Defect for # Min. per Defect for
(for Control) Control Case (Senior Tester) Experimental Case (MICASA)

B11 38.5 12.66666
B11 15.33333 7.75
B11 70 45
B8 19.06666 1.25
B8 22.33333 5
B8 28.66666 1.75
B8 22.46153 1

0.75
0.5
0.5
0.5
1
0.5
0.75
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.25
0.5
0.5
0.25
0.5
0.25
0.5
0.5
0.5
0.5
0.25
0.5
0.25
0.5
0.25
0.5
0.25
0.25
0.25
5.181818
2.090909
2.416666
0.928571
0.818181

104

Part II of Experiment
Test Case % Syntax Coverage – System and Condition

Table Name % Coverage for % Coverage for
Control Case (Senior Tester) Experimental Case (MICASA)

ETF 25 100
ETF 25 100
P Gen 31.25 100
P Gen 31.25 100
T Compl 25 100
T Compl 50 100

105

Part II of Experiment
Test Case % Syntax Coverage – Condition

% Coverage for % Coverage for
Control Case (Senior Tester) Experimental Case (MICASA)

25 100
25 100
31.25 100
31.25 100
25 100
50 100

106

Part II of Experiment
Time (minutes) to Develop a Test Case – System and Condition

Minutes for Minutes for
Control Case (Senior Tester) Experimental Case (MICASA)

130 0.47
140 0.47
7.9 0.06
7.2 0.06

107

Part II of Experiment
% Effective Test Cases – System

% Effective for % Effective for
System A System C

75 100
100 100
13.5 84.9
72.72 84.9
100
84
56.25
56.25
56.25
56.25
42.4
42.4

108

Part I of Experiment
Total # Syntactic Spec. Defects – Condition

Defects Found for # Defects Found for
Control Case (Senior Tester) Experimental Case (MICASA)

0 6
0 6
1 6
1 6
1 34
0 34
0 34
0 34
5 89
3 89
1 7
1 7
0 86
8 86

109

Part I of Experiment
Total #Time – System

System A System B System C

15 10 15
1.5 0.75 75
15 27 74
60 27 74
34 5
34 1
34 15
34 15
15
0.4
15
120
33
33
33
33

110

Appendix C

Defects Detected for JEDMICS (System C) Specification Table During Static
Analysis

Table Analyzed:

Table: Attributes not part of doc_jecmics

Attribute Id Size Type Valid
Values

Purpose

JMX_imageStatusCode 1 char Image status Code
JMX_hitLimit 4 Long Number Number of hits from a query Database.

Default is 1000
JMX_mode 0 Long JMX_HIGH_REV

JMX_ALL_REV
JMX_ONE_REV
JMX_DWG_BOOK

type of revision. Default is highest
revision.

JMX_drawingCount 4 long Long Number of drawings matching a criteria
JMX_sheetCount 4 long Long Number of Sheets matching a search

criteria
JMX_frameCount 4 long Long Number of frames matching a search

criteria.
JMX_maxConnect 4 Char Number (min) Identifies the maximum length of any

session for the user, after which the user
will be automatically logged out of the
system.

JMX_maxIdle 4 Char Number (min) Identifies the maximum length of time in
minutes that the user is permitted to be idle
during any log-on session after which the
user is automatically logged of the system

JMX_pwdExpireDate 18 Char dd-mon-yy The date a password expires.

111

Defects Detected:

Type of Defect Who Found the Defect? Defect Description
Syntactic Testers B1, B2 JMX_Mode has a size of 0 but valid values

and Long given
Semantic Tester B1 JMX_drawingCount type is Long, valid value

Long, but purpose is a number
Semantic Tester B1 JMX_sheetCount type is Long, valid value

Long, but purpose is a number
Semantic Tester B1 JMX_frameCount type is Long, valid value

Long, but purpose is a number
Semantic Tester B1 JMX_pwdExpireDate is not Y2K compliant
Syntactic MICASA Item JMX_maxIdle could run together with

next field (JMX_pwdExpireDate) since both
types expect digits, no delimiters specified,
and no actual expected values given –
Possible catenation error

Syntactic MICASA Item JMX_maxConnect could run together
with next field (JMX_maxIdle) since same
data type, no delimiters specified, and no
actual expected values given – Possible
catenation error

