
GENERATING COST-EFFECTIVE CRITERIA-BASED TESTS
FROM BEHAVIORAL MODELS

by

Nan Li
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
In Partial Fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
Information Technology

Committee:

Dr. Jeff Offutt, Dissertation Director

Dr. Paul Ammann, Committee Member

Dr. Sam Malek, Committee Member

Dr. Stephen Nash, Committee Member

Dr. Fei Li, Committee Member

Dr. Stephen Nash, Senior Associate Dean

Dr. Kenneth S. Ball, Dean, Volgenau School
of Engineering

Date: Spring Semester 2014
George Mason University
Fairfax, VA



Generating Cost-effective Criteria-based Tests from Behavioral Models

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Nan Li
Master of Science

Fairleigh Dickinson University, 2008
Bachelor of Engineering
Beihang University, 2006

Director: Dr. Jeff Offutt, Professor
Department of Computer Science

Spring Semester 2014
George Mason University

Fairfax, VA



Copyright c© 2014 by Nan Li
All Rights Reserved

ii



Dedication

I dedicate this dissertation to my wife Yun, my parents Yukui Li and Dehua Lv, my sister
Xianzhong Li, my parents in law Jin Guo and Xiaoxia Ma, my advisor Dr. Jeff Offutt and
my dear friends.

iii



Acknowledgments

I would like to thank Dr. Jeff Offutt for advising me and giving me great help for conducting
research. I want to thank Dr. Paul Ammann to help me set up the experiments and
the experiment participants including Lin Deng, Upsorn Praphamontripong, and Mariman
Mirzaei. I thank Dr. Fei Li for his help in proving NP-complete problems and reviewing
algorithms. I also thank my other committee members Dr. Sam Malek and Dr. Stephen
Nash for giving me suggestions for my proposal and dissertation. I thank Dr. Daniel
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Abstract

GENERATING COST-EFFECTIVE CRITERIA-BASED TESTS FROM BEHAVIORAL
MODELS

Nan Li, Ph.D.

George Mason University, 2014

Dissertation Director: Dr. Jeff Offutt

In software engineering, behavioral models such as finite state machines (FSMs) are used

to represent key system behaviors. Coverage criteria are rules to impose test requirements

on a test set. Model-based testing (MBT) generates abstract tests in terms of a model (e.g.,

paths in a FSM) to satisfy a coverage criterion. Then the abstract tests must be mapped

to concrete tests, which are expressed in terms of the implementation of the model. The

concrete tests should also include test oracles to decide if the tests pass or not.

This research addressed three major sub-problems in model-based testing: the mini-

mum cost test paths problem (MCTP), the mapping problem, and the test oracle problem.

MCTP is to find test paths that satisfy all test requirements with minimum cost, which

had not been defined before. The mapping problem refers to how to map abstract tests to

concrete tests. The previous techniques for solving the mapping problem required lots of

supporting diagrams and complicated conformation among the diagrams, which is hard to

use. Therefore, many practitioners often solve this mapping problem by hand. The test

oracle problem considers how to write test oracles. Until now, there have not been many

empirical results. With the same test inputs, test oracles that check more program states

have the potential to reveal more faults, but also cost more to design and create.



This research presented two new approximation algorithms to solve the MCTP, the

greedy set-covering algorithm and the matching-based prefix graph algorithm, and com-

pared them with a previous breadth-first search based solution. This research designed a

structured test automation language (STAL) to partially automate the mapping problem.

This research also defined ten new test oracle strategies that check state invariants of models

and different outputs and internal state variables of the program state different numbers of

times.

The experiments showed that the two new solutions generated fewer test paths than

the previous approach. The prefix-graph based solution took much less time than the

other two solutions when the number of test requirements is large. Thus, the prefix graph

based solution is recommended. The automated test generation method using STAL took

a fraction of the time the manual method took, and the manual tests contained numerous

errors in which concrete tests did not match their abstract tests. So testers should use STAL

to automate the mapping problem. Checking state invariants of models is recommended

for testers who do not have enough time due to its low cost-effectiveness; otherwise, testers

should check state invariants, outputs and parameter objects. Finally, if testers write test

oracles by hand, they should check program states once at the end of tests.



Chapter 1: Introduction

This chapter first introduces the background of model-based testing, giving a general idea

about the three major sub-problems addressed in this research: the minimum cost test

paths problem (MCTP), the mapping problem, and the test oracle problem. Then section

1.2 shows the problem description and uses an example to illustrate the three sub-problems.

Last, section 1.3 shows the approaches to solve the problems and the hypotheses.

1.1 Model-based Testing

Functional testing is an important part of software testing. This testing focuses on the

functionality of a system and tries to ensure that every function is implemented correctly

and matches system requirements. The system requirements have to be independent from

the implementation and can be written in plain text, expressed in specification languages,

or represented by models. Software designers often use models such as Unified Modeling

Language (UML) diagrams to describe the requirement. In model-based testing (MBT),

these models are used to design tests. Although testers can create models from source code

for testing during the testing phase, the models may not reflect the requirements correctly

because of the program faults. Therefore, this research used behavioral models that reflect

functional aspects of the system from the design phase. To be specific, this research focused

on UML behavioral diagrams because they are widely used in industry.

Figure 1.1 shows a general process to derive tests from models. Testers choose a coverage

criterion to generate test requirements based on a model. Then abstract tests that are

expressed in terms of the model are generated to satisfy the test requirements. An abstract

test is defined using elements and objects from the model, thus cannot be executed on an

implementation. For example, if the model is a finite state machine (FSM) and all-transition

1



Figure 1.1: A Generic Model-based Testing Process

coverage [1] is chosen, test requirements are all transitions in this model. An abstract test

defines a path through that machine. A set of transition-adequate tests should cover all the

transitions.

Additional information, including abstract test values and data mappings, is needed

to convert abstract tests to concrete tests. Concrete tests are expressed in terms of the

implementation of the model, and are ready to be run automatically. For example, a JUnit

test is concrete. In addition, in the concrete tests, test oracles that are usually specified in

models are written to compare expected results with actual results.

The steps in bold rectangles in Figure 1.1 were addressed in this research to generate

cost-effective tests from behavioral models in three aspects. First, graph coverage criteria

typically define test requirements (TR) as sequences of nodes (a subpath) in the graph.

2



These are then turned into abstract tests by creating complete paths. A complete path is a

path from an initial node to a final node, called a test path (TP). Each test path represents

a complete execution of the software being modeled. Testers may come up with various sets

of tests and each set of tests covers the test requirements with different numbers of tests or

different total numbers of nodes in the tests.

Second, abstract tests have to be converted into concrete tests because they cannot be

executed directly. However, in many situations, solutions that transform abstract tests to

concrete tests automatically are not available. Thus, testers often currently map abstract

tests to concrete tests by hand.

Third, concrete tests need to include test oracles. A test oracle determines whether a

test passes. An example for a test oracle is an assertion in JUnit tests. When tests are

executed, a fault may be triggered to produce an error state, which then propagates to be

revealed as a failure that can be observed by checking program states (outputs and internal

state variables). Testers are likely to observe more failures by checking more program states.

But checking more program states requires testers to provide expected values manually in

many situations, increasing cost [2].

1.2 The Problem

This research addressed how to generate cost-effective criteria-based tests from behavioral

models. Section 1.2.1 gives the general problem description. This general problem consists

of three major sub-problems: the minimum cost test paths problem (MCTP), the mapping

problem, and the test oracle problem. The three problems are illustrated and analyzed in

sections 1.2.3, 1.2.4, and 1.2.5 using an example described in section 1.2.2.

1.2.1 Problem Description

As stated in section 1.1, model-based testing first generates abstract tests from a model.

When generating abstract tests to satisfy a graph coverage criterion, abstract tests (rep-

resented as test paths) can be constructed by creating one test path per test requirement,
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or by satisfying multiple test requirements in the same path. It turns out that how test

requirements are turned into test paths has a major impact on the overall cost of testing,

both initially and as the software goes through maintenance. The cost of using abstract

tests can be reduced if the number of tests or the total number of nodes (a node in a UML

state machine diagram is a state) contained in the tests can be decreased. This problem was

generalized as the minimum cost test paths problem (MCTP), which refers to the problem

of generating abstract tests that cover all test requirements with the minimum cost.

The mapping problem refers to the problem of converting abstract test values to concrete

test values. Researchers have developed solutions to automate the mapping problem from

behavioral models but the previous solutions use lots of supporting diagrams that must

be highly consistent, such as the parameters used in one diagram have to be recognized

in another diagram. Such complicated requirements are usually not practical in many

real-world projects, especially when agile processes are used. Therefore, testers often map

abstract tests to concrete tests manually. If an abstract test consists of several events,

testers have to write the corresponding code for each event by hand. If one basic event is

used multiple times in different abstract tests, testers must write redundant code for the

same event. This process is time-consuming, labor-intensive, and error-prone. For instance,

to write code in a concrete test for an event “authentication for an account” in an abstract

test, testers may have to set up the test environment such as a database connection and

account creation, and also write test sequences and oracles. If this event is used in multiple

abstract tests, testers have to do the same processes including the setup of test environment,

test sequences, and test oracles in each concrete test.

This research also studied a complementary problem: the test oracle problem. Figure

1.2 illustrates how test oracles are used to reveal faults by observing the program state. This

figure extends the fundamental “RIP” model-“Reachability-Infection-Propagation” [3–6] to

the “RIPR” model-“Reachability,” “Infection,” “Propogation,” and “Revealability.” The

RIP model was originally developed independently by Offutt [3,4] and Morell [5,6] but they

used different terms. The current term of the RIP model is defined in Ammann and Offutt’s
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Figure 1.2: Reachability-Infection-Propagation-Revealability Model

book [7].

The program state represents various conditions in a system including the outputs and

internal state variables and which and when statements are executed. To detect faults,

tests have to reach the faults. That is, the statements that have the faults have to be

executed. The execution of the faulty statements must cause an incorrect internal program

state, such as a for loop is executed one few time than is needed. This is called infecting the

program state is “infected.” However, testers usually do not detect internal program states.

The incorrect internal program state then must propagate to a failure (incorrect outputs or

final program state). Then testers write test oracles (e.g., assertions) to monitor the final

program state. The failures are revealed only when the incorrect outputs or final program

state are observed, such as when actual outputs are found to be not equal to expected
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outputs in an assertion. Briand et al. [8] suggested a test oracle strategy (abbreviated as

OS) to specify which of the program state should be checked. In this research, a test oracle

strategy is defined as a rule or a set of rules to specify which program states to check and

how frequently to check the program states. A common belief is the more program states

are checked, the more faults an OS is likely to reveal [8–11].

Briand et al. defined the precision of a test oracle strategy as the degree to which internal

state variables and outputs are checked by this OS [8]. In this research, the precision of a test

oracle strategy is refined as how many output values and internal state variables are checked

by this OS. The fewer internal state variables and outputs a test oracle strategy checks, the

less precise this test oracle strategy is. A more precise test oracle is more expensive, but it

can let testers observe more failures. When testing beyond the unit level, testers must decide

what parts of the program state to evaluate to determine if the test passes or fails since

there are too many variables to check in the system. At the system level, this may simply

be outputs to a screen, a database, or messages sent to other systems. This can be such

a complicated problem that some practitioners simply take the cheapest possible solution:

does the program terminate or not? This is called the null test oracle strategy (NOS)

[9] and is used in industry. Integration testing may need to evaluate intermediate states

from hundreds of objects spread throughout the program, as well as data sent to external

destinations (screens, files, databases, sensors, etc.). Therefore, it is usually impractical to

measure all states at the level of integration and system testing and testers do not know

which states should be evaluated and when to check the states.

Problem Statement:

Currently, when generating automated criteria-based concrete tests from

behavioral models at the integration and system level, there are three sub-

problems. The first problem is how to generate abstract tests to cover test

requirements with the minimum cost. The second problem is that there is a

lack of test automation techniques to map abstract tests to concrete tests from

only behavioral models because many existing solutions are not applicable in
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reality. The third problem is that there are too many program states to check

and no guidelines for test oracles have been established for testers.

1.2.2 An Example

This section shows a simple example below, which will be used in sections 1.2.3, 1.2.4 and

1.2.5 to illustrate the minimum cost test paths problem, the mapping problem and the test

oracle program. The example program simulates the behavior of a vending machine. Some

assumptions for this vending machine simplify the program: only chocolates are available

for sale; all chocolates cost 90 cents; only dimes, quarters, or dollars are accepted; and the

vending machine can contain infinite chocolates. The method specifications for the vending

machine class are shown in Figure 1.3.

public class VendingMachine
{

private int credit; // Current credit in the machine
private LinkedList stock; // Used to store all chocolates

// Constructor: vending machine starts empty.
VendingMachine() {}

// A coin is given to the vendingMachine.
// Must be a dime (10), quarter (25), or dollar (100).
public void coin (int coin) {}

// User asks for a chocolate. Returns the change
// and sets the parameter StringBuffer variable Choc.
public int getChoc (StringBuffer choc) {}

// Adds one new piece of chocolate to the machine.
public void addChoc (String choc) {}

// Get the value of the current credit
public int getCredit () {}

// Get the number of chocolates
public int getStock () {}

}

Figure 1.3: VendingMachine Class

A simplified finite-state machine (FSM), which is derived from the program in Figure
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Figure 1.4: FSM of Vending Machine

1.3, is shown in Figure 1.4. Nine transitions and three events are included in this FSM.

Three events are “AddChoc,” “Coin,” and “GetChoc” and an arrow represents a transition

when an event is triggered. The FSM consists of four states: 1, 2, 3, and 4. State 1 is the

initial state, where the credit is 0 and the number of chocolates is 0. If a customer adds

coins, the FSM transitions to state 2, where the credit is greater than 0 but the number of

chocolates is still 0. If a service person comes and puts chocolates in the vending machine,

the FSM transitions to state 4 (the final state), where the credit is greater than 0 and the

number of chocolates is greater than 0. State 4 returns to itself if coins or chocolates are

added to the vending machine, and state 4 can transition to state 1 or 3 if any chocolate is

taken from the machine. Similarly, when adding chocolates, state 1 can transition to state

3, where the credit is 0 and the number of the chocolates is greater than 0; state 3 returns

to itself when adding chocolates; state 3 transitions to state 4 when customers put coins in.

Based on the FSM, testers may generate different tests by applying various coverage

criteria. If a tester uses the prime path coverage criterion (a graph coverage criterion that

subsumes edge coverage) [7], test paths need to cover 14 prime paths, computed by a graph
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coverage web application (support software provided as part of Ammann and Offutt’s testing

book [12]):

1. [1, 3, 4, 1]

2. [2, 4, 1, 2]

3. [1, 2, 4, 1]

4. [1, 2, 4, 3]

5. [2, 4, 1, 3]

6. [4, 1, 2, 4]

7. [4, 1, 3, 4]

8. [3, 4, 1, 3]

9. [3, 4, 1, 2]

10. [3, 4, 3]

11. [4, 3, 4]

12. [3, 3]

13. [2, 2]

14. [4, 4]

The next three sections will analyze the three problems using this example.

1.2.3 The Minimum Cost Test Paths Problem (MCTP)

How test requirements are turned into test paths could affect the number of tests, the

number of total nodes in the tests, etc. For instance, a previous breadth first search-

based solution for prime path coverage (algorithm 1 of the graph coverage web application)

generates nine test paths to cover 14 prime paths for the VendingMachine example:

1. [1, 3, 4, 1, 2, 4]

2. [1, 2, 4, 1, 2, 4]

3. [1, 2, 4, 3, 4]

4. [1, 2, 4, 1, 3, 4]

5. [1, 3, 4, 1, 3, 4]

6. [1, 3, 4, 3, 4]
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7. [1, 2, 2, 4]

8. [1, 3, 3, 4]

9. [1, 2, 4, 4]

However, the same 14 prime paths can be covered by one test path, generated by the

prefix graph-based solution developed by this research. The solutions to the MCTP problem

will be discussed in section 4.1.

1. [1, 2, 2, 4, 1, 2, 4, 3, 3, 4, 1, 3, 4, 1, 2, 4, 1, 3, 4, 1, 2, 4, 4, 4, 3, 4, 3, 4]

The first solution has a total number of 46 nodes in the test paths while the second

solution has only 28 nodes. Both of the solutions achieve the same effectiveness in terms of

prime path coverage (all the prime paths are covered). But the cost of the second solution

is less than than the first with respect to both the number of tests and the total number of

nodes in the tests.

Formally, the minimum cost test paths problem is defined below:

Definition 1 (Minimum Cost Test Paths Problem (MCTP)). Consider a set of test

requirements TR = {r1, r2, · · · , rn}. Each test requirement is presented as a subpath in a

graph G = (V, E). The problem MCTP is to find a set of test paths TP = {t1, t2, . . . , tk}

that cover all the test requirements in the graph G such that the cost of using the test paths

is minimum.

As suggested above in the example, it turns out that the cost of testing is a multi-faceted

problem. In fact, the cost can be reduced in several ways. Following are four possible goals

for reducing cost, some of which are complementary and some of which conflict.

1. Fewer total nodes. Each TP contains a sequence of nodes in the graph and every

execution of every node represents a cost. More nodes in the set of TPs means more

values that have to be found, more time executing the tests, and more time evaluating

the results of the tests.
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2. Fewer test paths. Every TP is an abstract test that will be realized into a concrete

test, and every test has an associated cost. This includes the initial cost of finding

values for the test and a continuing cost of running the test and modifying the test

as the software evolves.

3. Fewer test requirements per test path (smaller TR to TP ratio). Some TRs are

infeasible, but which is often not known until abstract tests are realized into concrete

tests. If one TP satisfies several TRs, and one of those TRs is infeasible, the entire

TP is lost.

4. Shorter test paths. Finding values for TPs becomes more difficult as the TPs get

longer. Tests from long TPs are also long, which makes them harder to maintain as

the software evolves.

This research defined the MCTP problem for the first time, thus, no one has previ-

ously developed efficient solutions or proved there exists optimal polynomial time solutions

(MCTP is not NP-complete). The MCTP definition above could be refined to explicitly

satisfy any of these goals, resulting different variants of the MCTP problem. Section 1.3.1

will analyze the goals of MCTP and discuss the approaches to solve the MCTP problem.

1.2.4 The Mapping Problem

As stated previously, the mapping problem refers to the problem of transforming abstract

tests to concrete tests. The mapping problem will be illustrated using the VendingMachine

example. Based on Figure 1.4, nine test paths are generated to cover the same 14 prime

paths in the last section.

1. [1, 3, 4, 1, 2, 4]

2. [1, 2, 4, 1, 2, 4]

3. [1, 2, 4, 3, 4]

4. [1, 2, 4, 1, 3, 4]

5. [1, 3, 4, 1, 3, 4]
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6. [1, 3, 4, 3, 4]

7. [1, 2, 2, 4]

8. [1, 3, 3, 4]

9. [1, 2, 4, 4]

Since each transition is triggered by only one event in the vending machine example,

I can use the event names to represent the transitions. The transitions for the first path

[1, 3, 4, 1, 2, 4] are: “AddChoc,” “Coin,” “GetChoc,” “Coin,” and “AddChoc”. Thus, the

tester may translate the abstract test to a concrete JUnit test in Java:

public class VendingMachineTest
{

private VendingMachine vm;
@Before
public void setUp() throws Exception {

vm= new VendingMachine();
}
@After
public void tearDown() throws Exception {

vm= null;
}
@Test
public void testFirstTestPath() {
1: vm.addChoc(“MM”);
2: assertEquals(1,vm.getStock().size());
3: vm.coin(100);
4: assertEquals(95,vm.getCredit());
5: StringBuffer choc = new StringBuffer().append(“MM”);
6: vm.getChoc(choc);
7: assertEquals(0,vm.getStock().size());
8: vm.coin(10);
9: vm.coin(25);

10: vm.coin(25);
11: vm.coin(25);
12: vm.coin(25);
13: vm.addChoc(“MM”);
14: vm.addChoc(“MM”);
15: assertEquals(100,vm.getCredit());
16: assertEquals(2,vm.getStock().size());
}

}

Figure 1.5: A JUnit Test for Class VendingMachine

12



In Figure 1.5, the code in testFirstTestPath() is written to map the abstract test: “Add-

Choc,” “Coin,” “GetChoc,” “Coin,” and “AddChoc.” To be specific, “AddChoc” is mapped

to line 1; “Coin” is mapped to line 3; “GetChoc” is mapped to lines 5-6; the second “Coin”

process is mapped to lines 8-12; and the second “AddChoc” process is mapped to lines

13-14.

For the second test path [1, 2, 4, 1, 2, 4], the transitions are “Coin,” “AddChoc,” “GetChoc,”

“Coin,” and “AddChoc.” The concrete test code that corresponds to “Coin” and “AddChoc”

should be very similar to the code from lines 8-14 in testFirstTestPath() above, and the

concrete test code that corresponds to “GetChoc” may be the same as the code from lines

5-6. The nine abstract tests have 15 “AddChoc” transitions, 16 “Coin” transitions, and

six “getChoc” transitions. Each transition corresponds to at least one method call. So for

transitions “AddChoc,” “Coin,” and “GetChoc,” the same or similar code will be written 15

times, 16 times, and 6 times respectively. If the mappings between transitions and concrete

code are established, testers will not need to write so much redundant code.

The previous solutions to automate the mapping problem used lots of additional dia-

grams and required high consistency among these diagrams, which is often impossible for

practical use. This research addressed the problem of how to automate the mapping prob-

lem without additional diagrams. Section 1.3.2 will discuss the approaches and hypotheses

for solving the mapping problem.

1.2.5 The Test Oracle Problem

Test oracles have to be included in concrete tests to determine whether the tests pass or

fail, for example, with assertEquals() statements. When it comes to the test oracle problem,

how often to check the states and which internal state variables and outputs to check have

to be considered. A test oracle strategy (OS) is more costly if more variables are checked

or the variables are checked more frequently. States can be checked after each method call

or each transition (more than one method call can be included in a transition) or testers

can just check the states once in one test or test suite.
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Moreover, which variables should testers check? Should the member variables of all

objects be checked? Should the return values of all method calls be checked? The more

internal state variables are checked by a test oracle, the more precise this test oracle is.

In the example of the vending machine, if testers check the two member variables of the

class “VendingMachine” after each method call (there are totally 37 transitions in nine tests

and at least one method call is used for one transition), the variables will be checked at

least 2 * 37 times. Internal state variables will be checked more times for bigger programs.

The goal of this research was to establish OSes that are effective in revealing faults and also

cost less in terms of the number of internal state variables and outputs to check and the

times the program states are checked.

In this research, tests were generated from models (UML state machine diagrams). If all-

transition coverage requires all transitions in a UML state machine diagram to be covered, an

abstract test may look like: “transition 1, state invariant 1, ..., transition n, state invariant

n.” These abstract tests need to be converted into concrete tests. Properties of models such

as state invariants in a state machine diagram can be used for OSes. If test oracle data,

including expected test values, is very well specified by some specification language and

additional information used to transform abstract test oracle data to executable code has

been provided, the concrete test oracles can be generated automatically. Such test oracles

are called specified test oracles [2] because the specification of a system is used as a source

to generate test oracles, including expected values.

As pointed out by Harman et al. [2], automated test oracles are not available in many

situations. For model-based testing, transformation from abstract tests to concrete tests

requires that a model has to be very well specified using additional information. The infor-

mation may include specification languages such as the object constraint language (OCL)

[13] and other additional diagrams and mapping tables to map abstract information to ex-

ecutable code. Moreover, the notions of test inputs and oracles among different diagrams

have to be highly consistent. Such complicated requirements are usually not easy to realize

in practice. Thus, most practitioners cannot use automated test input and oracle generation
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[14]. This is particularly true when agile processes are used. Therefore, most testers have

to provide expected values manually for test oracles.

The test oracle problem must address observability. Observability is how easy it is to

observe a program’s internal state variables and outputs [15]. If a test oracle checks more

program states, the observability of the program states is increased, and more faults may be

revealed. However, writing test oracles can be costly because testers usually must provide

expected values manually. Model-based testing can use state invariants from state machine

diagrams as test oracles. This research started with that premise and asked the following

questions. Is checking only the state invariants good enough? Should testers also check

class variables? Should testers check outputs and internal state variables multiple times or

only once in tests? What is the cost of checking more of the program state? Section 1.3.3

will discuss the approaches and hypotheses for solving the test oracle problem.

1.3 Hypotheses and Approaches

This section presents the approaches and hypotheses for solving the minimum cost test

paths problem (MCTP), the mapping problem, and the test oracle problem.

1.3.1 Approaches for Solving the Minimum Cost Test Path Problem

Recall that a test requirement (TR) is a subpath (sequences of nodes) in a graph. A test

path (TP) is a path from an initial node to a final node. To satisfy a coverage criterion,

testers need to generate test paths to cover test requirements. Section 1.2.3 lists four goals

to address the minimum cost test path problem: fewer total nodes, fewer test paths, fewer

test requirements per test path (TR / TP), and shorter test paths.

Satisfying multiple goals is hard enough, but some of these conflict. The most obvious

way to reduce the TR to TP ratio is to have exactly one TP for each TR. However, that

conflicts with the fewer test paths goal. The shorter test paths goal and the smaller

TR to TP ratio goal are complementary because reducing the TR to TP ratio will result

in shorter test paths. The fewer total nodes goal has no tradeoffs with the other goals
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above, thus is always valid. In practice, the TP length depends on the context, the source

of the graph, and the overall difficulty of finding values for the concrete test.

If testers cannot find test inputs to tour a subpath of a test path p, this subpath is

infeasible, making the whole test path infeasible. Therefore, testers need to regenerate new

test paths to cover the test requirements covered by p. This problem is usually referred to

the infeasible path problem [16]. This problem becomes more complex when the TR to TP

ratio gets large because if a test path is infeasible, testers need to cover a large number of

test requirements toured by this test path. This research did not focus on the infeasible

path problem and assumed all test requirements are feasible. Solving the infeasible path

problem will be considered in future work.

To balance the other goals above, this research took the following approach: find TPs

to satisfy all TRs with the fewest overall number of nodes, by minimizing the maximum TR

to TP ratio such that the number of test paths is not “too big,” with the fewest test paths

such that the maximum TR to TP ratio is not “too big,” and with the fewest paths such

that the maximum TR to TP ratio is not “too big.” Of course, “too big” seems somewhat

arbitrary but it depends on the context and the source of the graph, just like the TP length.

Specifically five goals are optimized, each of which is a variant of the MCTP.

1. The total number of nodes

2. The total number of test paths

3. The maximum ratio of TR to TP subject to a bounded number of test paths

4. The total number of test paths subject to a bounded ratio of TR to TP

5. The total number of nodes subject to a bounded ratio of TR to TP

Variant (3) maximizes the ratio of TR to TP while generating no more than m (the

bounded number) test paths, where m is a positive integer threshold. The bounded ratios

in variants (4) and (5) have similar meanings as the bounded number in variant (3). Ideally,

I could achieve all five goals with one algorithm. However, it is very hard to design an
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Table 1.1: Variants of the MCTP Problem and Their NP-completeness

Variants of the
MCTP Problem

NP-completeness Reduction / Solution

1 NP-complete Bin-Packing [17,18]

2 P A modified algorithm of the one
solving CP 1

1 [19]

3 NP-complete 3-Partition [20]

4 NP-complete 3-Partition

5 NP-complete Bin-Packing

algorithm to satisfy more than two optimization goals. Table 1.1 shows whether each

variant of the MCTP problem are NP-complete and the reduction approaches. The proofs

will be shown in chapter 3.

Since variant (2) is polynomial-time solvable, this research focused on approximation

algorithms that can solve the other NP-complete variants. The new algorithms proposed

in this research form the solid ground to solve variants (1), (3), (4), and (5) in Table 1.1.

To solve a specific variant, I can adapt our solutions slightly. For instance, if I want to get

the fewest number of nodes in the test paths, after I get the test paths using our algorithms

introduced in Section 4.1, I can use dynamic programming to approximate the minimum

number of nodes. If I want to ensure that the maximum TR to TP ratio is below a pre-

defined threshold, then I can use a number to restrict the length of each test path generated

in the algorithms. The algorithms developed in this research provide a basis to solve the

general problem MCTP.

The solutions that solve the shortest superstring problem [17] were developed to solve

MCTP. The new algorithms will be shown in section 4.1. Section 5.1 will present the

experiments that compared the new algorithms with the previous breadth-first search based

solution in terms of the number of test paths and the total number of nodes in the test

paths. Note this research did not emphasize time. Time depends on many factors, including

the people, tools, test criteria, and software under test. Instead, this research focused on

stable, long term costs such as the number of test paths. For completeness, the experiments
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in section 5.1 did measure time explicitly.

Since the new algorithms still generate test paths to cover all test requirements with

fewer number of test paths or nodes, the effectiveness (in terms of coverage) remains the

same as the previous breadth-first search based solution but the cost of the test paths

is reduced. The new algorithms are intended to be more cost-effective than the previous

solution.

1.3.2 Hypotheses and Approaches for Solving the Mapping Problem

In this research, I designed a new structured test automation language (STAL) to automate

the mapping from abstract tests to concrete tests. The reason that I could not use an

existing language will be discussed in section 2.5.

The mapping problem causes testers to write redundant code, make errors and waste

their time. Thus, the goal is to find a way to avoid writing redundant code. One possible

solution is that for one basic identifiable element of a model, if we write the corresponding

executable code once, the code will be generated automatically the next time when the

same element appears in an abstract test. An identifiable element is an element of a model

that can be used multiple times in abstract tests and can be mapped to one or more lines

of code in concrete tests, for example, an event or a transition in a FSM.

STAL is used to create mapping from identifiable elements in the model and automate

the transformation from abstract tests to concrete tests. First, programmers or testers

use the automation language to create mappings from each basic identifiable element of

the model to the executable test code. Once the mappings are generated, testers do not

need to write concrete tests line by line for each abstract test; instead, the concrete tests

will be generated automatically from the abstract tests by assembling pieces of executable

test code based on the mappings. This structured test automation language will be used to

improve the efficiency of generating concrete tests from a variety of abstract tests and reduce

the potential errors. A test automation tool, the structured test automation framework

(STALE) was built and testers can use it to create new mappings between basic elements
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and executable code, and view mappings and generate concrete tests automatically.

Section 4.2 will describe STAL and section 4.4 will talk about how STALE works.

Experiments were conducted to compare the mapping process using STAL with manual

transformation. The hypotheses about STAL are listed below. The experiments in section

5.2 will answer the hypotheses.

• H1: The test automation language is applicable to real programs

• H2: When converting abstract tests to concrete tests, the test automation language

can be used to reduce faults and help testers avoid writing redundant code by com-

parison with doing the same process by hand

• H3: The test automation language can be used for different kinds of programs such

as web applications and GUIs

The transformation with STAL is supposed to take less time (cost) than the manual

process and maintain the same effectiveness (map abstract tests to concrete tests). So the

mapping process with STAL should be more cost-effective than the manual transformation.

1.3.3 Hypotheses and Approaches for Solving the Test Oracle Problem

For the test oracle problem, ten test oracle strategies (OSes) were developed, each of which

has different precision and frequencies of checking program states. The formal definitions

of the OSes are given in section 4.3. Section 5.3 will show the experiments in which the

new OSes were compared with two other oracles: the null test oracle (NOS) and the state

invariant test oracle (SIOS), which served as baselines. NOS is implicitly provided by the

Java runtime system. It only shows a failure when a program throws an exception or does

not respond. SIOS checks every state invariants in models. The new test oracle strategies

have different precisions and check different internal state variables and outputs after each

transition or at the end of a test.

For each OS (except NOS, which was expected to be much less effective than other

OSes), the effectiveness and cost were calculated. The effectiveness of an OS was defined as
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the percentage of the number of defects revealed by this test oracle method; the cost was

measured in terms of the number of times internal state variables and outputs are checked.

The cost-effectiveness was the ratio of the percentage of the faults detected over the number

of times the internal state variables and outputs are checked. Four research questions were

raised and answered in the experiments:

RQ1: With the same test inputs, does a more precise OS reveal more failures than a less

precise OS?

RQ2: With the same test inputs, does checking outputs and internal state variables mul-

tiple times reveal more failures than checking the same outputs and internal state

variables once?

RQ3: With the same OS, do tests that satisfy a stronger coverage criterion reveal more

failures than tests that satisfy a weaker coverage criterion?

RQ4: Which OS is recommended when considering both effectiveness and cost?

With the same test inputs, using cost-effective test oracle strategies should result in

cost-effective tests.
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Chapter 2: Background and Related Work

This chapter introduces software testing techniques and concepts used in this research,

discusses the work related to the three sub-problems for generating tests from behavioral

models, and discusses the difference between this research and previous work.

Recall that in model-based testing, testers choose coverage criteria to generate test

requirements based on a model. Then abstract tests are generated to satisfy the test re-

quirements. Extra information, including abstract test values and data mappings, is needed

to convert abstract tests to concrete tests. Thus, testers need to select models and cover-

age criteria, then deal with the three sub-problems: the minimum cost test paths problem

(MCTP), the mapping problem, and the test oracle problem.

This chapter first talks about the model abstraction and the modeling language and

type of model used in this research, then introduces the test graph coverage criteria that

were used in this research. Mutation analysis is discussed in section 2.3 because it was used

to generate faults and evaluate tests. Section 2.4 talks about two related problems to the

MCTP problem: the test suite minimization problem and shortest superstring problem.

Section 2.4 discusses the greedy set-covering and matching-based prefix graph algorithms,

which are two new solutions to MCTP. Section 2.5 discusses the disadvantages of the

current mapping techniques and why the structured test automation language (STAL) is

useful. Section 2.6 compares the previous work and my work on the test oracle problem,

concluding that my work is the most comprehensive study so far in terms of multiple metrics

such as the number of experimental subjects and variety of test oracle strategies.
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2.1 Model Selection

Model abstractions need to be specified because they determine what artifacts will be used to

generate tests. Prenninger and Pretschner [21] concluded that a system can be abstracted

for six purposes: (1) getting enriched knowledge of the system and its environment, (2)

obtaining the specification of the system, (3) accessing parts of a system, (4) communicating

between developers, (5) generating code, and (6) testing systems.

While creating test models, testers can either write model programs in a specific lan-

guage or draw visualization diagrams. Model programs use specification languages such as

Spec# [22] or programming languages such as Java or C# to describe model behaviors.

ModelJUnit [23], Spec Explorer [24], NModel [25], and Conformiq [26] use Java, Spec#,

C#, and Conformiq Modeling Language (QML) [26] to write model programs that can be

converted to finite state machines or extended finite state machines.

Many testers prefer to use visual diagrams such as finite state machines, extended finite

state machines, and UML behavioral diagrams directly as test models. They can reuse

and adapt design models or build new test models [27]. Furthermore, the models from the

design phase are more likely to conform to system requirements than those from source

code. Researchers have come up with different ways to transform models created for (1)

and (2) to test models for (6) [28–35]. Many [28–31, 33–35] used UML models to generate

tests. This research applied the same approach and used the UML behavioral diagrams,

specifically UML state machine diagrams.

2.2 Test Graph Coverage Criteria

Since tests generated from behavioral models have to satisfy some coverage criterion, this

section talks about coverage criteria used in this research. Because behavioral models such

as UML state machine diagrams can be transformed into general graphs, this research used

graph coverage, which are defined on general graphs.

The following definitions are taken from Ammann and Offutt’s software testing book
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[7]. A graph G is drawn as a collection of circles connected by arrows, where the circles

represent nodes and the arrows represent edges. Formally, G is

• a set N of nodes, where N 6= ∅

• a set N0 of initial nodes, where N0 ⊆ N and N0 6= ∅

• a set Nf of final nodes, where Nf ⊆ N and Nf 6= ∅

• a set E of edges, where E is a subset of N ×N

Thus, a test graph G requires at least one initial and one final node, but allows more

initial and final nodes.

Edges are considered to be directed arcs from one node ni and to another nj and written

as (ni, nj). The initial node ni is sometimes called the predecessor and nj is called the

successor. A path is a sequence [n1, n2, ..., nM ] of nodes, where each pair of adjacent

nodes, (ni, ni+1), 1 ≤ i < M , is in the set E of edges. The length of a path is defined as

the number of nodes it contains. A subpath of a path p is a subsequence of p (including

p itself). A test path represents the execution of a test case on a graph. Test paths must

start at an initial node and end at a final node. A test path p covers a subpath q if q is a

subpath of p.

Test requirements TR are specific elements of software artifacts that must be satisfied or

covered. An example test requirement for the test criterion “cover every node” is “cover the

initial node.” A test criterion is a rule or collection of rules that, given a software artifact,

imposes test requirements that must be met by tests. For example, the test criterion “cover

every node” results in one test requirement for each node in the graph. This test criterion

requires that at least one test path is needed to cover all the nodes.

Edge coverage (EC) requires the each edge is covered by test paths. The formal defini-

tion of the edge coverage criterion on a general graph is given below.

Definition 2 (Edge Coverage). TR contains each edge, inclusive, in G.
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The edge-pair (EP) coverage (EPC) criterion was originally defined for finite state

machines by Pimont and Rault [36] and has also been called two-trip [37] and transition-pair

[38]. The test requirements of EPC are subpaths of length no more than three (the length

is measured in terms of the numbers of nodes) in G. Thus, edge-pair coverage subsumes

edge coverage (test requirements of length of two) and node coverage (test requirements of

length of one) in G. The formal definition of the edge-pair coverage criterion on a general

graph is given below.

Definition 3 (Edge-pair Coverage). TR contains each reachable path of length up to 2,

inclusive, in G.

A path from node ni to nj is simple if no node appears more than once in the path.

That is, simple paths cannot have internal loops. However, if the entire path is a loop that

has identical first and last nodes, the loop is a simple path. Graphs may have lots of simple

paths, many of which are subpaths of other simple paths. To eliminate the redundancy and

maintain the coverage strength, prime path coverage was invented [7]. A path from ni to nj

is prime if it is simple and does not appear as a proper subpath of any other simple path.

Definition 4 (Prime Path Coverage). TR tours each reachable prime path in G.

Prime path coverage (PPC) was used in the experiments for the minimum cost test

paths problem to generate abstract tests. The experiments for the mapping problem used

edge coverage while the experiments for the test oracle problem generated tests for both

edge and edge-pair coverage criteria.

2.3 Mutation Analysis

Mutation analysis (mutation testing) [39] makes syntactic changes to a program, creating

variants of the original program that are called mutants. If a test causes a mutant to

generate a different result from the original program, this mutant is killed. A mutant is

called equivalent if this mutant cannot be killed by any tests. A mutation score is the ratio
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of killed mutants over non-equivalent mutants, which reflects the strength of a set of tests.

A stronger set of tests usually gets a higher mutation score.

Mutation’s strength comes from mutation operators, which define rules for changing pro-

grams. The quality of the mutation operators determines the effectiveness of the test cases.

Mutation operators that modify individual statements (method-level) have been designed

for many languages, including Fortran [40] and C [41]. Mutation operators that modify con-

nections among classes (class-level) test features like inheritance and polymorphism [42,43].

Mutation analysis systems are used in two general ways. The first is to assess the quality

of an existing set of tests in terms of what percentage of mutants it kills (its mutation score).

This method can be used in practice, and has widely been used to assess the quality of other

testing techniques. Andrews et al. [44] presented evidence that mutation-adequate tests

can indeed help find “real faults.” The second use is to help testers design very high quality

tests, by creating mutants and challenging a tester to iteratively design tests to kill all or

most mutants. Mutation-based tests can be designed automatically [3, 45], or by hand.

This research used a Java mutation testing tool muJava [46] since all experimental

subjects were in Java. MuJava offers several important features to support testing and

experimentation. An important feature is that it lets testers see mutants visually, enhancing

their ability to design tests to kill mutants. MuJava also implements both method-level and

class-level (OO) mutation operators, and allows testers to choose which specific operators

to use. MuJava also provides detailed analysis of test results: including which mutant each

test kills, and which test kills each mutant. This information is valuable for research and

for designing tests. MuJava is freely available for downloading and has been used quite

widely in academia. The latest version of muJava uses JUnit tests and is compatible with

J2SE 5.0 and Java SE 6, including generics, annotations, enumerations, varargs, enhanced

for-each loops, and static imports. MuJava was used in the experiments for the test oracle

problem.
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2.4 The Minimum Cost Test Paths Problem

In software testing, the minimum cost test paths problem (MCTP) was first defined in this

research (published first in ICST 2012 [47]). Thus, there were no directly related papers to

this problem. This section first introduces the most related problem to MCTP: the test suite

minimization problem, whose solutions were used in the solutions to the MCTP problem.

Second, this section talks about the shortest superstring problem and its two solutions: the

greedy set-covering and the matching-based prefix graph algorithm, which were adapted

to solve MCTP. The definition of the shortest superstring problem, the greedy set-covering

algorithm, and matching-based prefix graph algorithms are given in sections 2.4.2, 2.4.3 and

2.4.4. The reason that I chose these two algorithms is that they are the most widely used

algorithms used to solve the shortest superstring problem. Many other algorithms were

variants of them.

2.4.1 The Test Suite Minimization Problem

The nearest related testing problem to the MCTP problem is the test suite minimization

problem of reducing the number of tests in a test suite while still maintaining coverage. Yoo

and Harman gave the definition of the test suite minimization problem in a survey paper

[48]:

Definition 5 (Test Suite Minimization Problem (TSMP)). Consider a set of test

case requirements R = {r1, · · · , rn} that must be satisfied to provide the desired adequate

testing of the program. There is a test suite T . For any subset Ti ⊆ T , ∀i = 1, . . . , n,

any test case tj ∈ Ti can be used to test a subset of R. The problem TSMP is to find a

representative set T ′ ⊆ T such that all the requirements in R can be tested using the test

cases in T ′.

This test suite minimization problem is related to the set cover problem [49] and several

heuristics have been developed [50–53].

This research used a heuristic test suite minimization algorithm to reduce the number
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of test paths for each solution to MCTP. The approach is similar to the GE and GRE

heuristics proposed by Chen and Lau [51]. The test suite minimization algorithm used

in this research is a simplified version of the GRE heuristic, removing all redundant test

paths, but not running the GE heuristic as Chen and Lau did. A test path is redundant if

it satisfies a proper subset of the test requirements satisfied by another test path.

2.4.2 The Shortest Superstring Problem

This research adapted the ideas used in solving the shortest superstring problem to solve

the MCTP problem. The shortest superstring problem has been used in the fields of compu-

tational biology and data compression, but not previously in software testing. The MCTP

problem can be modeled as a shortest superstring problem, allowing us to adapt existing

algorithms for solving the shortest superstring problem. The shortest superstring problem

is defined as follows.

Definition 6 (Shortest Superstring Problem [17]). Given a finite alphabet Σ, and

a set of n strings, S = {s1, . . . , sn} ⊆ Σ+, the shortest superstring problem is to find

a shortest string s that contains each si as its substring. Without loss of generality, we

assume that no string si is a substring of another string sj, ∀j 6= i.

In model-based software testing with graphs, a string is a test requirement as a sequence

of nodes such as a prime path. Prime paths were used as test requirements in the exper-

iments for MCTP in section 5.1. For example, for the two prime paths [1, 2, 3, 1] and

[2, 3, 1, 2], two possible superstring test paths that cover both are s1 = [1, 2, 3, 1, 2]

and s2 = [2, 3, 1, 2, 3, 1]. The length of the string s is |s|, the number of nodes in s.

Given two different strings s and t, the overlap between s and t, |over(s, t)|, is the length

of the longest string x such that s = mx and t = xn with non-empty strings m and n. m,

denoted as |pref(s, t)| is the prefix of s with respect to t. |pref(s, t)| is also referred as

the prefix distance from s to t. In the example above, for s1, [2, 3, 1] is the overlap and

[1] is the prefix of [1, 2, 3, 1, 2]; for s2, [1, 2] is the overlap and [2, 3] is the prefix of
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[2, 3, 1, 2, 3, 1].

The shortest superstring problem was proved to be NP-complete by Gallant, Maier and

Strorer [54]. Tarhio and Ukkonen [55] proposed a greedy algorithm whose approximation

ratio (the ratio between the polynomial-time approximation algorithm and the hypothetical

optimal solution) is 2 lnn. Blum et al. [56] presented another greedy algorithm that finds a

superstring that is no longer than four times optimal and a modified one that was no more

than three times optimal. The best known approximation ratio is 2, given by Weinard and

Schnitger [57].

Romero, Brizuela and Tchernykh [58] conducted an experimental comparison of the

shortest superstring problem. Their paper compared a 3-approximation algorithm and a

4-approximation algorithm. The results showed the superstrings returned by both approxi-

mation algorithms are almost the same. Both solutions were very close to the optimum; at

most 1.4% longer than the optimum.