Syntactic MICASA Item JMX_frameCount could run together
with next field (JMX_maxConnect) since
both types expect digits, no delimiters
specified, and no actual expected values
given – Possible catenation error

Syntactic MICASA Item JMX_sheetCount could run together
with next field (JMX_frameCount) since
same data type, no delimiters specified, and
no actual expected values given – Possible
catenation error

Syntactic MICASA Item JMX_drawingCount could run together
with next field (JMX_sheetCount) since
same data type, no delimiters specified, and
no actual expected values given – Possible
catenation error

Syntactic MICASA JMX_imageStatusCode actual value of blank

112

Appendix D

Table of Comparisons between MICASA and Senior Tester Procedures

Procedure Name Comp. Time
Hour:Min

No. of NEW DRs
(total DRs)

DR Number(s)
NEW and Other

MANUAL TEST CASES
01.IRS-1 Generate a Baseline WDU Weaponeering Data 1:17 2 (2) DRHUMAN001

DRHUMAN002
01.IRS-2 Generate a Baseline BLU Weaponeering Dataset 0:46 3 (3) DRHUMAN003

DRHUMAN004
DRHUMAN005

01.IRS-3 Generate a Weaponeering Dataset Excluding all
Optional Fields

1:10 1 (1) DRHUMAN006

Totals for this set: 3:13 6 (6)
(Time required to develop these three test cases: 7 hours)

Case 1: WDU-36B VDM 6:46 15 (15) DRHMNRD2001
DRHMNRD2002
DRHMNRD2003
DRHMNRD2004
DRHMNRD2005
DRHMNRD2006
DRHMNRD2007
DRHMNRD2008
DRHMNRD2009
DRHMNRD2010
DRHMNRD2011
DRHMNRD2012
DRHMNRD2014
DRHMNRD2016
DRHMNRD2017

Case 2: WDU-36B HAM 3:21 2 (9) DRHMNRD2001
DRHMNRD2002
DRHMNRD2003
DRHMNRD2004
DRHMNRD2005
DRHMNRD2011
DRHMNRD2013
DRHMNRD2014
DRHMNRD2015

Case 3: WDU-36B PWD 4:18 0 (9) DRHMNRD2001
DRHMNRD2002
DRHMNRD2003
DRHMNRD2004
DRHMNRD2005
DRHMNRD2011
DRHMNRD2013
DRHMNRD2014
DRHMNRD2015

113

Case 4: BLU-97 4:52 4 (13) DRHMNRD2001
DRHMNRD2002
DRHMNRD2003
DRHMNRD2004
DRHMNRD2005
DRHMNRD2011
DRHMNRD2013
DRHMNRD2014
DRHMNRD2015
DRHMNRD2018
DRHMNRD2019
DRHMNRD2020
DRHMNRD2021

Totals for this set: 19:17 21 (46)
(Time required to develop these four test cases: 6.5 hours)

MICASA TEST CASES
Case 2067: Invalid 0:29 0 (0)
Case 2068: Invalid 0:38 3 (3) DRTOOL001

DRTOOL002
DRTOOL003

Case 2069: Valid 0:31 0 (4) DRTOOL001
DRTOOL002
DRTOOL003

DRHUMAN002
Case 2070: Invalid 0:45 0 (1) DRHUMAN002
Case 778: Valid/Overloaded Token Static Error 0:05 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002
Case 779: Valid/Overloaded Token Static Error 0:25 1 (5) DRTOOL001

DRTOOL002
DRTOOL003
DRTOOL004

DRHUMAN002
Case 780: Valid/Overloaded Token Static Error 0:07 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002
Case 788: Valid/Overloaded Token Static Error 0:04 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002
Case 813: Valid/Overloaded Token Static Error 0:03 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002
Case 815: Valid/Overloaded Token Static Error 0:02 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002
Case 817: Valid/Overloaded Token Static Error 0:02 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002
Case 818: Valid/Overloaded Token Static Error 0:02 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002

114

Case 820: Valid/Overloaded Token Static Error 0:04 0 (4) DRTOOL001
DRTOOL002
DRTOOL003