Romero et al. used DNA sequences as examples in their experiment to find a shortest

superstring. This research used test requirements (prime paths) as examples. This research

presents results on test requirements, precisely prime paths, and different algorithms. In-

stead of generating only one super-string (super-test requirement), it is necessary to split

the results of the superstring into separate test paths. Detailed algorithms will be described

in section 4.1.

2.4.3 The Greedy Set-Covering Algorithm

The first existing approximation algorithm for the shortest superstring problem to adapt

is the set-covering algorithm using a greedy algorithm. Consider the shortest superstring

problem. The input to an algorithm is a set of strings, S, of size |S| = n. The greedy

algorithm works as below:

1. Initialize T to be S.

2. At each step, select two strings from T that have maximum overlap and replace them
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with the string obtained by overlapping them as much as possible. If the remaining

strings have no overlap, they are concatenated.

3. After n− 1 steps, the single string in T will be the superstring returned.

For si, sj ∈ S and k > 0, if the last k symbols of si are the same as the first k symbols

of sj , let σijk be the string obtained by overlapping these k positions of si and sj . Figure

2.1 shows the superstring covering si and sj .

Figure 2.1: A Superstring for Two Arbitrary Strings

Let M be the set that consists of the string σijk for all valid choices of i, j, k. The final

set is P ∪M , where P is the set of the original strings.

2.4.4 The Matching-based Prefix Graph Algorithm

The second approximation algorithm for the shortest superstring problem finds matchings

based on a prefix graph and the definition of prefix graph is shown as follows.

Definition 7 (Prefix Graph). Given a set of strings S, a prefix graph G = (V, E) is

constructed as follows: a vertex vi ∈ V represents a string si ∈ S. For each edge eij ∈ E,

the cost ceij of the edge is |pref(si, sj)| if si and sj overlap or +∞ otherwise.

The matching-based approximation algorithm for the shortest superstring problem is

to find a matching over a prefix graph. One observation is that the minimum weight of

a traveling salesman tour of the prefix graph gives a lower bound on the length of the

resulting optimal superstring (denoted by OPT) that covers all nodes of the prefix graph.
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However the minimum traveling salesman tour OPT cannot be efficiently computed since

this problem is NP-complete. Thus, the key idea is to find the minimum weighted paths,

using cycle covers, over the prefix graph G. A cycle cover is a collection of disjoint cycles

that cover all vertices. If s1, s2, . . . , sn, s1 is the minimum-weight cycle cover, then

OPT ≥
∑
i

|prefix(si, si+1)|+ |overlap(s1, sn)|

= |prefix(s1, s2)|+ |prefix(s2, s3)|+

. . .+ |prefix(sn, s1)|+ |overlap(sn, s1)|.

The prefix graph is then transformed into a bipartite graph G = (U ∪ V, E). U =

{u1, ..., un} and V = {v1, ..., vn} are the vertex sets of the two sides of the graph. For

each vertex ui on the left side and each vertex vj on the right side, add an edge of weight

|prefix(ui, vj)| if ui and vj overlap. Given a graph G = (U ∪ V, E), a matching M in G is

a set of edges such that no two edges share a common vertex. A perfect matching ensures

that every vertex of the graph is incident to exactly one edge. Therefore, each cycle cover of

the prefix graph corresponds to a perfect matching of the same weight in G. Thus, finding

a minimum weight cycle is equivalent to finding a minimum weight perfect matching in G.

The bipartite graph G = (U ∪ V, E) is used to find as many perfect matchings as

possible. A maximum matching is found from those. The Edmonds-Karp algorithm [59]

can find a maximum matching in the bipartite graph. Although the running time of the

Edmonds-Karp algorithm is O(V E2), it ran slowly in practice, thus was not used. Instead,

a heuristic greedy approach was applied.

2.5 The Mapping Problem

This section discusses the previously existing mapping strategies and why I created a new

test automation language to automate the mapping problem.
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In model-based testing, models only specify key aspects of software’s behavior and can-

not provide enough information for generating tests. When deriving test cases from UML

behavioral models, additional information needs to be specified, such as test values and test

oracles. Other UML models (for example, use case diagrams and class diagrams) are often

used to provide the missing information.

Briand and Labiche [30] developed the TOTEM system, which uses many artifacts: use

case diagrams, use case descriptions, sequence or collaboration diagrams for each use case,

class diagrams, and a data dictionary specifying the details of classes. Nebut et al. [31]

applied a use case driven approach. This approach extracts additional information from use

case models and requires a behavioral model (sequence, state machine, or activity diagram)

to specify the sequence ordering of the use cases. Moreover, use cases must have contracts

(pre- and post-conditions) to help infer the partial ordering of functionalities. Furthermore,

the behavioral models have to be consistent with the use cases. That is, the parameters in

the use cases have to be the same as those in the behavioral models. This use case driven

approach was validated on one embedded system.

The UML Testing Profile (UTP) [60] reuses some concepts of the UML but adds com-

ponents for testing such as test context, test case, test component, and verdicts. When

creating concrete tests, information in abstract tests have to match attributes of other

diagrams such as class and object diagrams.

In summary, when creating tests from UML state machine diagrams, the previous ap-

proaches used additional diagrams and structures to provide abstract test values and trans-

form them to concrete test values. The abstract test values have to be consistent with those

defined in diagrams such as class diagrams or object diagrams. Thus, abstract tests not

only have test sequences, but also lots of abstract test values, which complicates the trans-

formation from abstract to concrete tests. Creating many formalized diagrams for testing

may not be difficult for companies and organizations that can reuse models from the design

phase and have lots of experts in model-based testing. However, it is very expensive for

organizations that do not have such resources.
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This research presents the structured test automation language (STAL) to generate tests

from UML behavior models, specifically UML state machine diagrams without additional

diagrams. Programmers and testers can use STAL to provide missing information by cre-

ating mappings from identifiable elements of the model to concrete test code. Previous

papers included few empirical studies in comparing concrete MBT solutions with manual

approaches. This research includes an empirical comparison of transforming abstract tests

to concrete tests by using STAL with the manual method in section 5.2.

I tried to use an existing model-to-test transformation language Meta-Object Facility

Model To Text Transformation Language (MOFM2T) [61]. Unfortunately, this language

has several characteristics that made it impossible to use for this research.

MOFM2T [61] is part of OMG’s Model-driven architecture (MDA) [62] and was designed

to transform models to code for general use. Acceleo [63] is the only Eclipse Foundation

project that implements MOFM2T. It reads Eclipse Modeling Framework (EMF [64])-based

models and transforms them into programs in several languages.

Adapting MOFM2T and Acceleo to define mappings from abstract to concrete tests

posed two problems. First, mapping creation cannot reuse much of the syntax of MOFM2T.

For example, the for loop structure used in MOFM2T goes through each component of the

same type (e.g., states) in a model and translates them to similar code. However, the

for loop cannot be used for the mappings because each identifiable element in a model is

mapped to different test code.

Second, testers cannot write test code to create mappings with MOFM2T directly.

Ideally, testers first choose an identifiable element, write down its name, write the code

for it, then create the mapping. However, MOFM2T and Acceleo cannot recognize the

element names. Testers would need to write code to look for the identifiable element from

the top level to the bottom level of the model structure.
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2.6 The Test Oracle Problem

A test oracle is a verification mechanism to determine whether a test passes or not. Usually

testers check the runtime behavior of a system by monitoring its observable outputs to verify

whether the system has defects; however, sometimes a program is not testable because either

testers do not know what the expected outputs are or they do not find an appropriate test

oracle [65].

Test oracles can be generated by hand but it is very expensive. So researchers have

developed the automated oracles that use assertions that are generated from pre and post-

conditions and invariants annotated in specifications, documentations, and models [66,67].

Recall that a test oracle strategy (abbreviated as OS) is defined as a rule or a set of rules

to specify which program states to check. The precision of an OS refers to the degree to

which the internal state variables and outputs of a program are checked by this OS. The

more internal state variables and outputs an OS checks, the more precise the OS is. The

precision of an OS also refers to the OS’s tolerance for errors [9] because if an OS checks

more internal state variables and outputs, it is possible that the OS can reveal more faults.

The null OS (NOS) is considered as the least precise OS since it does not check any variable

or output explicitly. It only reports a failure when a program terminates abnormally, thus,

it tolerates many faults. In contrast, the most precise OS checks all possible internal state

variables and outputs whenever they appear during the execution of test cases, so this OS

is called the very precise OS [8] or the maximum OS [10].

How and which internal state variables and outputs should be checked by an OS depends

on the cost-effectiveness of OSes. Although a more precise OS can reveal more faults (ef-

fectiveness), it needs more assertions (cost) than a less precise OS. Adding more assertions

requires testers to provide more expected values and write more assertions manually, and

takes longer to execute. Keep in mind that automated test oracle generation is often not

available for many situations in industry.
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The frequency of checking the program state is a factor when considering the cost-

effectiveness of an OS. Given two OSes that check the same internal state variables and

outputs, if they find the same faults, the one that checks the states less frequently will be

more cost-effective.

To the best of our knowledge, only a few papers have studied the test oracle problem

empirically. Briand et al. [8] compared the very precise OS with the state invariant OS

(SIOS) based on the statecharts of three classes, each of which had less than 500 lines of

code. The very precise OS checks all the class attributes and outputs after each operation

and is considered to be the most accurate verification possible. In contrast, SIOS only

checks the invariants of the states that are reached by test cases after each transition. They

found that the very precise OS is more effective at revealing failures than SIOS. They also

found that the cost of the very precise OS is higher than SIOS in terms of the number of

test cases, the CPU execution time, and the lines of code.

Xie and Memon [11] considered what to evaluate and how often to check program states

from GUIs. They found that the variations of the two factors affect the fault-detection

ability and cost of test cases. They proposed six OSes that check a widget, a window,

and all windows after every event and after the last event of a test. They concluded that

“weak” OSes reveal fewer failures and a “thorough” OS at the end of a test case yields the

best cost-effectiveness ratio in many cases. They evaluated the OSes for GUIs, not general

applications.

Staats et al. [10] found that an OS that checks outputs and internal state variables can

reveal more failures than an OS that only checks the outputs. They also concluded that

the number of variables checked by the maximum OS is bigger than that checked by the

output-only OS and only a small portion of the added internal state variables contributes to

improving fault-detection ability. To evaluate how internal state variables affect the fault-

detection ability, some less precise OSes were compared. A less precise OS checks outputs

and some internal state variables but not all. In their experiment, internal variables were

chosen randomly for these less precise OSes. Therefore, which internal variables contribute
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to improving the effectiveness is unclear.

Shrestha and Rutherford [9] empirically compared NOS and the pre and post-condition

OS (PPCOS) using the Java Modeling Language [68]. They found that the latter can find

more faults than the former. They suggested that test engineers should move beyond NOS

and use more precise OSes.

The test oracle comparator problem for web applications is to determine if a web appli-

cation gets correct outputs automatically given a test case and expected results. Sprenkle

et al. [69] developed a suite of 22 automated oracle comparators to check the HTML docu-

ments, contents, and tags. They found that the best comparator depends on applications’

behaviors and the faults.

Yu et al. [70] studied the effectiveness of the output-only OS and six other OSes that

check more internal state variables to detect special faults that appear in six concurrent

programs. They found that these six more precise OSes revealed more failures than the

output-only OS.

This research conducted a comprehensive experiment to study the effectiveness and cost

of OSes and give guidelines about which OS should be used. A comparison between this

research and others are in Table 2.1. The first column shows the metrics and the other

columns represent others’ work.

Shrestha et al. used nine small programs, with the biggest having 263 statements. Others

studied no more than six programs. This research used 16 programs with lines of code (LOC)

from 52 to 14,155. The subjects included general libraries, GUIs, and web applications. In

contrast, Xie and Memon only studied GUIs and Sprenkle et al. studied web applications.

Staats et al. worked on synchronous reactive systems [71], which do not have OO classes.

This research considered several OSes: NOS, SIOS, and ten more precise OSes, which

is more comprehensive than the other studies. This research studied which internal state

variables contribute to the effectiveness of the OSes. This research also studied the frequency

of checking program states, which was only studied by Xie and Memon before. Twelve OSes

that have different precisions and frequency of checking program states were used in the
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experiment while both Shrestha et al. and Briand et al. studied two OSes.

Staats et al. [72] and Mateo and Usaola [73] proposed similar approaches that used

mutation analysis to select which program states to check automatically. But this approach

could be even more costly because users have to apply mutation analysis before providing

test oracle data. Thus, this approach needs further study. Fraser and Zeller [74] also

used mutation testing to derive test inputs and test oracles but they did not study the

effectiveness or cost of OSes.
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Table 2.1: A Comparison of Previous Test Oracle Research Papers

Metric This research Briand et al. Xie et al. Staats et al. Shrestha et al. Sprenkle et al. Yu et al.

Number of programs 16 3 5 4 9 4 6

Types of subjects General, GUI,
Web

General GUI Non-OO General Web Concurrent

NOS used Yes No No No Yes No No

PPCOS or SIOS
used

Yes Yes No No Yes No No

Less precise OSes
used

Yes No Yes Yes No Yes Yes

Internal state vari-
ables are used

Yes No Yes Internal
state vari-
ables picked
randomly

No Yes Yes

Frequency of check-
ing program states

Yes No Yes No No No No

The number of OSes
used

12 2 6 3 2 22 7
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Chapter 3: Proof of the Hardness of MCTP

Section 1.2.3 defined the minimum cost test paths problem (MCTP): Find a set of test paths

TP = {t1, t2, . . . , tk} that cover all test requirements in the graph G such that the cost of

using the test paths is minimum, given a set of test requirements TR = {r1, r2, · · · , rn}.

Each test requirement is presented as a subpath in a graph G = (V, E). The cost can be

reduced in the following ways:

1. Fewer total nodes

2. Fewer test paths

3. Fewer test requirements per test path (smaller TR to TP ratio)

4. Shorter test paths

Specifically, the goals to be optimized are:

1. The total number of nodes

2. The total number of test paths

3. The maximum ratio of TR to TP subject to a bounded number of test paths

4. The total number of test paths subject to a bounded ratio of TR to TP

5. The total number of nodes subject to a bounded ratio of TR to TP

Each of these five goals can be instantiated as a variant of the MCTP problem. Variant

(2), finding the fewest number of test paths, can be solved in polynomial time using a

modified algorithm proposed by Aho and Lee [19]. However, other variants of the MCTP

problem are provably NP-complete.
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This chapter will show that variants (1), (3), (4), and (5) of MCTP are NP-complete

and variant (2) can be solved in polynomial time. If MCTP variants (1), (3), (4), and (5)

are NP-complete, then there are no efficient (polynomial-time) exact algorithms to solve

them. The proof that MCTP variants (1), (3), (4), and (5) are NP-complete shows that

first, MCTP variants (1), (3), (4), and (5) belong to NP and second, NP-complete problems

that can be reduced to MCTP variants (1), (3), (4), and (5) exist (Bin-Packing problem

and 3-Partition problem). The reductions of MCTP variants (1) and (5) come from a

well-known NP-complete problem called the Bin-Packing problem [17,18], as defined below.

Definition 8 (Bin-Packing Problem). The inputs are a set of n objects, where the size

si ∈ S of the ith object satisfies 0 < si < 1. The size of every bin is 1. The Bin-Packing

problem is to find the minimal number of bins such that all objects are packed in the bins.

The formal language for the Bin-Packing problem is BIN-PACKING = <O, S, z>: the

size si of object oi ∈ O satisfies 0 < si < 1, and finds the number of bins of size 1 no more

than z.

The reductions of MCTP variants (3) and (4) come from another NP-complete problem

called the 3-Partition problem [20], as defined below.

Definition 9 (3-Partition Problem). Given a finite set A of 3m elements, a bound

B ∈ Z+, and a ‘size’ s(a) ∈ Z+ for each a ∈ A, such that each s(a) with B/4 < s(a) < B/2

and
∑

a∈A s(a) = m ∗B, can A be partitioned into m disjoint sets S1, S2, ..., Sm such that

for 1 ≤ i ≤ m,
∑

a∈Si
s(a) = B?

The formal language for the 3-Partition problem is 3-PARTITION = <A, B, m>: a

finite set of A has 3m elements. The size of each element a, s(a) is between B/4 and B/2

exclusively and
∑

a∈A s(a) = m ∗B. Can m disjoint sets have all 3m elements and the size

of each set is no more than B?

The definitions of the MCTP variants (1), (2), (3), (4), and (5) are shown below as well

as the proofs.
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Definition 10 (Minimum Cost Test Paths Problem (MCTP) Variant (1)). Con-

sider a set of test requirements TR = {r1, r2, · · · , rn}. Each test requirement is presented

as a subpath in a graph G = (V, E). The problem MCTP variant 1 is to find a set of test

paths TP = {t1, t2, . . . , tk} that cover all test requirements in the graph G such that the

total number of nodes in the test paths is at most an integer d.

The formal language for the decision problem of the MCTP variant (1) is MCTP-

VARIANT1 = <G, TR, d>: graph G finds a set of test paths TP that covers all test

requirements TR with the total number of nodes in TP no more than an integer d.

Theorem 1. The problem MCTP variant (1) is NP-complete.

Proof. First, I show that the MCTP variant (1) belongs to NP. That is, for any given

solution instance, a polynomial-time verifier exists. Consider a solution instance TP =

{t1, t2, . . . , tk}. Let the test requirements be TR = {r1, r2, . . . , rn} and check if the

total number of nodes in TP |t1| + |t2| + . . . + |tk| ≤ d. The running time of this part is∑k
s=1 |ts|. Then, check whether all ri ∈ TR (i = 1, 2, . . . , n) belong to at least one path in

TP . For each ri, the string matching algorithms is applied to identify whether ri belongs to

some tj . Using Knuth-Morris-Pratt’s algorithm [75], this procedure takes time O(|ri|+ |tj |).

Thus, in total, each requirement ri takes time |ri|
∑k

s=1 |ts| to identity whether ri belongs

to some ts in TP . The total running time of the verifier is
∑n

i=1 |ri|
∑k

s=1 |ts| +
∑k

s=1 |ts|,

polynomial in the size of the input.

Second, to prove that MCTP variant (1) is NP-hard, the Bin-Packing problem should be

reduced to the MCTP variant (1) in polynomial time, that is BIN-PACKING ≤P MCTP-

VARAINT1. Let <O, S, z> be an instance of BIN-PACKING. An instance of MCTP-

VARIANT1 is constructed as follows. Each object oi ∈ O represents a test requirement

ri ∈ TR. Let A be the total number of nodes of the most number of test requirements that

can be covered by a test path ts ∈ TP . The size of unit-size bins is A / A = 1. Therefore,

the size of oi ∈ O that represents ri ∈ TR is the number of the nodes of ri / A, which is

less than 1.
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I form a graph G = (V + TR, E), where V is a set of distinct nodes that appear in

ri ∈ TR. Each ri ∈ TR also represents a node in G. A node nu ∈ V is connected to another

node nv ∈ V if edge (nu, nv) is a subpath of any ri ∈ TR. A node nu ∈ V is connected to

ri ∈ TR if edges (nu, nf ) and (nl, nu) are subpaths of any ri ∈ TR, where nf is the first

node of ri and nl is the last node of ri. The size of a node that represents ri ∈ TR in G

is the total number of nodes in ri. The size of a node nu ∈ V is 0. The size of any edges

among nodes in V and TR is 0. Thus, the size of a complete path in G only counts the

number of nodes in ri ∈ TR. Since A is the total number of nodes of the most number of

test requirements that can be covered by a test path ts ∈ TP and z is the number of bins,

the total number of nodes in all test paths is no more than z * A. Then the instance of

MCTP-VARIANT1 is (G, TR, z * A), which can be created in polynomial time.

Now I show that BIN-PACKING has no more than z bins to fit all objects (test require-

ments) if and only if graph G has a set of z test paths to cover all the test requirements

TR with the size of the test paths no more than z * A. Suppose BIN-PACKING has z

bins to pack all objects and each object represents a test requirement ri ∈ TR. Thus, the

size of each object oi is the ratio of the number of ri over A. For test requirements in a

bin, additional nodes nu ∈ V are used to construct a complete test path to cover the test

requirements in this bin. Since only the size of ri ∈ TR is greater than 0, the size of this

test path is no more than A. Thus, the total number of nodes in the test paths that cover

all the test requirements is no more than z * A.

Conversely, suppose that graph G has a set of z test paths that covers all test require-

ments, where the size of the longest test path is A. For each test path, only test requirements

remain and other nodes are removed. Each test requirement ri corresponds to an object

oi ∈ O, where the size of object oi is the size of ri over A such that the objects can fit in a

bin. Thus, the total number of bins needed to fit all the objects is equal to the number of

test paths z. Therefore, BIN-PACKING can be reduced to MCTP-VARIANT1.

Definition 11 (Minimum Cost Test Paths Problem (MCTP) Variant (2)). Con-

sider a set of test requirements TR = {r1, r2, · · · , rn}. Each test requirement is presented
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as a subpath in a graph G = (V, E). The problem MCTP variant 2 is to find a set of test

paths TP = {t1, t2, . . . , tk} that cover all test requirements in the graph G such that the

number of the test paths is minimum.

Theorem 2. The problem MCTP variant (2) is polynomial-time solvable.

Proof. Aho and Lee defined the CP 1
1 (minimum-cardinality covering paths) problem [19]:

find a set of covering paths for G = (V, E) such that the number of paths is minimum. In

this problem, the test requirements are nodes in V . Aho and Lee proved this problem is

polynomial-time solvable. If each node in G of the CP 1
1 problem is replaced with a sequence

of nodes (test requirements in the MCTP Variant (2)), the MCTP Variant (2) can be solved

in polynomial time using the same algorithm for the CP 1
1 problem.

Definition 12 (Minimum Cost Test Paths Problem (MCTP) Variant (3)). Con-

sider a set of test requirements TR = {r1, r2, · · · , rn}. Each test requirement is presented

as a subpath in a graph G = (V, E). The problem MCTP variant 3 is to find a set of test

paths TP = {t1, t2, . . . , tk} that cover all test requirements in the graph G such that the

maximum ratio of TR to TP is less than a number x and the total number of test paths is

subjected to a bound p.

The formal language for the decision problem of the MCTP variant (3) is MCTP-

VARIANT3 = <G, TR, x, p>: graph G finds a set of TP that covers TR with the maximum

ratio of TR to TP no more than x and the total number of test paths no more than p.

Theorem 3. The problem MCTP variant (3) is NP-complete.

Proof. First, I show that the MCTP variant (3) belongs to NP. That is, for any given

solution instance, a polynomial-time verifier exists. Consider a solution instance TP =

{t1, t2, . . . , tk}. Let the test requirements be TR = {r1, r2, . . . , rn} and check the ratio

of TR to TP for each test path. For each test path, |ts| = 1, where ts ∈ TP . Thus, for each

test path ts ∈ TP , the ratio of TR to TP is the number of test requirements toured by ts.
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Each test path ts takes time |ts|
∑n

i=1 |ri| to identity whether ts covers some ri in TP using

Knuth-Morris-Pratt’s algorithm. The running time of computing all the ratios of TR to TP

is
∑k

s=1 |ts|
∑n

i=1 |ri| and finding the max ratio takes k − 1. Checking if the number of the

test paths is no more than p takes O(1). Thus, the total running time is
∑k

s=1 |ts|
∑n

i=1 |ri|

+ k, polynomial in the size of the input. Then check whether all ri (i = 1, 2, . . . , n) belong

to at least one path in TP , which can be computed in the first step. Thus, no additional

computation is needed. The total running time of the verifier is
∑k

s=1 |ts|
∑n

i=1 |ri| + k,

polynomial in the size of the input.

Second, to prove that the MCTP variant (3) is NP-hard, the 3-Partition problem should

be reduced to the MCTP variant (3) in polynomial time, that is 3-PARTITION ≤P MCTP-

VARAINT3. Let <A, B, m> be an instance of 3-PARTITION. An instance of MCTP-

VARIANT3 is constructed as follows. Each element a ∈ A represents a test requirement

ri ∈ TR. The size of each test requirement ri ∈ TR is 1. The ratio TR / TP for each test

path is the number of test requirements toured by this test path. Let B be 3. Thus, each

element a ∈ A that represents ri ∈ TR (size of 1) is between B/4 and B/2 (3/4 and 3/2).

I form a graph G = (V + TR, E), where V is a set of distinct nodes that appear in

ri ∈ TR. Each ri ∈ TR also represents a node in G. A node nu ∈ V is connected to another

node nv ∈ V if edge (nu, nv) is a subpath of any ri ∈ TR. A node nu ∈ V is connected to

ri ∈ TR if edges (nu, nf ) and (nl, nu) are subpaths of any ri ∈ TR, where nf is the first

node of ri and nl is the last node of ri. The size of a node that represents ri ∈ TR in G

is 1. The size of a node nu ∈ V is 0. The size of any edges among nodes in V and TR is

0. Thus, the size of a complete path in G only counts the number of ri ∈ TR covered by

this test path. Each set is mapped to one test path. Therefore, the number of test paths

cannot be more than m and each test path has no more than B test requirements. Then

the instance of MCTP-VARIANT3 is (G, TR, B, m), which can be created in polynomial

time.
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Now I show that 3-PARTITION has no more than m sets to fit all elements (test require-

ments) if and only if graph G has a set of m test paths to cover all the test requirements

TR with the max ratio TR over TP no more than B. Suppose 3-PARTITION has m sets

to fit all the elements and each element represents a test requirement ri ∈ TR. Thus, the

size of each element a ∈ A is 1. Each set is mapped to one test path. Thus, the number of

test paths is m as well. Since the number of all the elements is m * B, the max ratio of TR

/ TP for each test path is no more than B. Conversely, suppose that graph G has a set of

m test paths that covers all the test requirements and the max ratio of TR / TP is B. For

each test path, only the test requirements are kept and other nodes are removed. Each test

requirement ri corresponds to an element a ∈ A, where the size of element ai is 1 (between

B/4 and B/2). The total number of the test requirements in all the test paths is m * B,

which is equal to 3m. Thus, 3m elements can be partitioned into m sets with the size of

each set no more than B. Therefore, 3-PARTITION can be reduced to MCTP-VARIANT3.

Definition 13 (Minimum Cost Test Paths Problem (MCTP) Variant (4)). Con-

sider a set of test requirements TR = {r1, r2, · · · , rn}. Each test requirement is presented

as a subpath in a graph G = (V, E). The problem MCTP variant 4 is to find a set of test

paths TP = {t1, t2, . . . , tk} that cover all test requirements in the graph G such that the

total number of test paths is no more than an integer p and TR to TP for each test path is

subjected to a bounded ratio x.

The formal language for the decision problem of the MCTP variant (4) is MCTP-

VARIANT4 = <G, TR, p, x>: graph G finds a set of TP that covers TR with the number

of test paths no more than p and the maximum ratio of TR to TP no more than x.

Theorem 4. The problem MCTP variant (4) is NP-complete.

Proof. First, I show that the MCTP variant (4) belongs to NP. That is, for any given

solution instance, a polynomial-time verifier exists. Consider a solution instance TP =

{t1, t2, . . . , tk}. Let the test requirements be TR = {r1, r2, . . . , rn} and check the
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ratio of TR to TP for each test path. For each test path, |ts| = 1, where ts ∈ TP .

Thus, for each test path ts ∈ TP , TR to TP is the number of test requirements toured

by ts. Each test path ts takes time |ts|
∑n

i=1 |ri| to identity whether ts covers some ri in

TP using Knuth-Morris-Pratt’s algorithm. The running time of computing all the ratios

of TR to TP is
∑k

s=1 |ts|
∑n

i=1 |ri| and finding the max ratio takes k − 1. Checking if

the number of the test paths is no more than p takes O(1). Thus, the total running

time is
∑k

s=1 |ts|
∑n

i=1 |ri| + k, polynomial in the size of the input. Next, whether all ri

(i = 1, 2, . . . , n) belong to at least one path in TP needs to be checked, which can be

computed in the first step. Thus, no additional computation is needed. The total running

time of the verifier is
∑k

s=1 |ts|
∑n

i=1 |ri| + k, polynomial in the size of the input.

Second, to prove that the MCTP variant (4) is NP-hard, the 3-Partition problem is

reduced to the MCTP variant (4) in polynomial time, that is 3-PARTITION ≤P MCTP-

VARAINT4. Let <A, B, m> be an instance of 3-PARTITION. An instance of MCTP-

VARIANT4 is constructed as follows. Each element a ∈ A represents a test requirement

ri ∈ TR. The size of each test requirement ri ∈ TR is 1. The ratio TR / TP for each test

path is the number of test requirements toured by this test path. Let B be 3. Thus, each

element a ∈ A that represents ri ∈ TR (size of 1) is between B/4 and B/2 (3/4 and 3/2).

I form a graph G = (V + TR, E), where V is a set of distinct nodes that appear in

ri ∈ TR. Each ri ∈ TR also represents a node in G. A node nu ∈ V is connected to another

node nv ∈ V if edge (nu, nv) is a subpath of any ri ∈ TR. A node nu ∈ V is connected to

ri ∈ TR if edges (nu, nf ) and (nl, nu) are subpaths of any ri ∈ TR, where nf is the first

node of ri and nl is the last node of ri. The size of a node that represents ri ∈ TR in G is 1.

The size of a node nu ∈ V is 0. The size of any edge among nodes in V and TR is 0. Thus,

the size of a complete path in G only counts the number of ri ∈ TR covered by this test

path. Each set is mapped to one test path. Therefore, the number of test paths cannot be

more than m and each test path has no more than B test requirements. Then the instance

of MCTP-VARIANT4 is (G, TR, m, B), which can be created in polynomial time.
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Now I show that 3-PARTITION has no more than m sets to fit all elements (test require-

ments) if and only if graph G has a set of m test paths to cover all the test requirements

TR with the max ratio TR over TP no more than B. Suppose 3-PARTITION has m sets

to fit all elements and each element represents a test requirement ri ∈ TR. Thus, the size

of each element a ∈ A is 1. Each set has no more than B elements, thus, each test path has

no more than B test requirements. Since the number of all the elements is m * B, the total

number of the test paths is no more than m. Conversely, suppose that graph G has a set of

m test paths that covers all the test requirements and the max ratio of TR / TP is B. For

each test path, only the test requirements are kept and other nodes are removed. Each test

requirement ri corresponds to an element a ∈ A, where the size of element ai is 1 (between

B/4 and B/2). The total number of the test requirements in all the test paths is m * B,

which is equal to 3m. Thus, 3m elements can be partitioned into m sets with the size of

each set no more than B. Therefore, 3-PARTITION can be reduced to MCTP-VARIANT4.

Definition 14 (Minimum Cost Test Paths Problem (MCTP) Variant (5)). Con-

sider a set of test requirements TR = {r1, r2, · · · , rn}. Each test requirement is presented

as a subpath in a graph G = (V, E). The problem MCTP variant 5 is to find a set of test

paths TP = {t1, t2, . . . , tk} that cover all test requirements in the graph G such that the

total number of nodes in the test paths is at most an integer d and the ratio TR / TP is no

more than m.

The formal language for the decision problem of the MCTP variant (5) is MCTP-

VARIANT5 = <G, TR, d, m>: graph G finds a set of test paths TP that covers all test

requirements TR with the total number of nodes in TP no more than d and the ratio of

TR / TP no more than m.

Theorem 5. The problem MCTP variant (5) is NP-complete.

Proof. First, I show that the MCTP variant (5) belongs to NP. That is, for any given

solution instance, a polynomial-time verifier exists. Consider a solution instance TP =
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{t1, t2, . . . , tk}. Let the test requirements be TR = {r1, r2, . . . , rn} and check the ratio

of TR to TP for each test path. For each test path, |ts| = 1, where ts ∈ TP . Thus, for each

test path ts ∈ TP , TR to TP is the number of test requirements toured by ts. Each test path

ts takes time |ts|
∑n

i=1 |ri| to identity whether ts covers some ri in TP . The running time for

computing all the ratios of TR to TP is
∑k

s=1 |ts|
∑n

i=1 |ri| and finding the max ratio takes

k. Checking if the total number of nodes in TP |t1|+ |t2|+ . . .+ |tk| ≤ d takes
∑k

s=1 |ts|.

Thus, the running time is
∑k

s=1 |ts|
∑n

i=1 |ri| + k +
∑k

s=1 |ts|, polynomial in the size of the

input. Next, whether all ri (i = 1, 2, . . . , n) belong to at least one path in TP needs

to be checked, which can be computed in the first step. Thus, no additional computation

is needed. The total running time of the verifier is
∑k

s=1 |ts|
∑n

i=1 |ri| + k +
∑k

s=1 |ts|,

polynomial in the size of the input.

Second, to prove that the MCTP variant (5) is NP-hard, the Bin-Packing problem

should be reduced to the MCTP variant (5) in polynomial time, that is BIN-PACKING ≤P

MCTP-VARAINT5. MCTP-VARIANT3 is a special case of MCTP-VARIANT5, where m

is infinite. Because MCTP-VARIANT3 has been proved to be NP-complete through the

reduction from the Bin-Packing Problem, MCTP-VARIANT5 is also NP-complete with an

enhanced restriction on m.
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Chapter 4: Using Behavioral Models to Generate Tests

This chapter contains solutions to each of the three sub-problems of generating tests from

behavioral models: the minimum cost test paths problem (MCTP), the mapping prob-

lem, and test oracle problem. Section 4.1 introduces a previous breadth-first search based

solution and two new solutions that were developed based on the solutions to the Short-

est SuperString Problem [47]. Section 4.2 describes a structured test automation language

(STAL) to automate the mapping problem. To design STAL, how to create mappings,

generate test values, transform original diagrams to general graphs, generate abstract tests,

solve constraints, and generate concrete tests were considered [14,76]. Section 4.3 describes

ten new test oracle strategies (OSes), compared with two baseline OSes: the null and state

invariant OSes [77]. The new OSes as well as the baseline OSes were used to provide the

best possible strategies to solve the test oracle problem.

4.1 Solutions to the Minimum Cost Test Paths Problem

The previous breadth-first search, greedy set-covering, and prefix-graph solutions include

several algorithms. The breadth-first search based solution is composed of Algorithm 1

(covering all nodes), Algorithm 2 (generating a small set of test paths), Algorithm 3 (gener-

ating test paths to cover all test requirements), and Algorithm 4 (the test suite minimization

algorithm).

The greedy set-covering solution consists of Algorithm 5 (the set-covering algorithm),

Algorithm 7 (the splitting algorithm), and the test suite minimization algorithm. The prefix-

graph solution is comprised of Algorithm 6 (the matching-based prefix graph algorithm),

plus the splitting and test suite minimization algorithms.
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The graph coverage web application [12] takes a directed graph G = (V, E) and set of

test requirements represented by some subpaths in G. G has a set of initial nodes I and

final nodes F . The idea of the breadth-first search solution is to list a set of paths P that

cover all the nodes. This step was implemented in Algorithm 1. In Algorithm 2, three steps

were needed to make P a set of test paths. First, I kept those paths in P with initial nodes

in I and final nodes in F . Second, for a path in P with its initial node in I but final node

not in F , as long as it contains a final node in this path, I took a subpath with its initial

node in I and final node in F . Last, I extended all the remaining paths (without final nodes

in F ) by making their final nodes ∈ F . In Algorithm 3, I extended all the test requirements

that were not covered by the set of test paths generated by Algorithm 2 by making their

initial nodes ∈ I and final nodes ∈ F .

4.1.1 The Previous Breadth-first Search Solution

Algorithm 1 The Heuristic Algorithm to Cover All Nodes

Input: A directed graph G = (V, E) and a set of initial nodes I ⊆ V
Output: A set of paths P that cover all the nodes in V

1: for each initial vertex vi ∈ I do
2: run the Breadth-First-Search (BFS) [59] algorithm to cover the vertices in V ;
3: build a BFS-tree with the root vi;
4: add the path from vi to a vertex v ∈ V \ {vi} into P
5: end for
6: return P

The output of Algorithm 1, a set of paths P , is an input to Algorithm 2. Then the paths

in the set P are extended to reach a final node using Algorithm 2. This results in a small set

of complete test paths TP , which is an input to Algorithm 3. This set of complete test paths

may not cover all the test requirements. The output of Algorithm 3 is a set of complete test

paths that cover all the test requirements, which is an input to Algorithm 4. The inputs of

Algorithm 4 also include a set of test requirements TR. The output of Algorithm 4 is a set

of non-redundant test paths TP ′ that cover all the test requirements in TR. Recall that

a test path is redundant if it satisfies a proper subset of the test requirements satisfied by

another test path, mentioned in section 2.4.1.
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Algorithm 2 The Heuristic Algorithm for Generating a Small Set of Test Paths

Input: A set of paths P and a set of final nodes F
Output: A set of test paths TP

1: for each path pi ∈ P do
2: if the last node of pi ∈ F then
3: add pi to TP and remove pi from P ;
4: else
5: for each node fj ∈ F do
6: if pi includes fj then
7: chop the sub-path pij from the beginning to the position where fj is in pi
8: add pij to TP and remove pi from P ;
9: break;

10: end if
11: end for
12: if the last node of pi /∈ F then
13: extend pi to reach a final node;
14: add pi to TP and remove pi from P ;
15: end if
16: end if
17: end for
18: remove redundant paths in TP ;
19: return TP

Algorithm 3 The Breadth-first Search Algorithm for Generating Test Paths to Cover All
Requirements

Input: A set of test requirements TR and a small set of test paths TP
Output: A complete set of test paths CTR that covers all the test requirements of TR

1: for each test requirement tri ∈ TR that is not covered by TP do
2: if the first node of tri is not an initial node, nor is the last node a final node then
3: repeat
4: for each path pj ∈ TP do
5: if pj includes the first node or last node of tri then
6: extend tri using pj such that tri reaches an initial node or final node;
7: end if
8: end for
9: until tri is a complete path

10: add tri to CTR;
11: end if
12: end for
13: return CTR
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Algorithm 4 The Test Suite Minimization Algorithm to Remove Redundant Test Paths

Input: A set of test requirements TR and a set of test paths TP
Output: A complete set of non-redundant test paths TP ′ ⊆ TP that cover all the test

requirements of TR
1: for each test path tps ∈ TP do
2: find a set of the test requirements TRs ⊆ TR that are covered by tps
3: for each test path tpt ∈ TP and tpt 6= tps do
4: find a set of the test requirements TRt ⊆ TR that are covered by tpt
5: if TRs ⊆ TRt then
6: remove tps from TP
7: end if
8: end for
9: end for

10: return TP (note this TP (TP ′) may not the same as the original TP )

4.1.2 A Set-covering Based Solution

The set-covering based solution uses the set-covering algorithm, the splitting algorithm, and

the test suite minimization algorithm. Given a set of test requirements, the set-covering

algorithm returns only one super-test requirement, which is concatenated by multiple sub-

paths and test requirements. This super-test requirement covers all the test requirements.

Then, the splitting algorithm cuts the super-test requirement into separate complete paths.

Finally, the test suite minimization algorithm removes any redundant test paths.

The set-covering algorithm is described in Algorithm 5. I used the greedy approach

to find the set covers for the graph. Section 4.1.4 describes the splitting algorithm (Algo-

rithm 7), which is also used by the matching-based prefix graph solution (Algorithm 6).

The set-covering based solution used Algorithm 4 to minimize the size of test suites as well.

The set-covering algorithm (Algorithm 5) has two parts: constructing the sets and pick-

ing the set covers using the greedy algorithm. The running-time complexity of constructing

the sets is O(n2) while that of picking the sets is O(n lg n). Let Π denote the super-test

requirement that will be the output of set-covering algorithm. Consider a test path gi.

The cost of gi is |gi| (the length of gi) and the effectiveness of gi is the number of test

requirements that are not covered by the test paths already in Π but will be covered by gi

when adding gi into Π. Line 8 of Algorithm 5 shows that the cost-effectiveness of a path gi

is calculated when picking set covers greedily during each iteration.
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Algorithm 5 The Set-covering Algorithm

Input: A set of test requirements TR
Output: A concatenation of paths that covers all test requirements Π

1: for each test requirement tri ∈ TR and test requirement trj ∈ TR, i 6= j do
2: if tri has overlap with trj then

3: put the super-test requirement sk of tri and trj into a set S {refer to Figure 2.1}
4: end if
5: end for
6: repeat
7: for each element gi ∈ TR

⋃
S do

8: compute the cost-effectiveness of gi;
9: find gi with the minimum cost-effectiveness and extend the super-test requirement

Π with gi;
10: remove the test requirements covered by gi;
11: end for
12: until TR = ∅
13: return the super-test requirement Π

4.1.3 A Matching-based Prefix Graph Solution

This matching-based prefix graph solution is composed of the prefix-graph based algorithm,

the splitting algorithm, and the test suite minimization algorithm. Given a set of test

requirements, the prefix-graph based algorithm returns a set of super-test requirements

that cover all the test requirements. Algorithm 6 constructs a prefix graph and a bipartite

graph G = (V
⋃
U, E) in the same way as is described in Section 2.4.4.

A perfect matching M over this bipartite graph G is a set of edges that connect left side

nodes to right side nodes in the bipartite graph (each node represents a test requirement

in the bipartite graph) such that no node is incident to two or more edges. An edge in the

perfect matching M represents a super-test requirement of the two nodes to which the edge

is connected. Then, with the calculated perfect matching M , a cycle cover is constructed

by merging super-test requirements represented by the edges in the perfect matching M .

Here, the greedy algorithm is used to select a cycle cover or a test requirement that has

the minimum cost-effectiveness each time until all the test requirements are covered. The

cost of a cycle cover is the length of the cycle cover (the number of nodes included in this

cycle cover). The effectiveness of the cycle is the number of test requirements that are not

covered by the test paths already in Π but can be covered by the cycle cover when adding
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this cycle into Π. Algorithm 7 then splits the super-test requirement into separate complete

test paths. Algorithm 4 is used to remove all redundant test paths.

In the bipartite graph, the number of the vertices on the left side may be greater than,

less than, or equal to the number of vertices on the right. Therefore, a “perfect matching”

cannot guarantee that every vertex is incident to one edge, which means some vertices

are not reached by the edges in the “perfect matching.” Thus, to ensure all the test

requirements are covered, the greedy algorithm (line 7) is applied to both the cycle covers

and test requirements.

Algorithm 6 The Matching-based Prefix Graph Algorithm

Input: a set of test requirements TR
Output: a concatenation of paths that covers all the test requirements Π

1: construct a bipartite graph G from the prefix graph;
2: find a perfect matching M of G;
3: repeat
4: construct a set of cycle covers C from the elements in M ;
5: until no overlap exist between the cycle covers in C and the remaining matchings in M
6: add the remaining matchings in C;
7: run the greedy algorithm over C∪TR to select one element c ∈ C that has the minimum

cost-effectiveness until TR = ∅; during each iteration, extend Π with the selected c and
remove c from TR;

8: return the super-test requirement Π.

4.1.4 Splitting the Super-test Requirement into Test Paths

Both the set-covering and prefix-graph based algorithms return a super-test requirement

that covers all test requirements. This “super-test requirement” must then be split into

individual complete test paths, as shown in Algorithm 7. A small set of test paths TP

generated by Algorithm 2 is one of the inputs of this splitting algorithm. The “super-test

requirement” is partitioned into several intermediate paths and they are not connected to

each other; in other words, the last node of path pi is not connected to the first node of path

pi+1 on the graph G. If the resulting shorter paths are not test paths, these intermediate

paths are extended to reach an initial node and a final node using TP (the same approach

applied in Algorithm 3).

The breadth-first search, set-covering based, matching-based prefix graph solutions were
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implemented in the graph coverage web application and compared in the experiments in

terms of the number of test paths, total nodes in the test paths, and execution time, which

will be shown in section 5.1. The experimental results showed that the matching-based

prefix graph solution was better than the other two solutions for large graphs. This solution

was finally applied to the graph coverage web application. The public APIs of the graph

coverage web application are available for other programs to use. The inputs are a general

graph G = (V, E) and a coverage criterion and the output will be a set of test paths that

cover all the test requirements.

Algorithm 7 The Algorithm to Split a Super-test Requirement into Test Paths

Input: A super-test requirement Π, a small set of test paths TP
Output: A set of test paths CTP

1: for each node ni in Π do
2: build an empty path p;
3: repeat
4: extend p with ni;
5: until ni is not connected to ni+1 on the graph
6: extend this path p such that p becomes a test path using TP and add p to CTP ;
7: end for
8: return CTP

4.2 The Structured Test Automation Language (STAL)

This section presents a structured test automation language (STAL) to automate the trans-

formation from abstract tests to concrete tests in model-based testing. The vending ma-

chine example is used to illustrate how testers use STAL to create mappings. This vending

machine example differs slightly from the example in section 1.2.2 by allowing only 10

chocolates. Figure 4.1 is a UML state machine diagram for this vending machine example

created with the Eclipse Modeling Framework (EMF)-based tool Papyrus [78]. Figure 4.1

has one initial state, one final state, nine normal states, and 26 transitions. It also includes

six constraints that are used as state invariants for states 1-91. Some states have internal

transitions. For example, state 2 has an internal transition on coin. The comments next to

each state document the status of the states and specify which constraints apply to each

1Constraints can be specified to be guards or state invariants.
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state. For instance, the comment next to state 1 says “credit = 0 and stock = 0”, thus,

constraints 3 and 6 apply to state 1. Figure 1.3 in section 1.2.2 shows the implementation

of the VendingMachine class.