DRHUMAN002
Case 821: Valid/Overloaded Token Static Error 0:02 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002
Case 822: Valid/Overloaded Token Static Error 0:03 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002
Case 823: Valid/Overloaded Token Static Error 0:02 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002
Case 824: Valid/Overloaded Token Static Error 0:02 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002
Case 825: Valid/Overloaded Token Static Error 0:02 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002
Case 826: Valid/Overloaded Token Static Error 0:02 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002
Case 827: Valid/Overloaded Token Static Error 0:02 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002
Case 828: Valid/Overloaded Token Static Error 0:02 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002
Case 829: Valid/Overloaded Token Static Error 0:02 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002
Case 830: Valid/Overloaded Token Static Error 0:02 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002
Case 831: Valid/Overloaded Token Static Error 0:02 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002
Case 832: Valid/Overloaded Token Static Error 0:01 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002
Case 833: Valid/Overloaded Token Static Error 0:02 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002
Case 834: Valid/Overloaded Token Static Error 0:02 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002

115

Case 835: Valid/Overloaded Token Static Error 0:01 0 (4) DRTOOL001
DRTOOL002
DRTOOL003

DRHUMAN002
Case 836: Valid/Overloaded Token Static Error 0:02 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002
Case 837: Valid/Overloaded Token Static Error 0:01 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002
Case 838: Valid/Overloaded Token Static Error 0:02 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002
Case 839: Valid/Overloaded Token Static Error 0:02 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002
Case 840: Valid/Overloaded Token Static Error 0:02 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002
Case 841: Valid/Overloaded Token Static Error 0:02 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002
Case 842: Valid/Overloaded Token Static Error 0:01 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002
Case 843: Valid/Overloaded Token Static Error 0:02 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002
Case 844: Valid/Overloaded Token Static Error 0:01 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002
Case 845: Valid/Overloaded Token Static Error 0:02 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002
Case 847: Valid/Overloaded Token Static Error 0:01 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002
Case 848: Valid/Overloaded Token Static Error 0:02 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002
Case 849: Valid/Overloaded Token Static Error 0:01 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002
Case 850: Valid/Overloaded Token Static Error 0:01 0 (4) DRTOOL001

DRTOOL002
DRTOOL003

DRHUMAN002

116

Case 851: Valid/Overloaded Token Static Error 0:01 0 (4) DRTOOL001
DRTOOL002
DRTOOL003

DRHUMAN002
Case 852: Invalid/Top Intermediate 0:57 3 (11) DRHMNRD2001

DRHMNRD2002
DRHMNRD2003
DRHMNRD2004
DRHMNRD2005
DRHMNRD2014
DRHMNRD2015
DRHMNRD2016

DRTOOL2001
DRTOOL2002
DRTOOL2003

Case 853: Invalid/Top Intermediate 0:23 0 (11) DRHMNRD2001
DRHMNRD2002
DRHMNRD2003
DRHMNRD2004
DRHMNRD2005
DRHMNRD2014
DRHMNRD2015
DRHMNRD2016

DRTOOL2001
DRTOOL2002
DRTOOL2003

Case 854: Invalid/Delimiter Error 0:29 1 (12) DRHMNRD2001
DRHMNRD2002
DRHMNRD2003
DRHMNRD2004
DRHMNRD2005
DRHMNRD2014
DRHMNRD2015
DRHMNRD2016

DRTOOL2001
DRTOOL2002
DRTOOL2003
DRTOOL2004

Case 855: Invalid/Delimiter Error 0:13 0 (14) DRHMNRD2001
DRHMNRD2002
DRHMNRD2003
DRHMNRD2004
DRHMNRD2005
DRHMNRD2008
DRHMNRD2009
DRHMNRD2010
DRHMNRD2014
DRHMNRD2015
DRHMNRD2016

DRTOOL2001
DRTOOL2002
DRTOOL2003

117

Case 856: Invalid/Field-Value Error 0:09 0 (11) DRHMNRD2001
DRHMNRD2002
DRHMNRD2003
DRHMNRD2004
DRHMNRD2005
DRHMNRD2014
DRHMNRD2015
DRHMNRD2016

DRTOOL2001
DRTOOL2002
DRTOOL2003

Case 1161: Invalid/Delimiter Error
Case 1162: Invalid/Top Intermediate
Case 1163: Invalid/Top Intermediate
Case 1164: Invalid/Delimiter Error
Case 1167: Invalid/Field-Value Error

Test Cases not run, Tester could see that only the Free Text
fields had been changed and knew that PTW does not check

these fields (by design)

Totals for this set: 6:20 8 (224)
(Time required to develop these test cases: 25 min.)