Figure 4.1: A UML State Machine Diagram for the Class VendingMachine

The design of the structured test automation language addressed three key issues: (1)

creating mappings and generating test values, (2) graph transformation and test path gen-

eration using coverage criteria, and (3) solving constraints and concrete test generation.

The goal of creating mappings is to automate the mapping problem. Once the mappings

from identifiable elements in models to executable test code are created, concrete tests can

be generated automatically for the same elements in any abstract tests.

Because testers are likely to use UML behavioral diagrams to derive tests, the solution

to the mapping problem uses UML state machine diagrams as examples, which were also

used in the experiments to evaluate STAL. The UML state machine diagrams need to be

transformed to general graphs so that the solutions to the MCTP problem can be applied

to them to generate abstract tests.

When abstract tests and mappings are generated, constraints specified in the diagrams

have to be satisfied. The constraints are evaluated at run-time. Testers may have to provide
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Table 4.1: Which Elements Need Mappings?

Element

Need mappings Entry Point, Exit Point, and Do Activity of a State, Tran-
sition, Constraint

Do not need mappings State Machine, Region, Initial PseudoState, Final State,
Fork, Join, Junction, Choice, Simple State, Composite
State, Submachine State

Not used in test models Shallow History PseudoState, Deep History PseudoState

additional mappings to satisfy constraints that cannot be satisfied by the original mappings.

Then concrete tests are generated.

To support STAL and new test oracle strategies (solutions to the test oracle problem), a

structured test automation language framework (STALE) was developed [79]. This tool can

read UML state machine diagrams and transform them into general graphs using the public

APIs of the graph coverage web application. Testers can use STALE to create mappings

for elements and constraints in models and write test oracles. STALE finally generates

concrete tests once the constraints are satisfied by the mappings. Section 4.4 will describe

how STALE works. Appendix A gives a complete manual for STAL.

4.2.1 Creating Mappings and Generating Test Values

This subsection describes how to create mappings from identifiable elements to executable

Java code. Table 4.1 summarizes which elements of a UML state machine diagram should

be mapped. The first row shows a set of elements that need mappings. The elements of

the second row such as Simple State and Composite State do not need mappings because

they can be accessed from Constraints and Transitions in the first row. The definitions

of constraints specify which states the constraints are applied to and the definitions of

transitions specify the source states and target states. Although they are not directly

mapped to test code, they are used to generate test paths. Shallow History PseudoState

and Deep History PseudoState in the third row do not specify current model behaviors,

thus, they are not be used in test models.
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STAL defines two kinds of mappings: element mappings and object mappings. Element

mappings directly connect an identifiable element in a UML state machine diagram to test

code. For instance, a transition coin may be mapped to the test code “vm.coin (c);”.

However, objects and parameters used in this element mapping, such as vm (an object of

class VendingMachine) and c (an int parameter of method coin (int c)), also need to be

initialized in object mappings, which will be marked as required mappings of this element

mapping.

An element mapping is formally defined as:

Mapping mappingName TYPEOFELEMENT nameOfElement

Requires objectMappingName ...

[TYPEOFCONSTRAINT nameOfElement ...] ...

{testCode}

Mapping and Requires are keywords. The mapping name must be unique. TYPE-

OFELEMENT may vary depending on the actual type of one concrete element. Tran-

sition and Constraint are used in this research. If a mapping uses an object defined in

another mapping, the names of additional mappings have to be included in the Requires

field. The notation “...” means that more than one mapping may be required. If an ele-

ment is a constraint, the mapping needs to give the type of the constraint (state invariant,

guard, etc.) and elements (e.g., states or transitions) in which the constraint is held. Thus,

TYPEOFCONSTRAINT can be StateInvariants, Guards, or another type of con-

straints. StateInvariants and Guards fields are optional and marked by “[ ]” since they are

used only for constraints. A constraint may be used as a state invariant in states and guards

on transitions at the same time. Test code is required for any mapping and written in curly

brackets.

An object mapping is formally defined as:
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Table 4.2: Attributes of Element and Object Mappings

Attributes Element Object
Mapping Mapping

Element Name X

Element Type X

Mapping Name X X

Test Code X X

Required Mappings X X

State Invariants & Guards X

Object Name X

Class Name X

Mapping mappingName Class nameOfClass

Object nameOfObject Requires objectMappingName ...

{testCode}

An object mapping includes the class type and name of the object. An object initializa-

tion may also need other objects. So an object mapping may require extra object mappings

as well. Table A.2 indicates which attributes can be used in element and object mappings.

For the state machine diagram of the vending machine program in Figure 4.1, I need to

create mappings for four distinct transitions: initialize, addChocs, getChocs, and coin; and

define six constraint mappings. The first mapping is an element mapping for the transition

initialize:

Mapping vMachineInit Transition initialize

{ VendingMachine vm = new VendingMachine(); }

vMachineInit is the mapping name. The keyword Transition specifies that the mapping

vMachineInit is created for a transition.

Next is a mapping for the transition getChocs. The method getChoc (StringBuffer) is

used to get chocolates from the vending machine. The StringBuffer object “sb” represents

a chocolate.
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Mapping getChocolate Transition getChocs

{

StringBuffer sb = new StringBuffer (“MM”);

vm.getChoc (sb);

}

The mapping getChocolate gets only one chocolate from the vending machine. More

chocolates can be taken from the vending machine if the method getChoc (StringBuffer) is

called multiple times. Two objects, vm and sb, need to be initialized before this transition

is taken. Because the transition initialize appears at the beginning of every test path, the

object vm will be initialized before the test code for other mappings is run, thus, other

mappings do not need to specify the mapping vMachineInt to be required. A StringBuffer

variable sb is initialized directly in the test code of this mapping. Alternatively, the initial-

ization of sb could be defined in an object mapping and reused in other mappings. The next

example shows another mapping that gets two chocolates. It requires an object mapping

stringBufferInit.

Mapping getTwoChocolates Transition getChocs

Requires stringBufferInit

{

vm.getChoc (sb);

vm.getChoc (sb);

}

The object mapping for stringBufferInit is shown below:

Mapping stringBufferInit Class StringBuffer Object sb

{ StringBuffer sb = new StringBuffer (“MM”); }

Note that the initialization of an object should be either embedded in the test code of
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an element mapping, defined as an object mapping separately, but not both. Otherwise

the object will be defined twice. STALE will report such error to testers. The examples

above show that testers could generate multiple mappings with different test values for the

same transition (mappings getChocolate and getTwoChocolates for the transition getChocs).

Which mapping should be chosen depends on the constraint evaluation, which is discussed

in section 4.2.3. The next mapping, coinOneDollarAndTen, provides test code for the

transition coin.

Mapping coinOneDollarAndTen () Transition coin
{

vm.coin (10);
vm.coin (25);
vm.coin (25);
vm.coin (25);
vm.coin (25);

}

This mapping adds $1.10 to the vending machine. The method coin is used to add

credits in the vending machine. The int parameter of the method coin represents how much

is added. If adding a different amount of money, testers have to create a new mapping.

Alternatively, the testers can create a parameterized mapping to avoid writing multiple

mappings.

Mapping coinAnyCredit (int c) Transition coin

requires cForCoin

{ vm.coin (c); }

Testers can provide multiple test values for primitive types and values will be chosen

arbitrarily. To provide test values for the parameter c in an object mapping, an object

mapping cForCoin can be written below:

Mapping cForCoin Class int Object c

{ 10, 25, 100 }
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The vending machine only accepts dimes (10), quarters (25), and dollars (100). One

of the three int values will be selected arbitrarily for the parameter c, potentially with a

different value each time cForCoin is used. Testers can also provide predicates such as

{c > 0, c ≤ 100}, separating conditions by commas. Constraint solvers for numeric and

string variables [80, 81] used in STALE will return a value that satisfies all constraints.

The constraint solvers have a limited language. They accept numeric variables (int, float,

and double), arithmetic operators, and regular expressions for Strings. They do not accept

disjuncts or function calls.

A mapping that specifies a constraint to be a state invariant is shown below. In this

example, Constraint1 is a state invariant for State3, State6, and State9. The credit of the

vending machine has to be equal to or greater than 90 cents in these three states. The test

code for this constraint is evaluated when tests go through a state to which the constraint

is applied. If the boolean expression evaluates to false, the mapping prior to this state does

not satisfy this constraint and an alternative mapping needs to be used. This constraint

can also be explicitly expressed as test oracles in concrete tests.

Mapping constraintForCredit Constraint Constraint1

StateInvariants State3, State6, State9

{ vm.getCredit() ≥ 90; }

4.2.2 Graph Transformation and Test Path Generation

Each UML state machine diagram can be transformed to a generic graph with initial and

final nodes. For a UML state machine diagram, an initial state is mapped to an initial node

in the graph, a final state to a final node, and other states to unique nodes. Each transition

becomes an edge and an internal transition from one state to itself becomes a self-loop on

the corresponding node. Elements including composite states, choices, forks, junctions, and

joins need special treatment.

When transforming multiple transitions from a state to another state (that is, more
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than one transition has the same source state and target state), there are two general ways.

First, transform each transition to a different edge. Thus, each edge represents a different

transition. Second, transform all transitions between two states to only one edge, which

represents all the transitions. This research chose the latter because when a UML state

machine diagram is transformed to a general graph, this graph only uses node numbers to

represent edges (such as (1, 2), where 1 and 2 are node numbers). Thus, without using

additional syntax, creating different edges for different transitions from the same source

to the same target is ambiguous on the graph. The problem of the latter solution is that

covering all edges on the graph is not equivalent to covering all transitions on the diagram.

Thus, to cover all the transitions, mappings need to be created to map the edges to each

transition. Testers need to use all-transition coverage [1] to ensure every transition is

covered. In this research, the experimental subjects only have single transitions from one

state to another. Therefore, I used edge coverage on the graph to cover all transitions on

the state machine diagrams.

Each sub-state of a composite state becomes a unique node and the composite state

itself will not be transformed to a node. If a composite state has an initial state, an edge

will be created for an incoming transition to the initial state of the composite state. If a

composite state has n regular sub-states but no initial states, n edges will be created for an

incoming transition, one for each node. Likewise, if a composite state has a final state, an

edge will be created for an outgoing transition from the final state of the composite state.

If a composite state has n sub-states but no final states, n edges will be created for an

outgoing transition.

An edge will be created for each outgoing transition of a choice or fork. An edge will be

created for each incoming transition of a join or junction.

Once the transformation from a UML state machine diagram to a generic graph is

complete, testers can use the algorithms used to solve the MCTP problem from section 4.1

to generate test paths, according to some coverage criterion.
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4.2.3 Solving Constraints and Concrete Test Generation

After mappings are created, the structured test automation framework (STALE) saves the

mappings as XML. Figure 4.2 shows the saved mappings vMachineInit, addChocolate,

coinOneDollar, coinAnyCredit, intCInit, getOneChocolate, stringBufferInit, and constraint-

StockOne in XML.

Seven test paths are generated to satisfy edge coverage using the graph web application

[12] on the diagram of Figure 4.1. One of the test paths is [initial, state1, state4, state7,

state7, state9, state4, final ], whose abstract test is shown below:

initialize;
addChocs;
addChocs;
addChocs;
coin;
getChocs;

Testers can use the mapping addChocolate in Figure 4.2 for the transition addChocs since

only one mapping is created for this transition. If a transition has more than one mapping,

the tool has to choose which to use. If the destination state of a transition has a constraint,

the constraint has to be satisfied by the selected mapping. If the constraint is not satisfied,

another mapping will be selected. If none of the mappings can satisfy the constraint, the

tester is informed. This represents an error, and should result in a correction to the model,

the program, or the mappings.

An object or element mapping may require more than one object mapping. STALE

is able to analyze the dependency relationship among all related object mappings. While

generating concrete tests, the test code of object mappings that have no dependencies will

be written first, followed by other object mappings that use variables from prior mappings.

When executing the example test path above, the vending machine will reach State9

with three chocolates in stock and credit no less than 90. The next step in the abstract test

is getChocs, which should cause a transition to State4. However, State4 has Constraint5

(specified in Figure 4.2), which says that the vending machine should only have one chocolate
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in stock. There is no way to satisfy that constraint (getChocs transition can only give one

chocolate to customers at one time), so an error will be reported to the tester. The error

can be corrected in one of several ways. The model can be changed by modifying the

constraint to be stockOfV endingMachine ≥ 1, adding a transition on getChocs to State7,

or by changing getChocs to allow more than one chocolate to be dispensed. The ability to

find errors in the model when generating tests is a major benefit of this approach.

4.3 Test Oracle Strategies

This section introduces ten new test oracle strategies (OSes) and two baseline OSes: the

null test oracle strategy (NOS) and state invariant test oracle strategy (SIOS).

NOS only checks for exceptions or abnormal termination, as implicitly provided by Java

runtime systems [9]. Many faults do not cause runtime exceptions, so this OS sounds trivial.

It is, however, often used in industry.

The second OS is SIOS, which checks the state invariants from the state machine di-

agram. After testers use STALE to provide proper test mappings from abstract model

elements to concrete test code, all state invariants in the state machine diagram should be

satisfied. Since all the state invariants can be transformed to executable code using the pro-

vided mappings, these state invariants can be added to the tests as assertions automatically.

Thus, SIOS is more precise than NOS.

This research considered two dimensions when designing OSes: how often to check states

(frequency), and how many output values and internal state variables to check (precision).

Regarding the frequency, testers can check states after each method call, each transition,

or they can check states only once. For precision, this research defined four elements of the

program state to check:

1. State invariants: Check the state invariants in the model

2. Object members: Check member variables of objects that call methods in a transition

3. Return values: Check return values for each invoked method
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4. Parameter members: Member variables of objects that are passed to a method call as

parameters

“Deep checking” was used for objects, that is, if an object’s member was also an object,

it was checked recursively until primitive variables were found.

I proposed ten new OSes beyond SIOS. Each new OS satisfies all the state invariants in

a model and explicitly writes the satisfied state invariants as assertions. Additionally, they

check more program states.

OS1: After each transition is executed, check all distinct object members in this transition

only once

OS2: After each transition is executed, check the return values of the distinct methods

only once

OS3: After each transition is executed, check all distinct object members in this transition

and the return values of the distinct methods only once

OS4: After each transition is executed, check all distinct parameter members and the return

values of the distinct methods only once

OS5: After each transition is executed, check all distinct object and parameter members

and the return values of the distinct methods only once

For each OSi (1 ≤ i ≤ 5), OTi (1 ≤ i ≤ 5) checks the same outputs and internal state

variables (one check per test) but with a lower frequency. OT stands for One Time checking

test oracle strategy. Thus, OTi (1 ≤ i ≤ 5) is an OS, which still represents a test oracle

strategy. OSes mentioned elsewhere contain OTi and OSi (1 ≤ i ≤ 5).

OT1: After the last transition, check all distinct object members that appear in all tran-

sitions only once

OT2: After the last transition, check the return values of the distinct methods that appear

in all transitions only once
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OT3: After the last transition, check all distinct object members and the return values of

the distinct methods that appear in all transitions only once

OT4: After the last transition, check all distinct parameter members and the return values

of the distinct methods that appear in all transitions only once

OT5: After the last transition, check all distinct object and parameter members and the

return values of the distinct methods that appear in all transitions only once

OS5 is not the most precise test oracle strategy possible because it does not check

outputs and variables whenever they appear in the tests. I wanted to see if each OT can be

as good as the corresponding OS in terms of finding faults. Please note that each OT checks

the object members, return values, and parameter members that appear in all transitions,

not just outputs and internal state variables in the last transition.

Checking all object members, return values, and parameter members that appear in

all the transitions at the end of tests could cause the OTis to check different program

states from the OSis. For instance, if OS2 checks a return value Object a after the system

initialization in a test (a has an initial value during the system initialization), then OS2

does not check a in the rest of the tests because a is not used as a return value in other

transitions. However, a’s state could be changed if a is used as a parameter or makes

method calls. Therefore, OT2 can check different program states (check a after the last

transition) that would not be checked by OS2 (check a after the first transition). Moreover,

no matter when a’s status is changed, OS5 is able to monitor the change since OS5 checks

object members, return values and parameter members for every transition. Thus, OS5 is

expected to be no less effective than OTi, where 1 ≤ i ≤ 5. So OTi is as precise as OSi

but may detect faults that cannot be revealed by OSi, where 1 ≤ i ≤ 4.

Test oracle strategies OT1, OT2, OT3, OT4, and OT5 mimic a common programmer

habit of writing assertions (checking program states at the end of tests). The difference is

that programmers often only write a few assertions, while OT1, OT2, OT3, OT4, and OT5

check various outputs and internal state variables after the last transition.
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Figure 4.3 shows the precision relationships among the OSes. An arrow from one OS to

another indicates that the higher OS is more precise.

Section 5.3 presents experiments that compared the new ten OSes (OS1, OS2, OS3,

OS4, OS5, OT1, OT2, OT3, OT4, and OT5) with two baseline OSes (NOS and SIOS). The

analysis and recommendations is also discussed.

4.4 The Structured Test Automation Language Framework

(STALE)

The structured test automation language framework (STALE) implemented this research’s

solutions to the mapping problem and test oracle problem and used the solution to the

MCTP problem from the graph coverage web application. The main function of STALE

is to generate concrete tests from models. STALE uses the Eclipse Modeling Framework

(EMF) library [64] to read EMF-based UML models and transforms the models to generic

graphs. STALE uses a prefix-graph based solution [47] from public APIs of the graph

coverage web application to reduce the number of tests as well as the number of times

transitions appear in the tests, which is considered to be a type of quantitative human

oracle cost reduction [2]. The quantitative human oracle cost reduction reduces the effort

of generating test oracles by decreasing the size of test cases or test suites.

Testers develop the mappings in STAL, which are saved in XML files. Testers also

need to provide test oracles for each mapping to generate assertions in the tests. Then

testers need to choose a level of test oracle (e.g., OS2) and a test coverage criterion (e.g.,

edge coverage). Finally, the tool generates concrete tests by choosing mappings that satisfy

constraints. If a mapping does not satisfy the constraints, unsatisfied constraints will be

reported. Thus, testers need to generate additional mappings.

Figure 4.4 shows the user interface of STALE. If some projects have already been created

under STALE, they are shown in the Available Projects when users start STALE. The

associated models, mappings, and test oracles are populated in their corresponding fields.
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If no STALE projects exist, users can create a new project by providing a name and model.

Once a model (only UML state machine diagrams so far) is added, its identifiable el-

ements such as transitions and constraints (only state invariants so far) are placed in the

element box. Then users should provide mappings from identifiable elements to implemen-

tation. Each identifiable element from a diagram can have more than one mapping because

testers need to provide as many mappings as possible to satisfy all the state invariants for

a specific coverage criterion. Each mapping for an element only needs to be written once.

When an element appears again in an abstract test, an appropriate mapping is selected

automatically to satisfy the necessary state invariants. The concrete code of a mapping for

a transition is a sequence of method calls.

The concrete test code for state invariants can be transformed to JUnit assertions,

allowing each assertion to be evaluated at run-time. If an assertion evaluates to false, it

means the state invariant is not satisfied by the concrete test sequences of the currently

used mapping for a transition between this state and a preceding state. Therefore, the

concrete test code of another mapping for the transition will be used and the state invariant

is re-evaluated. This process continues until the state invariant is satisfied. If no existing

mapping can satisfy a state invariant, STALE reports an error and asks the tester to provide

more mappings.

Since the concrete test code of state invariants can be evaluated as JUnit assertions, the

assertions can be used directly as test oracles. This is what SIOS evaluates. Additionally,

testers can use STALE to write more assertions to check other internal state variables such

as class variables and outputs. For instance, if the executable test code of a transition has

a method call: “boolean sign = classObjectA.doActionB();”, testers can write assertions to

evaluate the return value of the method call sign and classObjectA’s class member variables

by providing expected test values.

I will show an example below to explain how STALE works. Since a tester only needs

to load models and select a coverage criterion to generate abstract tests, this example

focuses on how to create mappings and test oracles for generating concrete tests. Recall
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the complete vending machine example Figure 4.1 in section 4.2: customers insert coins

to purchase chocolates; only dimes, quarters, and dollars are accepted; and the price for

all chocolate is 90 cents. Focus on the top three states (state1, state2, and state3) and

associated transitions, which describes how the system behaves when customers insert coins.

Thus, Constraint1 is in State1, Constraint2 is in State2, and Constraint3 is in State3. This

example still uses the same implementation that is described in Figure 1.3.

STALE can read the state machine diagram and generate abstract tests. If testers

choose edge coverage (EC), then the test requirements for those top three states are “State1,

coin, State2,” “State2, coin, State3,” and “State1, coin, State3”. Thus, they need to be

covered by the abstract tests. Testers need to provide mappings so the abstract tests

can become executable code. To satisfy state invariants Constraint1, Constraint2, and

Constraint3, testers may have to provide multiple mappings for the transition coin. The

concrete test code of one mapping, coinTen, can be “vm.coin(10);”, which inserts a dime

into the vending machine. vm is an object of class VendingMachine, and is defined in the

mapping vMachineInit in Figure 4.2. STALE provides a mechanism to let other mappings

use this object. To satisfy the state invariants in State2 and State3, testers can provide

another mapping whose test code is “vm.coin(100);”, which inserts a dollar.

In addition to the state invariants, testers can also provide more test oracle data to

check other fields of class VendingMachine. STALE provides ten levels for ten different

test oracle strategies. Thus, testers need to provide test oracle data that check different

program states for different test oracle levels, for each mapping. When a mapping is used

in a test, the corresponding test oracles have to be inserted into the test after the test

code of this mapping. Thus, this step is automated. Because testers do not know where

the mapping may appear in tests (depend on the coverage criteria, constraints, test values,

and algorithms), testers cannot write fixed test values in test oracles. If the test code

of a mapping for transition “coin” is vm.coin(10);, an assertion after this transition like

“assertEquals(10, vm.getCredit());” could return false in many tests since the credit before

adding the dime is not 0. Therefore, to automate the generation of test oracles, the test
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code of element mappings have to be changed. Figure 4.4 shows an example using transition

“coin.” The mapping coinTen adds two statements “credit = vm.getCredit();” and “stock

= vm.getStock().size();” to get the values of credit and stock before inserting a dime into

the vending machine. Note that variables credit and stock need to be declared in the test

initialization to avoid duplicated variable definitions. Then the code of test oracles for the

mapping coinTen can check whether the assertions return true: “assertEquals(credit + 10,

vm.getCredit())” and“assertEquals(stock, vm.getStock().size())”.

When generating concrete tests, testers need to choose a test coverage criterion and a

test oracle level. Testers also need to add package names and imported package and class

declarations if necessary. Once these are prepared, testers press the Generate tests button

and the tests will be generated in the “test” folder under the project directory.

Figure 4.2 show some example mappings. Appendix B shows the vending machine exam-

ple completely worked out, including abstract tests, its implementation, and all mappings.

The concrete tests would take up to 300 pages, so are available online.

70



〈 mappings 〉
〈 mapping 〉
〈 name 〉 vMachineInit 〈 /name 〉
〈 transition-name 〉 initialize 〈 /transition-name 〉
〈 code 〉 VendingMachine vm = new VendingMachine(); 〈 /code 〉

〈 /mapping 〉
〈 mapping 〉
〈 name 〉 addChocolate 〈 /name 〉
〈 transition-name 〉 addChocs 〈 /transition-name 〉
〈 code 〉 vm.addChoc (“MM”); 〈 /code 〉

〈 /mapping 〉
〈 mapping 〉
〈 name 〉 coinOneDollar 〈 /name 〉
〈 transition-name 〉 coin 〈 /transition-name 〉
〈 code 〉 vm.coin(100); 〈 /code 〉

〈 /mapping 〉
〈 mapping 〉
〈 name 〉 coinOneDime 〈 /name 〉
〈 transition-name 〉 coin 〈 /transition-name 〉
〈 code 〉 vm.coin(10); 〈 /code 〉

〈 /mapping 〉
〈 mapping 〉
〈 name 〉 getOneChocolate 〈 /name 〉
〈 transition-name 〉 getChocs 〈 /transition-name 〉
〈 code 〉 vm.getChoc(sb); 〈 /code 〉
〈 required-mappings 〉 stringBufferInit 〈 /required-mappings 〉

〈 /mapping 〉
〈 mapping 〉
〈 name 〉 stringBufferInit 〈 /name 〉
〈 object-name 〉 sb 〈 /object-name 〉
〈 class-name 〉 StringBuffer 〈 /class-name 〉
〈 code 〉 StringBuffer sb = new StringBuffer(s); 〈 /code 〉
〈 required-mappings 〉 stringInit 〈 /required-mappings 〉

〈 /mapping 〉
〈 mapping 〉
〈 name 〉 stringInit 〈 /name 〉
〈 object-name 〉 s 〈 /object-name 〉
〈 class-name 〉 String 〈 /class-name 〉
〈 code 〉 “MM” 〈 /code 〉

〈 /mapping 〉
〈 mapping 〉
〈 name 〉 constraintStockOne 〈 /name 〉
〈 constraint-name 〉 Constraint5 〈 /constraint-name 〉
〈 code 〉 vm.getStock().size() == 1; 〈 /code 〉
〈 required-mappings 〉 vMachineInit 〈 /required-mappings 〉
〈 state-invariant 〉 State4,State5,State6 〈 /state-invariant 〉

〈 /mapping 〉
〈 /mappings 〉

Figure 4.2: Mappings
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Figure 4.3: Precision Relationship among Test Oracle Strategies
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Figure 4.4: The User Interface of the Structured Test Automation Language Framework
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Chapter 5: Experiments

This chapter describes the experiments for the three sub-problems of generating cost-

effective criteria-based tests from behavioral models: the minimum cost test paths problem

(MCTP), the mapping problem, and the test oracle problem. The experiments in section 5.1

evaluated two new solutions (set-covering and matching based prefix graph) to the MCTP

problem against the previously used breadth-first search solution [47]. The experiments in

section 5.2 compared the test mapping process with the structured test automation lan-

guage (STAL) with manual transformation from abstract tests to concrete tests [14, 76].

The experiments in the last section, 5.3, validated the new test oracle strategies (OSes)

against two baseline test oracle strategies: the null (NOS) and state invariant (SIOS) test

oracle strategies [77].

5.1 The Experiments for the Minimum Cost Test Paths Prob-

lem

The experiments compared the set-covering based and matching-based prefix graph solu-

tions with the previous breadth-first search solution. The new solutions were expected to

generate fewer tests and use fewer total nodes to cover all test requirements when compared

with the previous breadth-first search solution. The solutions developed to solve MCTP

in this research apply to arbitrary graphs, without consideration of what software artifact

they came from. Model-based testing designs tests from functional requirements or design

models, and normally excludes source. Since this research considers graphs in the abstract

and the origin of the graphs is irrelevant, the experimental verification chose control flow

graphs from source for convenience. The results apply to any test design strategy that uses

graphs.
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The experiments used prime path coverage as the coverage criterion.

The three solutions described in section 4.1 were studied using 37 methods in two steps.

First, 18 methods were taken from several open source projects, including Joda-Time1,

javassist2, graph coverage web application3, Apache Ant4, and jdom5. All methods were

written in Java. Methods that had relatively complicated control structures (nested loops)

were chosen, because simple methods have fewer prime paths and thus the algorithm used

to create test paths is less important. Control flow graphs were generated by hand for each

method and the graph coverage web application (support software provided as part of Am-

mann and Offutt’s testing book [12]) was used to generate prime paths (test requirements).

The hypothesis was that the better algorithms would show more benefit for graphs that

have more complex structures especially nested loops because such complex structures could

result in prime paths that have overlaps among them. So second, another 19 methods from

the open source projects were modified structurally to yield control flow graphs that had

more complex structures. Modifications included adding a nested loop, adding a continue

statement, deleting a statement, and adding additional decision structures. Note that the

newly changed methods were still valid Java files without compilation errors.

The three solutions described in section 4.1 were implemented (in Java) in the graph

coverage web application. Then the prime paths for all 37 methods were the inputs to each

of the three solutions, resulting in test paths that toured all prime paths.

5.1.1 Experimental Environment and Process

The experiment was conducted on a Dell mini tower, with an Intel Core i5-750 (2.66GHz

8MB L3 cache) CPU. The primary measure of the experimental subjects’ size is the number

of prime paths, which was determined by the graph coverage web application. The program

was executed without interactions with the Internet or interruption from other programs.

1http://joda-time.sourceforge.net/
2http://www.jboss.org/javassist/
3http://cs.gmu.edu:8080/offutt/coverage/GraphCoverage
4http://ant.apache.org/
5http://www.jdom.org/
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The goals of MCTP to be optimized include the total number of test paths, the total

number of nodes, and the maximum ratio of TR (number of test requirements) to TP

(number of test paths), which has been described in section 1.3.1. Therefore, the three

solutions were compared based on the number of test paths, the total number of nodes

included in the test paths, and the maximum ratio of TR over TP. In this research, the

set-covering based and matching-based prefix graph algorithms are general solutions to

the MCTP problem, not to specific MCTP variants. Therefore, specific goals such as the

maximum ratio of TR / TP were not be minimized. Thus, the maximum ratio of TR / TP

was measured but not used as a metric to evaluate the solutions.

This research did not emphasize time because time depends on many factors such as

people, tools, test criteria, and experimental subjects. However, the three solutions were

compared in terms of the execution time as well for completeness. For each test path, TP

is counted as 1. Thus, the ratio of TR to TP is the number of test requirements covered by

the test path.

The maximum ratio of TR over TP finds the most test requirements covered by any

test path for each program. Execution time was measured with the Java built-in method

System.nanoTime().

To handle variance in measuring execution time, each subject was measured five times

for the three solutions and the average (mean) of the measured time was computed.

5.1.2 Experimental Results

Table 5.1 shows results from the experiment on natural open source methods. The table

shows the number of prime paths (PPs), then results in terms of the number of test paths

(Paths), and the total number of nodes in all test paths (Nodes). The BF column shows

results from the breadth-first search solution, PG denotes the prefix-graph based solution,

and SC represents the set-covering based solution. These methods had from 9 to 1844 prime

paths.

76



Table 5.1: Paths and Nodes for Open Source Methods

PPs
Paths Nodes Paths Ratio Nodes Ratio TR/TP

BF PG SC BF PG SC BF PG SC BF PG SC BF PG SC

9 7 5 5 46 33 33 1.00 0.71 0.71 1.00 0.72 0.72 2 3 3
11 9 7 8 54 42 48 1.00 0.78 0.89 1.00 0.78 0.89 2 3 3
27 14 12 12 210 184 177 1.00 0.86 0.86 1.00 0.88 0.84 9 16 17
27 17 15 17 160 141 166 1.00 0.88 1.00 1.00 0.88 1.04 3 9 8
35 25 25 22 229 225 200 1.00 0.96 0.88 1.00 0.98 0.87 6 7 8
38 18 13 17 196 155 181 1.00 0.72 0.94 1.00 0.79 0.92 8 17 12
46 30 24 27 366 304 339 1.00 0.80 0.90 1.00 0.83 0.93 6 10 10
63 36 22 26 576 415 441 1.00 0.61 0.72 1.00 0.72 0.77 9 16 14
69 49 42 44 536 465 485 1.00 0.86 0.90 1.00 0.87 0.90 7 11 11
71 37 24 25 699 492 484 1.00 0.65 0.68 1.00 0.70 0.69 12 19 16
84 70 50 52 792 618 621 1.00 0.71 0.74 1.00 0.78 0.78 7 13 13
98 65 57 56 1086 965 947 1.00 0.87 0.86 1.00 0.89 0.87 8 12 12

101 66 50 52 984 788 771 1.00 0.76 0.79 1.00 0.80 0.78 11 18 11
122 81 70 63 1685 1521 1393 1.00 0.86 0.78 1.00 0.90 0.83 13 14 14
170 105 91 93 2176 1921 1927 1.00 0.87 0.89 1.00 0.88 0.89 9 26 13

1,024 913 776 623 26,285 24,005 21,398 1.00 0.85 0.68 1.00 0.91 0.81 15 26 19
1,141 982 913 761 39,370 37,267 32,934 1.00 0.93 0.78 1.00 0.95 0.84 16 29 19
1,844 1, 265 395 376 28,278 12,875 11,607 1.00 0.31 0.30 1.00 0.46 0.41 14 273 77

Total 3,789 2,590 2,279 103,728 82,416 74,152

Weighted
Average

1.00 0.68 0.60 1.00 0.79 0.71
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The next six columns show the ratio of path length and number of nodes for each solution

over the breadth-first search solution. The bottom row shows the total cost of the paths

and nodes, and the average ratios. The average ratios were weighted, that is, they were

computed from the totals row. The last three columns (TR / TP) display the maximum

ratio of TR to TP for the three solutions.

The columns Paths and Nodes show that the prefix-graph and the set-covering based

solutions generated the same or fewer test paths and nodes when compared with the breadth-

first search solution, and for most methods, far fewer. The BF, PG, and SC under Paths

columns show that the prefix-graph based solution generated fewer test paths than the set

covering solution for most methods, but the set covering solution generated fewer for the

three largest methods. The largest number of test requirements covered by one test path

is 273 in the last subject, using the prefix-graph based solution. For the third subject, the

set-covering solution covered 17 of the 27 test requirements (63%) with just one test path.

Table 5.2 presents the measured execution time of the three solutions for each subject

in the open source programs in seconds. The meanings of PPs, BF, PG, SC, Total, and

Average are the same as in Table 5.1. The last three columns show the ratios of the running

time of each solution over the breadth-first search solution. The prefix-graph based solution

took the least time to generate the test paths for each subject. For the first 15 subjects,

the set-covering based solution ran faster than the breadth-first search solution; however,

the breadth-first search solution was faster for the last three subjects, which have more

than 1000 prime paths. The last subject took almost 10 hours to generate tests with the

set-covering based solution. The unweighted and weighted averages were quite different so

this table shows both. The unweighted averages were straight averages of the numbers in

the column, and the weighted averages were computed from the totals. With execution

speed in particular, the weighted averages were heavily influenced by the last subject.

Table 5.3 shows the results of the test paths from the experiment on the 19 modified

methods. The results were consistent with those in the first stage.
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Table 5.2: Execution Time for Open Source Methods

PPs
Time (seconds) Time Ratio

BF PG SC BF PG SC

9 0.002 0.0007 0.0004 1.00 0.35 0.20
11 0.004 0.0007 0.0004 1.00 0.18 0.10
27 0.048 0.0170 0.0160 1.00 0.35 0.33
27 0.023 0.0130 0.0030 1.00 0.57 0.13
35 0.035 0.0160 0.0230 1.00 0.46 0.66
38 0.045 0.0160 0.0190 1.00 0.36 0.42
46 0.064 0.0230 0.0370 1.00 0.36 0.58
63 0.140 0.0360 0.1200 1.00 0.26 0.86
69 0.200 0.0390 0.1300 1.00 0.20 0.65
71 0.230 0.0500 0.1800 1.00 0.22 0.78
84 0.330 0.0660 0.2900 1.00 0.20 0.88
98 0.670 0.0870 0.3600 1.00 0.13 0.54

101 0.330 0.0660 0.2900 1.00 0.20 0.88
122 1.070 0.1600 0.9600 1.00 0.15 0.90
170 3.610 0.3500 2.4400 1.00 0.10 0.68

1024 1340.000 142.0000 4040.0000 1.00 0.11 3.01
1141 3490.000 184.0000 5680.0000 1.00 0.05 1.63
1844 1680.000 235.0000 35,500.0000 1.00 0.14 21.13

Total 6516.801 561.9404 45,224.8400

Unweighted Average 1.00 0.24 0.56
Weighted Average 1.00 0.09 6.94
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Table 5.3: Paths and Nodes for Modified Methods

PPs
Paths Nodes Paths Ratio Nodes Ratio TR/TP

BF PG SC BF PG SC BF PG SC BF PG SC BF PG SC

26 10 5 8 150 117 125 1.00 0.50 0.80 1.00 0.78 0.83 10 15 11
35 15 10 11 198 155 153 1.00 0.67 0.73 1.00 0.78 0.77 9 13 14
62 35 21 26 476 369 385 1.00 0.60 0.74 1.00 0.78 0.81 9 13 11
63 41 24 29 625 456 511 1.00 0.59 0.70 1.00 0.73 0.82 7 18 9
68 37 20 25 559 443 419 1.00 0.54 0.67 1.00 0.79 0.75 11 36 13
81 55 19 30 674 335 407 1.00 0.35 0.55 1.00 0.50 0.60 7 19 16
82 58 42 42 1,001 829 803 1.00 0.72 0.72 1.00 0.83 0.80 7 15 12
88 44 23 25 788 574 496 1.00 0.52 0.57 1.00 0.73 0.63 12 34 17
91 40 21 33 826 589 728 1.00 0.53 0.83 1.00 0.71 0.88 11 28 26
97 50 30 33 873 591 557 1.00 0.60 0.66 1.00 0.68 0.64 13 33 16

105 60 29 32 859 623 558 1.00 0.48 0.53 1.00 0.73 0.65 10 44 16
115 72 53 46 1,179 1,037 876 1.00 0.74 0.64 1.00 0.88 0.74 10 22 15
121 85 49 54 1,335 1,029 1,031 1.00 0.58 0.63 1.00 0.77 0.77 9 28 18
157 94 53 54 2,118 1,425 1,332 1.00 0.56 0.57 1.00 0.67 0.63 14 45 25
161 98 62 66 1,816 1,433 1,342 1.00 0.63 0.67 1.00 0.79 0.74 14 36 15
183 103 70 61 2,060 1,647 1,351 1.00 0.68 0.59 1.00 0.80 0.66 12 57 20
189 113 79 77 2,515 2,150 1,973 1.00 0.70 0.68 1.00 0.85 0.78 7 63 21
293 150 78 77 2,929 2,043 1,906 1.00 0.52 0.51 1.00 0.70 0.65 13 132 25
369 244 181 158 4,941 4,030 3,604 1.00 0.74 0.65 1.00 0.81 0.73 13 60 21

Total 1,404 869 887 25,922 19,875 18,557

Weighted
Average

1.00 0.62 0.63 1.00 0.77 0.72
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Table 5.4 shows the measured execution time for the modified methods. The results

were similar to these in Table 5.2. The prefix-graph based solution spent the least time

to generate the test paths for 17 subjects. However, the set-covering solution took more

time than the breadth-first search approach for eight out of the last nine subjects when the

number of prime paths got bigger.

Table 5.4: Execution Time for Modified Methods

PPs
Time (seconds) Time Ratio

BF PG SC BF PG SC

26 0.016 0.0110 0.0060 1.00 0.69 0.38
35 0.033 0.0180 0.0260 1.00 0.55 0.79
62 0.130 0.0300 0.0800 1.00 0.23 0.62
63 0.004 0.0007 0.0004 1.00 0.18 0.10
68 0.150 0.0400 0.1700 1.00 0.27 1.13
81 0.170 0.0500 0.2300 1.00 0.29 1.35
82 0.300 0.0600 0.2000 1.00 0.20 0.67
88 0.220 0.0560 0.3900 1.00 0.25 1.77
91 4.480 0.4800 3.3100 1.00 0.11 0.74
97 0.710 0.0800 0.5600 1.00 0.11 0.79

105 0.490 0.1100 0.7600 1.00 0.22 1.55
115 0.620 0.1300 0.9100 1.00 0.21 1.47
121 0.700 0.1100 1.1300 1.00 0.16 1.61
157 2.520 0.3200 4.6700 1.00 0.13 1.85
161 2.470 0.3200 4.1300 1.00 0.13 1.67
183 1.790 0.3400 6.0900 1.00 0.19 3.40
189 3.610 0.3500 2.4400 1.00 0.10 0.68
293 10.400 1.1800 33.9000 1.00 0.11 3.26
369 26.200 2.7900 63.5000 1.00 0.11 2.42

Total 55.013 6.4757 122.5024

Unweighted Averages 1.00 0.22 1.06
Weighted Averages 1.00 0.12 2.23
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5.1.3 Experimental Analysis

The data in Tables 5.1 and 5.3 show that the set-covering based and prefix-graph based

solutions generated fewer test paths and nodes than the previous breadth-first search solu-

tion. On average, the two new solutions saved 30%-40% of the test paths and 20%-30% of

the nodes for the open source methods and the modified methods. The methods with more

prime paths had higher savings. For example, the last method in Table 5.1 had a saving of

70% in terms of the number of test paths.

From the experimental results, it seems that the prefix-graph and set-covering based

solutions yielded the greatest savings for methods that have “complex” nested loops. Nested

loops are likely to lead to more overlaps among the prime paths, resulting fewer number of

test paths and nodes. However, it is hard to quantify when to use the new solutions. It

is difficult to measure the overlaps among test requirements precisely and determine how

graph structures could affect the test requirements and overlaps.

The data in Tables 5.1 and 5.3 also do not definitely say which solution is better.

Theoretically, the approximation ratio of the greedy set cover algorithm is 2 lnn while

the prefix-graph based algorithm is only 3 [17]. Thus, the prefix-graph based algorithm

is expected to yield fewer test paths. However, the experimental results do not always

comply with the theoretical worst-case bounds. Besides, each of the new solutions used

a test suite minimization algorithm (Algorithm 4) and a super-test requirement splitting

algorithm (Algorithm 7). Therefore, I could not estimate the experimental results from the

theoretical approximation ratios. The prefix-graph based solution gave better results for

23 subjects, the set-covering based solution for 11 subjects, and they were the same for 3

subjects.

Tables 5.2 and 5.4 show the prefix-graph based solution was faster than the breadth-

first search solution for all 37 subjects, and faster than the set-covering based solution for

31 of 37 subjects. The set-covering based solution was faster than the breadth-first search

solution for 24 subjects; however, for 14 subjects, the set-covering based solution was slower

than the breadth-first search solution.
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My observation was that when graphs had few prime paths, the set-covering based

solution was faster than the other solutions. When graphs had more prime paths, the set-

covering based solution became slower. For example, consider the last subject in Table

5.2. The prefix-graph based solution finished in less than 4 minutes; while the breadth-first

search solution took about 25 minutes and the set-covering based solution took almost 10

hours! I concluded that the set-covering solution may be better for small graphs, but may

simply be too slow with large graphs.

For some subjects, the maximum ratio of TR to TP was big and the ratio of test

requirements that were covered by one test path over all the test requirements was high

as well. Other algorithms should be applied to control the maximum ratio of TR to TP.

Dynamic programming techniques may solve this problem, which will be discussed in future

work, section 6.3.

5.1.4 Threats to Validity

As usual with most software engineering studies, there is no way to show that the subjects

selected are representative. Thus an external threat to validity is that these results may

not hold on other programs. It is important to note that the results do not depend on the

behavior of the software, only on the structure of the graph. The key elements that affect

the results are the number of prime paths and the amount of overlap among them. An

obvious internal threat is that the implementations of these algorithms might be imperfect.

The results could also be affected by the use of a different splitting algorithm or a different

test suite minimization algorithm.

5.1.5 Recommendations

These data strongly indicate that both the prefix-graph and set-covering based solutions

generate fewer test paths and nodes than the breadth-first search solution, particularly when

methods have nested loops and otherwise complex structure. It seems harder to quantify

exactly which and when the solutions should be used. There is probably no controversy
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that getting fewer test paths or total nodes is always better, however, the long execution

times for the subject with 1844 prime paths is problematic. No tester wants to wait 10

hours for the set-covering based solution to complete, particularly when it only saves 19

test paths over the prefix-graph based solution!

I might wish for a preliminary analysis of the graphs to decide which solution would

be the best. In the absence of such an ability, however, I incorporated the prefix-graph

based solution in the graph coverage web application. It does not always generate as good

solutions as the set-covering solution, but also does not appear to ever take unacceptably

long. In the future work, I will adapt the solutions for each variant of the MCTP problem

(see Table 1.1).

5.2 The Experiments for the Mapping Problem

In this research, the solution to the mapping problem is a structured test automation

language (STAL), which is used to automate the transformation from abstract tests to

concrete tests. Using STAL could decrease cost and errors made by reducing the amount

of repetitive, mechanical work required for manual transformation. Because there are no

techniques available to automate the mapping problem from only behavioral models, testers

typically do this by hand. Therefore, the experiments compared STAL with the manual

approach. Three research questions were proposed:

1. RQ1: Can the structured test automation language (STAL) be used to create auto-

mated tests in a practical setting?