118

List of Discrepancy Reports (DRs) found during Manual Testing

1. DRHUMAN001 – Expected PD from Number of Passes (Priority 5)
This is a Conditional field, and is only applicable when PDNA is greater than 1. However,
PDNA value was input as .5, and yet this field was available and allowed a value to be
entered and saved.

2. DRHUMAN002 – The Weaponeering Notes field was not accessible from the WDU
Dataset (Priority 4)

3. DRHUMAN003 – Nominal CEP was available when Error Type was set to 3 (Priority 5)

4. DRHUMAN004 – IRS/M says Probability of Release is only TLAM-C, yet available on
BLU (Priority 5)

5. DRHUMAN005 – Interpolation Flag missing ‘D’ for Distance Measurements (Priority 4)

6. DRHUMAN006 – Found Several Fields Required for MTF Even Though JMEM Data Not
Used (Priority 4)

Found 12 fields that are marked as ‘Conditional – Required, if JMEM data is provided’ for
creating an MTF. In this particular test case, no JMEM was used, and these fields should
not have been required for an MTF.

7. DRHMNRD2001 – Dataset scrollbar arrow acts as Page Down (Priority 5) - Using the
arrows on the scrollbar should result in a field by field scrolling, but a page by page scroll
occurs instead.

8. DRHMNRD2002 – PTW software crashes when Setting Menu Security Level, then ETF
Security Level (Priority 4)

9. DRHMNRD2003 – X-Window Interface problem when highlighting text (Priority 4)

10. DRHMNRD2004 – Error Type Field accepts invalid data (Priority 4)

11. DRHMNRD2005 – “Bridge” in EI Type Selection Window spelled “Bridget” (Priority 5)

12. DRHMNRD2006 – Pattern Types in Integrated JMEM should match PCJMEM (Priority 4)

13. DRHMNRD2007 – System should not allow “D” for Interpolation Flag Field for VDM
Mission (Priority 5)

14. DRHMNRD2008 – Interpolation Point allows 5 char. input (Priority 5)

119

15. DRHMNRD2009 – JMEM Clear Output puts garbage char. in Interpolation Flag Field
(Priority 4)

16. DRHMNRD2010 – JMEM Guided yields “-?.00” in SSPD field (Priority 4)

17. DRHMNRD2011 - Additional Related Aimpoints Required to Satisfy Objective Field will
not accept data (Priority 4)

18. DRHMNRD2012 – Range for Nominal Impact Angle is too large for VDM (Priority 5)

19. DRHMNRD2013 – Value for Nominal Impact Angle should not be modifiable for HAM
or PWD (Priority 5)

20. DRHMNRD2014 – Probability of Near Miss, Probability of Direct Hit, and Range Bias
should be grayed out, unless Error Type is “1” (Priority 4)

21. DRHMNRD2015 – Interpolation fields should be grayed out when Interpolation Flag is set
to “N” (Priority 4)

22. DRHMNRD2016 – Software will not accept Interpolation Bounds until MAE Bounds are
saved (Priority 4)

23. DRHMNRD2017 – IRS/M Range for Dive Angle should be –90-90 (Priority 4)

24. DRHMNRD2018 – “Release Altitude of First Weapon Displayed” Range doesn’t match
actual range (Priority 5)

25. DRHMNRD2019 – Cannot save Weaponeering Dataset with PDNA > 9.99 (Priority 4)

26. DRHMNRD2020 – Weapons Released Per Pulse accepts values out of range (Priority 5)

27. DRHMNRD2021 – Pattern Length Accepts “0” as input (Priority 5)

List of DRs found during MICASA Testing

1. DRTOOL001 - Error Type ‘5’ was Allowed for Input (Priority 5)
This was not an option given in the IRS/M.

2. DRTOOL002 - CEP Plane was Available when Error Type was ‘5’ (Priority 5)
IRS/M says CEP Plane only available when error type is ‘1’.

3. DRTOOL003 - Nominal DEP and Nominal REP Available when Error Type was ‘5’
(Priority 5)
IRS/M says CEP Plane only available when error type is ‘3’.