2. RQ2: Can using STAL help testers reuse redundant test code and reduce errors when

converting abstract tests to concrete tests as compared with doing the same procedure

by hand?

3. RQ3: Can STAL be used for different kinds of programs such as web applications and

GUIs?
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This section presents the experimental design, subjects, procedure, results, threats to

validity, and then an analysis of the results.

5.2.1 Experimental Design

Test engineers automate tests to reduce the cost of running the same test many times, to

reduce the errors inherent in running tests by hand, and to make it easier to modify the test

suite when the model, software, or test criterion changes. Evaluating STAL for all of these

scenarios would require extensive human resources, so I evaluated the initial development

of tests. The scenario is, given a program and its model, testers generate automated tests

to satisfy a coverage criterion. The testers did this by hand and with STAL. Any benefits

from using STAL during the initial development would also be present when modifying the

tests.

Nine testers designed tests for 17 programs. It can take many hours (up to approximate

10 hours without additional help) to design and develop model-based tests by hand, so each

program was assigned to one tester at one time. The tests were designed to satisfy edge

coverage [7], a widely used and relatively simple test criterion. The testers developed two

sets of tests for each program, one by hand and the other using STAL. There were two

levels of automation in this study. STALE helps testers automate the creation of tests,

which were encoded in automated JUnit scripts. That is, testers were using STALE to

create automated tests automatically. I try to clarify which one I refer to in the following

text.

An important decision was which process to use first, manual or automated. Table 5.5

shows the steps for each.

Step 1 is the same both by hand and with STAL. The testers need to understand the

software, analyze its controllability and observability, and decide how to implement events

from the model in a test. Step 2 is quite different for each process.

For A2, the testers identify the declarations and initializations of objects used in the test

code for the elements of the model. Because an element may appear more than once in a
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Table 5.5: Steps in Automated and Manual Test Generation Processes

Automated (A) Manual (M)

1 Understand the model and system under test. Find the
test code for each element from a model. (A1)

The same as A1. (M1)

2 Extract object declarations and initializations from the
element mappings. Enter mappings into the structured
test automation language framework (STALE) and pro-
vide enough mappings to satisfy constraints. (A2)

Write executable tests to
map test paths. (M2)

3 Generate concrete tests and correct errors. (A3) Correct errors. (M3)

test path, the corresponding test code will appear multiple times. Object declarations in the

test code can result in duplicated object declarations. To avoid errors from this duplication,

testers can either put all object declarations and necessary initializations in the mapping

for the first transition if all test paths share the same transition, or create object mappings

to be required mappings for elements. Testers then enter test code in STALE, satisfying

the model constraints. This is the most time consuming part of the automated process.

In M2, the testers first look at the test paths, find matched elements from the model,

and write the corresponding test code for the elements. This is the most time consuming

part of the manual test generation. Switching among the test paths, the model, and the

test code is difficult, takes time, and can result in errors where the test code does not match

the test paths.

When testers generate tests manually, they learn how to separate object declarations and

how to create enough mappings to satisfy all constraints while writing the concrete tests. If

done first, A2 will become much easier and shorter because separating object declarations

and creating mappings take most of the time during A2, thus introducing a bias in favor

of the automated process. If the automatic process is used first, testers would learn how to

write code for each transition and state since they must analyze them thoroughly to create

mappings. However, this does not reduce much time for M2 because testers spend most

of their time on checking if test code matches the model and if elements in the model are

matched to test paths back and forth, writing code for redundant elements, and correcting
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errors when mismatched code is found. Besides, the testers do not see the complete tests

in A2, therefore, the knowledge gained during step A2 does not make M2 much easier.

Testers may get compilation errors in the automated process if they did not include all

the classes or JAR files needed or if the test code in the mappings contain syntax errors.

Also, if some constraints are not satisfied, the testers may need to add additional mappings

or values. The testers correct these errors in step A3. If M3 is done before A2, the testers

will be less likely to make mistakes, so A3 will become easier, again introducing a bias in

favor of the automated process. However, doing A3 before M2 does not affect errors in M3

because they are arbitrary syntax errors.

Given these considerations, I concluded that the testers needed to first generate tests

using the automated method, then manual. The guide that was given to the participants

is online at http://cs.gmu.edu/∼nli1/experiment/. A complete experimental guide is also

included in Appendix C.

5.2.2 Experimental Subjects

Seven of the 17 programs used are open source projects: Calculator6, Snake7, TicTacToe8,

CrossLexic9, Jmines10, Chess11, and DynamicParser12. Six were from textbooks: Vending-

Machine [7], ATM [82], Tree [83], BlackJack [84], Triangle [85], and Poly [86]. The other

four were taken from the coverage web application for Ammann and Offutt’s book [12]. All

programs are in Java. To examine RQ3, four types of subjects were selected. Calculator,

Snake, CrossLexic, Jmines, Chess, BlackJack, and DynamicParse were GUIs. GraphCover-

age, DFCoverage, LogicCoverage, and MinMCCoverage were web applications. TicTacToe

was a command-line program. The other five programs are example programs that do not

have user interfaces.

6http://jcalcadvance.sourceforge.net/
7http://sourceforge.net/projects/javasnakebattle/
8http://sourceforge.net/projects/tttnsd/
9http://crosslexic.sourceforge.net/

10http://jmines.sourceforge.net/
11http://twoplayerchess.sourceforge.net/
12http://dynamic-parser.sourceforge.net/

87



The UML state machine diagrams of the experimental subjects were drawn using the

Eclipse modeling framework (EMF) tool Papyrus [78] by hand, then the diagrams were

transformed into generic graphs by STALE. For a few of the more complicated programs,

parts of the programs’ functionalities were omitted from the diagrams to ensure the testers

could complete the program in the allotted two hour time frame. Nine testers (not including

me) participated in the experiment. They were part-time and full-time graduate students

at George Mason University, all of whom have taken Mason’s graduate testing class.

5.2.3 Experimental Procedure

The testers were given the experimental guide and asked to understand the process and

gain a preliminary familiarity with STALE. This took about two hours apiece. Next the

testers entered the software engineering lab at George Mason University at different times

and generated tests automatically with STALE, then by hand, in a controlled environment.

Thus, subjects did not communicate with each other. All subjects used the same computer

and their times were measured. The automated steps were:

1. Create a new project and add the model and program under test to STALE.

2. Create the abstract to concrete mappings. Wall-clock time was measured.

3. Create concrete tests using the tool to satisfy edge coverage. The tool measured the

time for this step.

The manual steps were:

1. Write concrete tests by hand. The concrete tests have to be written in the same order

as the test paths (abstract tests) to make test comparison easy. The constraints in

the states had to be satisfied.

2. Compile the tests and make sure that all tests pass. Wall-clock time was measured.

All subjects finished the experiments in two hours. After completing the experiment,

each participant was given an anonymous questionnaire, shown in Table 5.6. Most of the
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Table 5.6: Questionnaire

Questions

1 Are you working (enter “programmer,” “manager,” “tester,” etc.)? If not, enter
“student.”

2 If you have to generate tests from models, would you consider using this automatic
test generation / tool?

3 Please rate the ease of use of the test automation tool on a scale of 1 to 5 (1
being impossible and 5 being trivially easy).

4 Do you have any suggestions for improving this automatic test generation / tool
and other comments?

participants had taken a graduate course in user interface design and development at George

Mason University, so could be expected to be fairly knowledgeable and critical with question

3.

5.2.4 Experimental Results

Table 5.7 gives the experimental data. The first four columns give the subject names and

statistics about the sizes of the graphs and programs. The nodes and edges are from the

generic graphs, not the original models (UML state machine diagrams), and the lines of

code were calculated by CLOC [87].

The next three columns show the number of distinct mappings created from the models,

the number of times the distinct mappings appear in all the tests, and the ratio of the

Mappings column over the All Mappings column. For example, the VendingMachine model

needed 13 mappings and the seven tests used a total of 132 mappings, 9.8% of which are

distinct. The Test column shows the number of tests generated for each subject.

The next two columns present the number of seconds used to create mappings and

generate tests in the automated process, followed by the time used by the manual process.

Last is the ratio of time for the automated process over the time for the manual process.

Thus, the automated process for class VendingMachine took 34.5% of the time of the manual

process.

The first research question asked if STAL could be used in a practical situation. All
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nine subjects were able to use STAL to create automatic tests for 16 programs with only a

short tutorial, so the answer to RQ1 is yes. The second research question asked if testers

could use STAL to reuse redundant test code and reduce errors. Table 5.7 shows that

the automated process ranged from 11.7% to 60.8% of the time the manual process took,

with an unweighted average of 29.6%. The manually created tests have 48 errors compared

with zero for the automatically created tests. The tests were examined for errors by hand.

The errors occurred when the participants wrote unmatched test code for a transition in

the model or wrote redundant test code for same transitions. The participants made more

errors with large programs. Thus, the answer to RQ2 is also yes. Nine subjects were able to

generate tests for the programs including GUI applications, web applications, command-line

programs, and normal programs. Therefore, the answer to RQ3 is yes as well.

On the questionnaires, all subjects answered “Yes” to the second question, and the

average usability rating (third question) was 4.4. The tests created by STALE and by hand

for the vending machine example are listed in Appendix B.
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Table 5.7: Time for Automatic and Manual Test Generation

Programs LOC Nodes Edges Mappings All Mappings
% Mapping

Tests
Automatic
(Seconds)

Manual
(Seconds) %

Time
Mapping
Creation

Test Gener-
ation

Test Gener-
ation

VendingMachine 52 11 26 13 132 9.8 7 630 4 1,836 34.5

ATM 463 8 12 8 27 29.6 5 449 1 1,267 35.5

Calculator 2,919 17 76 12 182 6.6 14 477 15 3,794 13.0

Triangle 124 7 31 12 72 16.7 6 440 2 1,371 32.2

Snake 1,382 18 116 13 132 9.8 7 503 46 1053 52.1

TicTacToe 665 7 12 9 31 29.0 5 640 2 1,494 43.0

CrossLexic 654 13 51 17 305 5.6 26 609 123 2,539 28.8

JMines 9,486 18 75 10 202 5.0 26 445 62 2,625 19.3

Chess 2,048 9 17 7 36 19.4 6 510 6 904 57.1

BlackJack 403 13 20 12 36 33.3 8 300 4 500 60.8

Tree 234 14 24 11 83 13.3 6 685 2 1671 41.1

Poly 129 8 21 11 64 17.2 5 330 3 1537 21.7

DynamicParser 1,269 22 73 12 269 4.5 21 468 45 4010 12.8

GraphCoverage 4,480 20 67 17 253 6.7 19 521 14 4091 13.1

DFCoverage 4,512 15 56 16 147 10.9 19 401 7 2824 14.4

LogicCoverage 1,808 15 83 15 196 7.7 38 522 7 4512 11.7

MinMCCoverage 3,252 14 53 14 150 9.3 22 434 1 3642 11.9

Total 31,832 232 742 196 2, 325 240 8,364 344 39,670

Average 13.8 29.6
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5.2.5 Experimental Analysis

Figure 5.1 compares the % Mapping (on the horizontal axis) and % Time (on the vertical

axis) for the 17 subject programs. % Mapping and % Time have the same meaning as

in Table 5.7. If % Mapping is small, it means that testers do not need to create many

distinct mappings, by comparison with all mappings that appear in all tests. Therefore, it

is likely that the automatic process takes far less time than the manual process, since the

manual test generation for mappings of the repeated transitions can be automated. Thus,

I expected a linear correlation relationship between % Mapping and % Time.

Boddy and Smith [88] suggest using Pearson’s correlation coefficient if the data have a

normal distribution; otherwise, a non-parametric correlation test [89] such as Spearman’s

rank correlation coefficient should be used. Qqplots [90] (Figures 5.2 and 5.3) show that the

% Mapping and % Time data deviate from the straight line. Thus, Spearman’s correlation

coefficient was used.

The correlation coefficient (ρ) of Spearman’s correlation test was 0.72. Cohen [91] sug-

gests that a value of .5 or greater can be considered to be a large correlation. The statistical

significance p-value was 0.0017, which is normally considered to be highly significant. There-

fore, it was concluded that the savings from using the automated process increases as the

percentage of distinct mappings in all mappings decreases. This is an encouraging finding

for scalability.

5.2.6 Threats to Validity

As usual with most software engineering studies, there is no way to show that the selected

subjects were representative. This was true both for the programs and the human testers.

Another threat to external validity is that I created the UML models from the source code.

An internal threat is that STALE’s implementation might be imperfect. Another internal

threat is that the answers of the participants to the questionnaires might be subjective.

Three of the participants are my friends and knew I was going to review the anonymous

questionnaires. This might affect the results.
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Figure 5.1: Relationship between % Mapping and % Time

Figure 5.2: Qqplot for % Mapping
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Figure 5.3: Qqplot for % Time

5.2.7 Discussion

The subjects included four web applications, seven GUIs, one command-line application,

and five other programs. STAL worked for all of them with no discernible difference. It

was not surprising, since STAL depends on a model and the number of tests, not the kind

of program.

5.3 The Experiments for the Test Oracle Problem

The test oracle problem refers to how much of program states to check and how frequently

to check the program states. The solution to the test oracle problem in this research was

to develop new test oracle strategies (OSes) to check various outputs and internal state

variables with different frequencies of checking program states. The experiments for the

test oracle problem addressed four questions:

RQ1: With the same test inputs, does a more precise OS reveal more faults than a less
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precise OS?

RQ2: With the same test inputs, does checking outputs and internal state variables mul-

tiple times reveal more faults than checking the same outputs and internal state

variables once?

RQ3: With the same OS, do tests that satisfy a stronger coverage criterion reveal more

faults than tests that satisfy a weaker coverage criterion?

RQ4: Which OS is recommended when considering both effectiveness and cost?

Other researchers [8–11] have studied RQ1, finding that more precise OSes are more

effective than less precise OSes at revealing faults. However, they used different test coverage

criteria and OSes on different types of programs, as discussed in section 2.6.

RQ2 was evaluated by Xie and Memon [11], who found that checking variables after

each event (events used in GUI testing that represent user actions such as button clicks)

can detect more faults than checking the same variables once after the last event of the

test. However, their study only monitored states of GUIs such as windows. This research

checked more outputs and internal state variables of different kinds of programs.

Briand et al. [8] found that tests that satisfy a stronger coverage criterion can find more

faults than a weaker criterion (RQ3), with the same test oracle strategy, for one out of three

experimental programs. In contrast, my experiments used two different coverage criteria

and 16 programs.

A very effective OS may be too costly for practical use. Thus, RQ4 evaluated the cost-

effectiveness of the OSes. The rest of this section presents the experimental design, subjects,

procedure, results, and threats to validity.

5.3.1 Experimental Design

The experiments compared the ten new OSes (OS1, OS2, OS3, OS4, OS5, OT1, OT2, OT3,

OT4, and OT5) with the two baseline OSes, NOS and SIOS. The twelve OSes are defined
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Table 5.8: A Comparison of Test Oracle Strategies

Program State NOS SIOS OS1 OS2 OS3 OS4 OS5

Runtime exceptions X X X X X X X

State invariants X X X X X X

Object members X X X

Return values X X X X

Parameter members X X

in section 4.3. All OSes were applied to edge-adequate and edge pair (EP)-adequate tests.

Then the tests were run against faulty versions of the programs. The faults revealed and

the cost of using the OSes were recorded. To remind readers what outputs and internal

state variables each OS checks, Table 5.8 shows NOS, SIOS, OS1, OS2, OS3, OS4, and

OS5. OTi checks the same outputs and internal state variables as OSi (1 ≤ i ≤ 5), with

one check per test (after the last transition). Thus, Table 5.8 does not show OT1, OT2,

OT3, OT4, and OT5.

Andrews et al. [44] found that synthetic faults generated using mutation analysis can be

used as faults in experiments to predict the real fault detection ability of tests. This research

used synthetic faults, which were treated as real faults. The background of mutation testing

has been introduced in section 2.3, to better explain how mutation analysis was used in this

research, some terms of mutation testing are summarized here. In mutation testing, a

mutant is a slight syntax change to the original program. A mutation operator is a rule or

a set of rules that specifies how to generate mutants. If a test causes a mutated program

(mutant) to produce different results from the original program, this mutant is said to be

“killed.” If a mutant cannot be killed by any tests, it is called equivalent.

The mutation score is the ratio of mutants that are killed over the killable mutants (non-

equivalent mutants), which serves as a measure of the effectiveness of a test set. Because

programs have different numbers of faults, to compare the effectiveness of the tests in

the same scale, percentages of faults (mutation scores) detected by the tests were used to

measure the effectiveness of the tests for each program. Furthermore, if tests have the same
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test inputs but different OSes, the mutation score of each set of tests can reflect the relative

effectiveness of each OS. A higher mutation score indicates the OS is more effective. With

the same inputs, a more precise OS can be expected to be at least as effective at revealing

faults as a less precise OS. Thus, OS1, OS2, OS3, OS4, OS5, OT1, OT2, OT3, OT4, and

OT5 were expected to reveal more faults than NOS and SIOS.

The experiment used muJava [43, 46], a mutation analysis tool for Java, to generate

synthetic faults. Each mutated program has only one mutant. Users can use muJava to

generate mutants, run tests against mutants, and view mutants, which helps testers recog-

nize equivalent mutants. The latest version of muJava supports JUnit tests and all features

of Java 1.6. So the JUnit tests that STALE generated were used in muJava directly. Mu-

tants were generated by using the 15 selective method-level mutation operators of muJava

[92].

All OSes were applied with the same sets of edge-adequate and edge-pairs (EP)-adequate

tests. In the experimental process, the test oracle generation and execution had three

kinds of cost. First, testers entered test oracle data (assertions) by hand. Second, STALE

generated tests based on the provided test oracle data. Thus, the concrete tests include

the test oracles. Note that the assertions provided by testers in the first step might be

used many times in the concrete tests because the program states were checked after each

transition in OS1, OS2, OS3, OS4, and OS5. Third, as part of tests, assertions must be

executed. The second and third steps were automated, so the humans cost in the first step

dominated. Thus, the cost of an OS mainly depends on the cost of creating test oracle data

(assertions) by hand.

Each assertion was given equal weight, and the cost of creating test oracles (assertions)

was the sum of costs of creating each assertion. The assertions include state invariants and

normal assertions such as checking a member variable of a class. There were four reasons

that I gave both state invariants and normal assertions the same weight. First, writing an

assertion needs testers to understand the program. Thus, writing any assertion takes the

same amount of time for understanding the program. Second, this research required testers
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to write test oracles for each transition. This step required test oracles can be generated

automatically no matter where transitions appear in tests. Thus, testers have to change the

test code of the transitions, as shown in section 4.4. My experience told me that the first

two steps took the most time for creating an assertion. Third, designing state invariants

is only part of designing a state machine diagram and the diagram was mainly used for

generating tests. Moreover, a group of assertions (state invariants in different states) was

created within the diagram. Thus, the time for each state invariant only takes a fraction of

the total time. Fourth, when designing normal assertions, testers may have to spend extra

time to look for assertions. For instance, when checking member variables of a class, if a

member variable is also an object, testers have to check its member variables of this object

until all member variables are primitive. Therefore, the cost of each assertion was treated

equally and I used the number of distinct assertions as an approximation for the cost.

The cost-effectiveness of an OS is the ratio of the number of assertions over the percent-

age of faults detected by the OS. The assertions were provided by hand to check the internal

state variables and outputs. A smaller cost-effectiveness is better. The cost-effectiveness

ratio can be interpreted as: To sacrifice one percent of mutation score (percentage of faults

detected), how many fewer assertions should testers write? This cost-effectiveness ratio was

applied to SIOS, OS1, OS2, OS3, OS4, OS5, OT1, OT2, OT3, OT4, and OT5 but not to

NOS. The cost of NOS is zero, so is incompatible with the cost-effectiveness ratio.

Cost-effectiveness =
#assertionsCreatedByHand

%FaultsDetected
(5.1)

To better specify how to measure the goals of the experiments, three groups of hypothe-

ses were extracted from the first three research questions. The first group of hypotheses

(HypothesesA) compared all pairs of OSes, OSA and OSB, where OSB is more precise than

OSA. The null and alternative hypotheses are listed below.

Null hypothesis (H0):

There is no difference between the percentage of failures revealed by OSA and OSB
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with the same test inputs.

Alternative hypothesis (H1):

The percentage of failures revealed by OSB is greater than OSA with the same test

inputs.

The test oracles strategy pairs that were applied to HypothesesA are: {NOS, SIOS},

{SIOS, OS1}, {SIOS, OS3}, {SIOS, OS5}, {OS1, OS3}, {OS3, OS5}, {OS1, OS5}, {OS2,

OS5}, {OS4, OS5}, {SIOS, OS2}, {SIOS, OS4}, {OS2, OS3}, {OS2, OS4}, {SIOS, OT1},

{SIOS, OT3}, {SIOS, OT5}, {OT1, OT3}, {OT3, OT5}, {OT1, OT5}, {OT2, OT5}, {OT4,

OT5}, {SIOS, OT2}, {SIOS, OT4}, {OT2, OT3}, and {OT2, OT4} for both edge coverage

(EC) and edge-pair coverage (EPC). This research did not compare NOS with other OSes

(OS1, OS2, OS3, OS4, OS5, OT1, OT2, OT3, OT4, and OT5) because NOS was expected

to be much less effective than other OSes. The comparison between the effectiveness of

NOS and other OSes is shown in section 5.3.4.

RQ2 asks if checking outputs and internal state variables multiple times is more effective

at finding faults than checking the same outputs and internal state variables once. OTi

checks the same object members, return values, and parameter members that OSi checks,

but OSi checks after each transition and OTi only checks once after the last transition,

where 1 ≤ i ≤ 5. Thus, the second group of hypotheses (HypothesesB) for RQ2 were:

Null hypothesis (H0):

There is no difference between the percentage of failures revealed by OTi and OSi

with the same test inputs, where 1 ≤ i ≤ 5.

Alternative hypothesis (H1):

The percentage of failures revealed by OSi is greater than OTi with the same test

inputs, where 1 ≤ i ≤ 5.

The test oracles strategy pairs that were applied to HypothesesB are: {OT1, OS1},

{OT2, OS2}, {OT3, OS3}, {OT4, OS4}, and {OT5, OS5}.
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The third group of hypotheses (HypothesesC) for RQ3 took two test coverage criteria

CCA and CCB into consideration (CCB subsumes CCA).