4. DRTOOL004 – Number of Release Pulses Accepts an Invalid Value (Priority 5)

120

5. DRTOOL2001 - Invalid Error Message when attempting to create Invalid Weaponeering
Dataset (Priority 5)

6. DRTOOL2002 – CEP Plane is not grayed out when Error Type is set to “5” (Priority 4)
(002)

7. DRTOOL2003 – Nominal REP and Nominal DEP are not grayed out when Error Type
is set to “5” (Priority 4) (003)

8. DRTOOL2004 – System allows invalid entry for Weapons Released Per Pulse (Priority
4)

121

References

122

REFERENCES

[1] Ammann, P. and Offutt, A. Jefferson. Using formal methods to derive test frames in category-partition
testing. Proceedings of COMPASS ’94, Gaithersburg, MD, June -July 1994, pp. 69 - 79.

[2] DeMillo, R. A., Guindi, D. S., King, K. N., McCracken, W. M., and A. Jefferson Offutt. An extended
overview of the {M}othra software testing environment. In Proceedings of the Second Workshop on Software
Testing, Verification, and Analysis, Banff, Alberta, July 1988, pp. 142 – 151, IEEE Computer Society Press.

[3] Bauer, J. and Finger, A. Test plan generation using formal grammars. ICSE 4: Proceedings of the 4th

International Conference on Software Engineering, Munich, 1979, pp.425-432.

[4] Bazzichi, F. and Spadafora, I. An automatic generator for compiler testing. IEEE Transactions on Software
Engineering, Vol. SE-8, No. 4, July 1982, pp. 343-353.

[5] Beizer, B. Software Testing Techniques. Van Nostrand Reinhold, New York, New York, 1990.

[6] Bird, D. L. and Munoz, C. U. Automatic generation of random self-checking test cases. IBM Systems
Journal, Volume 22, No. 3, 1983, pp. 229-245.

[7] Davis, A. Software Requirements Analysis and Specification. Prentice Hall, Englewood Cliffs, New Jersey,
1990.

[8] DeMillo, R. A., Lipton, R. J., and Sayward, F. G. Hints on test data selection: Help for the practicing
programmer. IEEE Computer 11,4 (Apr. 1978), 34-41.

[9] DOD-STD-2167A. Defense System Software Development. Department of Defense, February 1988.

[10] Duncan, A. G. and Hutchison, J. S. Using attributed grammars to test designs and implementations. ICSE
5: Proceedings of the 5th International Conference on Software Engineering, San Diego, CA, March 1981, pp.
170 - 177.

[11] Frankl, P. G., and Weiss, S. N. An experimental comparison of the effectiveness of the all-uses and all-
edges adequacy criteria. In Proceedings of the 4th Symposium on Software Testing, Analysis, and Verification
(1991), Victoria, BC, IEEE Computer Society Press, pp. 154-164.

[12] Gough, K. John. Syntax Analysis and Software Tools. Addison-Wesley Publishing Company, New York,
New York, 1988.

[13] Hanford, K. V. Automatic generation of test cases. IBM Systems Journal, Volume 9, No. 4, 1970, pp. 242
- 257.

123

[14] (Huffman) Hayes, J. And C. Burgess. "Partially Automated In-Line Documentation (PAID): Design and
Implementation of a Software Maintenance Tool," In The Proceedings of the 1988 IEEE Conference on Software
Maintenance, Phoenix, AZ, October 1988.

[15] Hayes, J. Huffman, Weatherbee, J. And Zelinski, L. A tool for performing software interface analysis. In
Proceedings of the First International Conference on Software Quality, Dayton, OH, October 1991.

[16] Hayes, J. Huffman. Testing object-oriented systems: A fault-based approach," In The Proceedings of the
International Symposium on Object-Oriented Methodologies and Systems (ISOOMS), Springer-Verlag Lecure
Notes on Computer Science series, Number 858, September 1994, Palermo, Italy.

[17] Hook, A. A survey of computer programming languages currently used in the Department of Defense: An
executive summary, Crosstalk, October 1995, p. 4 - 5.

[18] Horgan, J. R., and London, S. A data flow coverage testing tool for C. In Proceedings of the Symposium of
Quality Software Development Tools, New Orleans, Louisiana, May 1992, pp. 2 - 10.

[19] Howden, W.E. Functional Program Testing. IEEE Transactions on Software Engineering. SE-6(2), pp.
162-169, March 1980.

[20] IDA Report M-326. Analysis of Software Obsolescence in the DoD: Progress report. Institute for Defense
Analyses, June 1987.

[21] IEEE Standard 729-1983. Standard Glossary of Software Engineering Terminology. IEEE, 13 February
1983.

[22] IEEE Standard 830-1984. Software Requirements Specifications. IEEE, 10 February 1984.

[23] Ince, D. C. The automatic generation of test data. The Computer Journal, Volume 30, No. 1, 1987, pp. 63 -
69.

[24] King, K. N. and Offutt, A.Jefferson. A FORTRAN language system for mutation-based software testing.
Software-Practice and Experience, 21(7):685-718, July 1991.

[25] Liu, L. M. and Prywes, N. S. SPCHECK: A Specification-Based tool for interface checking of large, real-
time/distributed systems. In Proceedings of Information Processing (IFIP), San Francisco, 1989.

[26] Marick, B. The Craft of Software Testing: Subsystem Testing, Including Object-Based and Object-
Oriented Testing. Prentice Hall, Englewood Cliffs, New Jersey, 1995.

124

[27] Maurer, P. M. Reference manual for a data generation language based on probabilistic context free
grammars. Technical Report CSE-87-00006, University of Florida, Tampa, 1987.

[28] Maurer, P. M. Generating test data with enhanced context-free grammars. IEEE Software, July 1990, pp.
50 - 55.

[29] MIL-STD-498. Software Development and Documentation. Department of Defense, December 1994.

[30] Miller, L. A., Hayes, J. Huffman, and Steve Mirsky, Guidelines for the Verification and Validation of
Expert System Software and Conventional Software: Evaluation of Knowledge Base Certification Methods.
NUREG/CR-6316, Volume 4, U.S. Nuclear Regulatory Commission, March 1995.

[31] Offutt, A. Jefferson. Investigations of the Software Testing Coupling Effect. ACM Transactions on
Software Engineering and Methodology, 1(1):3-18, January 1992.

[32] Offutt, A. Jefferson. and Hayes, J. Huffman. “A semantic model of program faults,” In The Proceedings of
ISSTA, ACM, January 1996.

[33] Offutt, A.J., Lee, A., Rothermel, G., Untch, R. and Zapf, C. An experimental determination of sufficient
mutant operators. ACM Transactions on Software Engineering and Methodology, 5(2):99-118, April 1996.

[34] Ostrand, T. J., and Balcer, M. J. The category-partition method for specifying and generating functional
tests. Comm. of the ACM 31, 6 (June 1988), 676-686.

[35] Parnas, D. L. Letters to the editors, American Scientists, Volume 74, January-February 1986, pp. 12 - 15.

[36] Payne, A. J. A formalised technique for expressing compiler exercisers. SIGPLAN Notices, Volume 13,
No. 1, January 1978, pp. 59 - 69.

[37] Purdom, P. A sentence generator for testing parsers. BIT, Volume 12, 1972, pp. 366 - 375.

[38] Sizemore, N. L. Test techniques for knowledge-based systems. ITEA Journal, Vol. 11, No. 2, 1990.

[39] Voas, J. M. PIE: A dynamic failure-based technique, IEEE Transactions on Software Engineering, Volume
18, No. 8, August 1992.

[40] von Mayrhauser, A., Walls, J., and Mraz, R. Sleuth: A domain based testing tool. In Proceedings of the
IEEE International Test Conference, Washington, D.C., 1994, pp. 840 - 849.

125

[41] Webster, N. Webster’s New Collegiate Dictionary. G&C Merriam Company, Springfield, Massachusetts,
1977.

[42] White, L. J. “Software Testing and Verification.” In Advances in Computers. Edited by Marshall
Yovits, Volume 26, 1987, Academic Press, Inc., pp. 335 – 390.

[43] Wonnacott, R. J. and Wonnacott, T. H. Statistics: Discovering Its Power. John Wiley and Sons, NY,
NY, 1982, p. 35, 261, 262.

126

CURRICULUM VITAE

Jane Huffman Hayes was born on July 31, 1962 in Xenia, Ohio, and is an American citizen. She graduated from
Zionsville High School, Zionsville, Indiana, in 1980. She received her Bachelor of Arts from Hanover College
in 1983. She was employed by Defense Intelligence Agency for one year and then by Science Applications
International Corporation for one and a half years. She received her Master of Science in Computer Science
from the University of Southern Mississippi in 1987. She is in her fourteenth year of employment with Science
Applications International Corporation.