Null hypothesis (H0):

There is no difference between the percentage of failures revealed by criterion CCA

and CCB if both use the same test oracle strategy.

Alternative hypothesis (H1):

The percentage of failures revealed by criterion CCB is greater than CCA if both use

the same test oracle strategy.

HypothesesC were applied to edge-adequate and EP-adequate tests for any of the twelve

OSes used in this research.

5.3.2 Experimental Subjects

I evaluated 16 Java programs and used STALE to generate tests from their UML state

machine diagrams. First, I generated test inputs to satisfy both EC and EPC. Then I

entered test oracle data for ten OSes (NOS did not need test oracle data, and the state

invariant test oracle data were provided by STALE while generating test inputs). Finally,

the twelve OSes were applied to the two sets of tests that satisfy EC and EPC, resulting in

24 sets of tests for each program.

The programs and UML state machine diagrams that were used to derive tests in this

experiment are almost the same as were used in section 5.2. The only difference is that this

experiment did not use the program Chess because its tests could not be run under muJava.

Table 5.9 shows some properties of the programs and tests. The column LOC shows

the lines of code for each program. The columns Tests show the number of tests for edge-

adequate and EP-adequate tests. The columns Trans represent the number of transitions

that appeared in the tests and the columns SI provide the number of appearances of state

invariants that were satisfied and also used as test oracles. The columns D-Trans and D-SI

represent the number of distinct mappings of transitions and state invariants provided by
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hand.

Section 4.4 (the structured test automation framework) talks about how users provide

mappings for transitions and state invariants so that abstract tests can be transformed to

concrete tests. Since transitions and state invariants appear many times, the numbers of

the columns Trans and SI are far more than those of the columns D-Trans and D-SI. By

comparing the columns D-Trans for EC and EPC, I only needed to provide more mappings

for EPC than EC for three programs. That is, the mappings required to satisfy state

invariants for EC can also satisfy most of the state invariants for EPC.

5.3.3 Experimental Procedure

The experiment was carried out in the following steps:

1. For each program, I used STALE to create test inputs by hand to satisfy EC, and

then generated additional test inputs to satisfy EPC.

2. STALE was used to enter expected results for the OSes. Then 24 test sets were

generated for each pair of combination for the two coverage criteria and twelve OSes.

3. MuJava was used to generate faults for each program. Equivalent mutants were

identified by hand and then removed.

4. Each set of tests was run against the faults for each program. The number of faults

revealed as failures detected and the number of times the internal state variables and

outputs are checked for each set of tests were recorded.

5. The cost-effectiveness of each OS was calculated and analyzed.

For efficiency, tests were only run against faults that appeared in methods called when

the tests were run.
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Table 5.9: Experimental Subjects

Programs LOC
Properties of the Tests

Edge Edge Pair
Tests Trans SI D−Trans D− SI Tests Trans SI D−Trans D− SI

ATM 463 5 18 22 6 6 6 30 39 6 6
BlackJack 403 8 27 27 11 3 9 51 51 11 3
Calculator 2, 919 14 167 16 11 9 39 893 893 11 9
CorssLexic 654 26 113 209 11 7 63 404 756 11 7
DFGraphCoverage 4, 512 8 49 78 10 7 45 390 643 10 7
DynamicParser 1, 269 20 116 408 13 15 26 385 1, 233 14 15
GraphCoverage 4, 480 16 122 207 14 11 23 359 605 14 11
JMines 9, 486 9 60 6 7 1 22 201 21 7 1
LogicCoverage 1, 808 30 115 94 12 8 94 561 483 12 8
MMCoverage 3, 252 78 273 228 20 16 142 699 570 20 16
Poly 129 5 32 57 11 6 12 129 237 18 6
Snake 1, 382 7 70 120 10 8 8 194 341 10 8
TicTacToe 665 5 24 7 6 3 7 46 16 6 3
Tree 234 6 35 48 6 3 8 99 146 6 3
Triangle 124 6 36 36 7 5 27 271 271 7 5
VendingMachine 52 7 44 88 6 6 9 105 210 7 6
Total 33,983 250 1,301 1,802 161 114 540 4,817 6,515 170 114
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5.3.4 Experimental Results

Tables 5.10 and 5.11 show the failures revealed by each OS for each program with both sets

of tests. Both Tables 5.10 and 5.11 show the total number of faults of each program and the

faults that are revealed as failures by OSes for EC and EPC. Table 5.10 shows the results

for OSi while table 5.11 focuses on the results for OTi, where 1 ≤ i ≤ 5. Columns NOS and

SIOS in both Tables 5.10 and 5.11 are the same. Tables 5.12 and 5.13 have similar columns.

They show the number of faults that are revealed as failures by each OS divided by the

total number of faults for each program, producing percentages of failures revealed by each

OS for each program. The total number of the faults (“# Faults”, non-equivalent mutants)

is 9,627. So a total of 91,263,960 tests were executed ((12 OSes * 250 edge-adequate tests)

+ (12 OSes * 540 EP-adequate tests)) * 9,627). The JUnit tests for EC and EPC with

twelve OSes for the vending machine example are listed in Appendix B.

Note that OT1 found more faults than OS1 for the subjects “TicTacToe” and “Triangle,”

and OT3 found more faults than OS3 for the subject “TicTacToe.” As discussed in section

4.3, OTi may check different program states from OSi, where i ≤ i ≤ 5. Thus, OTi may

reveal more failures than OSi for some subjects. Tables 5.12 and 5.13 show that NOS

revealed far fewer failures than the other OSes on average, indicating NOS is much less

effective at finding faults. Since a more precise OS checks more program states than a

less precise OS, I expected the more precise OS to find more faults, and checking outputs

and internal state variables more frequently can find more faults than checking the same

program states less frequently. However, Tables 5.12 and 5.13 show that the percentages

of the faults detected by OS1, OS2, OS3, OS4, OS5, OT1, OT2, OT3, OT4 and OT5 were

very close, and 4 to 7% higher than that of SIOS.
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Table 5.10: Numbers of Faults Found by Test Oracle Strategies - Part1

Programs #Faults
# Faults Found by Test Oracle Strategies

Edge EdgePair
NOS SIOS OS1 OS2 OS3 OS4 OS5 NOS SIOS OS1 OS2 OS3 OS4 OS5

ATM 257 49 76 182 172 182 201 206 53 81 184 175 184 201 206

BlackJack 56 15 19 22 19 22 19 22 15 19 22 19 22 19 22

Calculator 494 94 205 228 205 228 205 228 205 228 246 223 246 223 246

CrossLexic 470 176 206 209 209 209 209 209 182 211 214 214 214 214 214

DFGraph
Coverage

683 274 274 415 274 415 274 415 274 274 415 274 415 274 415

Dynamic
Parser

3, 378 1, 723 2, 300 2, 300 2, 300 2, 300 2, 300 2, 300 1, 724 2, 301 2, 301 2, 301 2, 301 2, 301 2, 301

Graph
Coverage

385 187 210 301 210 301 210 301 187 210 301 210 301 210 301

JMines 263 66 66 79 66 79 66 79 202 202 205 202 205 202 205

Logic
Coverage

436 218 375 381 375 381 375 381 217 375 381 375 381 375 381

MM
Coverage

845 143 251 262 251 262 251 262 143 251 262 251 262 251 262

Poly 259 128 249 250 250 250 250 250 131 250 250 250 250 250 250

Snake 572 164 225 421 400 421 400 421 216 226 422 401 422 401 422

TicTacToe 1, 045 56 464 464 486 486 509 509 56 507 507 507 507 523 523

Tree 113 24 60 70 64 70 64 70 33 67 70 70 70 70 70

Triangle 263 4 128 140 166 168 166 168 4 128 140 171 172 171 172

Vending
Machine

108 0 65 75 90 90 90 90 0 66 77 91 91 91 91

Total 9,627 3,321 5,173 5,799 5,537 5,864 5,589 5,911 3,556 5,391 5,997 5,734 6,043 5,776 6,081
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Table 5.11: Numbers of Faults Found by Test Oracle Strategies - Part2

Programs #Faults
# Faults Found by Test Oracle Strategies

Edge EdgePair
NOS SIOS OT1 OT2 OT3 OT4 OT5 NOS SIOS OT1 OT2 OT3 OT4 OT5

ATM 257 49 76 175 171 178 198 206 53 81 177 173 180 201 206

BlackJack 56 15 19 21 19 21 19 22 15 19 21 19 21 19 22

Calculator 494 94 224 205 224 205 224 240 119 223 240 223 240 223 240

CrossLexic 470 176 206 209 206 209 206 209 182 211 214 211 214 211 214

DFGraph
Coverage

683 274 274 415 274 415 274 415 274 274 415 274 415 274 415

Dynamic
Parser

3, 378 1, 723 2, 300 2, 300 2, 300 2, 300 2, 300 2, 300 1, 724 2, 301 2, 301 2, 301 2, 301 2, 301 2, 301

Graph
Coverage

385 187 210 275 210 275 210 275 187 210 275 210 275 210 275

JMines 263 66 66 68 66 68 66 68 202 202 204 202 204 202 204

Logic
Coverage

436 218 375 381 375 381 375 381 217 375 381 375 381 375 381

MM
Coverage

845 143 251 260 251 260 251 260 143 251 260 251 260 251 260

Poly 259 128 249 249 249 249 249 249 131 250 250 250 250 250 250

Snake 572 164 225 286 225 286 225 286 216 226 286 226 286 226 286

TicTacToe 1, 045 56 464 489 486 489 512 512 56 507 510 508 510 527 527

Tree 113 24 60 70 64 70 64 70 33 67 70 70 70 70 70

Triangle 263 4 128 150 148 158 148 158 4 128 158 154 166 154 166

Vending
Machine

108 0 65 65 83 83 83 83 0 66 66 84 84 84 84

Total 9,627 3,321 5,173 5,637 5,332 5,666 5,385 5,718 3,556 5,391 5,828 5,531 5,857 5,578 5,901
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Table 5.12: Effectiveness of Test Oracle Strategies - Part1

Programs #Faults
Percentage of Faults detected by Test Oracle Strategies
Edge EdgePair

NOS SIOS OS1 OS2 OS3 OS4 OS5 NOS SIOS OS1 OS2 OS3 OS4 OS5

ATM 257 0.19 0.30 0.71 0.67 0.71 0.78 0.80 0.21 0.32 0.72 0.68 0.72 0.78 0.80
BlackJack 56 0.27 0.34 0.39 0.34 0.39 0.34 0.39 0.27 0.34 0.39 0.34 0.39 0.34 0.39
Calculator 494 0.19 0.41 0.46 0.41 0.46 0.41 0.46 0.24 0.45 0.50 0.45 0.50 0.45 0.50
CorssLexic 470 0.37 0.44 0.44 0.44 0.44 0.44 0.44 0.39 0.45 0.46 0.46 0.46 0.46 0.46
DFGraph
Coverage

683 0.40 0.40 0.61 0.40 0.61 0.40 0.61 0.40 0.40 0.61 0.40 0.61 0.40 0.61

Dynamic
Parser

3, 378 0.51 0.68 0.68 0.68 0.68 0.68 0.68 0.51 0.68 0.68 0.68 0.68 0.68 0.68

Graph
Coverage

385 0.49 0.55 0.78 0.55 0.78 0.55 0.78 0.49 0.55 0.78 0.55 0.78 0.55 0.78

JMines 263 0.25 0.25 0.30 0.25 0.30 0.25 0.30 0.77 0.77 0.78 0.77 0.78 0.77 0.78
Logic
Coverage

436 0.50 0.86 0.87 0.86 0.87 0.86 0.87 0.50 0.86 0.87 0.86 0.87 0.86 0.87

MM Cov-
erage

845 0.17 0.30 0.31 0.30 0.31 0.30 0.31 0.17 0.30 0.31 0.30 0.31 0.30 0.31

Poly 259 0.49 0.96 0.97 0.97 0.97 0.97 0.97 0.51 0.97 0.97 0.97 0.97 0.97 0.97
Snake 572 0.29 0.39 0.74 0.70 0.74 0.70 0.74 0.38 0.40 0.74 0.70 0.74 0.70 0.74
TicTacToe 1, 045 0.05 0.44 0.44 0.47 0.47 0.49 0.49 0.05 0.49 0.49 0.49 0.49 0.50 0.50
Tree 113 0.21 0.53 0.62 0.57 0.62 0.57 0.62 0.29 0.59 0.62 0.62 0.62 0.62 0.62
Triangle 263 0.02 0.49 0.53 0.63 0.64 0.63 0.64 0.02 0.49 0.53 0.65 0.65 0.65 0.65
Vending
Machine

108 0.00 0.60 0.69 0.83 0.83 0.83 0.83 0.00 0.61 0.71 0.84 0.84 0.84 0.84

Average 9,627 0.34 0.54 0.60 0.58 0.61 0.58 0.61 0.37 0.56 0.62 0.60 0.63 0.60 0.63
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Table 5.13: Effectiveness of Test Oracle Strategies - Part2

Programs #Faults
Percentage of Faults detected by Test Oracle Strategies
Edge EdgePair

NOS SIOS OT1 OT2 OT3 OT4 OT5 NOS SIOS OT1 OT2 OT3 OT4 OT5

ATM 257 0.19 0.30 0.68 0.67 0.69 0.77 0.80 0.21 0.32 0.69 0.67 0.70 0.78 0.80
BlackJack 56 0.27 0.34 0.38 0.34 0.38 0.34 0.39 0.27 0.34 0.38 0.34 0.38 0.34 0.39
Calculator 494 0.19 0.41 0.45 0.41 0.45 0.41 0.45 0.24 0.45 0.49 0.45 0.49 0.45 0.49
CorssLexic 470 0.37 0.44 0.44 0.44 0.44 0.44 0.44 0.39 0.45 0.46 0.45 0.46 0.45 0.46
DFGraph
Coverage

683 0.40 0.40 0.61 0.40 0.61 0.40 0.61 0.40 0.40 0.61 0.40 0.61 0.40 0.61

Dynamic
Parser

3, 378 0.51 0.68 0.68 0.68 0.68 0.68 0.68 0.51 0.68 0.68 0.68 0.68 0.68 0.68

Graph
Coverage

385 0.49 0.55 0.71 0.55 0.71 0.55 0.71 0.49 0.55 0.71 0.55 0.71 0.55 0.71

JMines 263 0.25 0.25 0.26 0.25 0.26 0.25 0.26 0.77 0.77 0.78 0.77 0.78 0.77 0.78
Logic
Coverage

436 0.50 0.86 0.87 0.86 0.87 0.86 0.87 0.50 0.86 0.87 0.86 0.87 0.86 0.87

MM Cov-
erage

845 0.17 0.30 0.31 0.30 0.31 0.30 0.31 0.17 0.30 0.31 0.30 0.31 0.30 0.31

Poly 259 0.49 0.96 0.96 0.96 0.96 0.96 0.96 0.51 0.97 0.97 0.97 0.97 0.97 0.97
Snake 572 0.29 0.39 0.50 0.39 0.50 0.39 0.50 0.38 0.40 0.50 0.40 0.50 0.40 0.50
TicTacToe 1, 045 0.05 0.44 0.47 0.47 0.47 0.49 0.49 0.05 0.49 0.49 0.49 0.49 0.50 0.50
Tree 113 0.21 0.53 0.62 0.57 0.62 0.57 0.62 0.29 0.59 0.62 0.62 0.62 0.62 0.62
Triangle 263 0.02 0.49 0.57 0.56 0.60 0.56 0.60 0.02 0.49 0.60 0.59 0.63 0.59 0.63
Vending
Machine

108 0.00 0.60 0.60 0.77 0.77 0.77 0.77 0.00 0.61 0.61 0.78 0.78 0.78 0.78

Average 9,627 0.34 0.54 0.59 0.55 0.59 0.56 0.59 0.37 0.56 0.61 0.57 0.61 0.58 0.61
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To analyze the RQs statistically, I used Qqplots [90] to determine that the percentages

of faults detected by the OSes for both EC and EPC were not normally distributed. The

Qqplots are shown in Figures 5.4 through 5.27. Because these data deviate from a straight

line, the percentages of faults detected by the OSes for EC and EPC were not normally

distributed.

Figure 5.4: Qqplot for NOS of edge coverage
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Figure 5.5: Qqplot for SIOS of edge coverage

Figure 5.6: Qqplot for OS1 of edge coverage
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Figure 5.7: Qqplot for OS2 of edge coverage

Figure 5.8: Qqplot for OS3 of edge coverage
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Figure 5.9: Qqplot for OS4 of edge coverage

Figure 5.10: Qqplot for OS5 of edge coverage
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Figure 5.11: Qqplot for OT1 of edge coverage

Figure 5.12: Qqplot for OT2 of edge coverage
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Figure 5.13: Qqplot for OT3 of edge coverage

Figure 5.14: Qqplot for OT4 of edge coverage
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Figure 5.15: Qqplot for OT5 of edge coverage

Figure 5.16: Qqplot for NOS of edge-pair coverage
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Figure 5.17: Qqplot for SIOS of edge-pair coverage
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Figure 5.18: Qqplot for OS1 of edge-pair coverage

To get statistical evidence of the effectiveness difference between a less precise OS and

a more precise OS, I used the one-tailed Wilcoxon signed-rank test (statistical significance

level α = 0.05) [93] to compare the paired percentages of the faults detected by two different

OSes for both EC and EPC. The reason that I used the one-tailed Wilcoxon signed-rank

test was that the compared data were paired and came from the same tests (EC or EPC

tests). For instance, SIOS for EC was compared with OS1 for EC. This is a non-parametric

test to assess whether two population means differ when data are not normally distributed.

This test first finds the absolute difference for each pair and gets the number of the pairs

that are different, N. Then this test ranks the pairs and calculates the test statistic W. If

N is greater than 9, the sampling distribution of W is a reasonably close approximation of

the normal distribution and the one-tail probability p can be calculated. If N is less than

or equal to 9, but greater than 4, the calculated W value is compared to a Wcritical from

the separate table of critical values of W.

ForHypothesesA, the OS pairs {NOS, SIOS}, {SIOS, OS1}, {SIOS, OS3}, {SIOS, OS5},
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Figure 5.19: Qqplot for OS2 of edge-pair coverage

{OS1, OS3}, {OS3, OS5}, {OS1, OS5}, {OS2, OS5}, {OS4, OS5}, {SIOS, OS2}, {SIOS,

OS4}, {OS2, OS3}, {OS2, OS4}, {SIOS, OT1}, {SIOS, OT3}, {SIOS, OT5}, {OT1, OT3},

{OT3, OT5}, {OT1, OT5}, {OT2, OT5}, {OT4, OT5}, {SIOS, OT2}, {SIOS, OT4}, {OT2,

OT3}, and {OT2, OT4} were compared for EC and EPC using the Wilcoxon signed rank

test. I got the p-values from 0.0002 - 0.0038 for {NOS, SIOS}, {SIOS, OS1}, {SIOS, OS3},

{SIOS, OS5}, {OS2, OS5}, {OS4, OS5}, {OS2, OS3}, {SIOS, OT1}, {SIOS, OT3}, {SIOS,

OT5}, {OT2, OT5}, {OT4, OT5}, and {OT2, OT3} for EC and EPC because the N values

of these pairs were greater than 10. So I can reject H0. For these pairs, the effectiveness of

a more precise OS is significantly greater than that of a less precise OS. Pairs {SIOS, OS2}

and {SIOS, OS4} for EC and EPC had N less than 10 but greater than 4, thus, the table of

critical values of W was used, finding that the differences between the OSes in these pairs

were not due to chance.

I found statistical evidence that there were no significant differences between {OT1,
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Figure 5.20: Qqplot for OS3 of edge-pair coverage

OT5} and {SIOS, OT4} for EC and EPC. For pairs {OS1, OS3}, {OS3, OS5}, {OS1,

OS5}, {OS2, OS4}, {OT1, OT3}, {OT3, OT5}, {SIOS, OT2}, and {OT2, OT4} for EC

and EPC, the N values of OSes were fewer than five, so I could not perform the Wilcoxon

signed-rank test. This also implied that there was no significant difference between these

pairs.

Some OSes pairs had inconsistent results for EC and EPC. For pair {SIOS, OT2}, the

EC tests showed that OT2 is as effective as SIOS using the Wilcoxon signed-rank test but

the EPC tests showed that N for this pair was less than 5, thus, the Wilcoxon signed rank

test could not be applied to this pair for the EPC tests.

In summary, for HypothesesA, I reject H0 for the pairs {NOS, SIOS}, {SIOS, OS1},

{SIOS, OS3}, {SIOS, OS5}, {OS2, OS5}, {OS4, OS5}, {OS2, OS3}, {SIOS, OT1}, {SIOS,

OT3}, {SIOS, OT5}, {OT2, OT5}, {OT4, OT5}, {OT2, OT3}, {SIOS, OS2}, and {SIOS,

OS4}.

Although Tables 5.12 and 5.13 show that a more precise OS can detect a higher average
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Figure 5.21: Qqplot for OS4 of edge-pair coverage

percentage of faults than a less precise OS, the results of the Wilcoxon signed-rank test

showed that the percentage of faults detected by a more precise OS might not be significantly

different from that of a less precise OS (such as {OT1, OT5}). Therefore, the answer to RQ1

is: for any two OSes that have different precision, the more precise OS is not necessarily

more effective than the less precise OS.

I also used the Wilcoxon signed rank test for HypothesesB to decide if the frequency of

checking variables impacts the effectiveness of OSes for 10 pairs {OT1, OS1}, {OT2, OS2},

{OT3, OS3}, {OT4, OS4}, and {OT5, OS5} for EC and EPC. The results showed that I

can reject H0 for four pairs: {OT1, OS1}, {OT3, OS3}, {OT5, OS5} for EC and {OT3,

OS3} for EPC. I was not able to reject H0 for the other four pairs: {OT4, OS4} for EC and

{OT1, OS1}, {OT2, OS2}, and {OT5, OS5} for EPC. The numbers of different pairs of

{OT2, OSs} for EC and {OT4, OS4} for EPC were less than 5, thus, the Wilcoxon signed

rank test could not be applied to these two pairs. From Tables 5.12 and 5.13, the difference

between the average percentages of faults detected by OTi and OSi (1 ≤ i ≤ 5) for both
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Figure 5.22: Qqplot for OS5 of edge-pair coverage

EC and EPC is very small. With regard to RQ2, checking program states multiple times

was not significantly more effective than checking the same program states once.

Tables 5.12 and 5.13 show that each OS for the edge-adequate tests reveals almost

the same number of faults as the same OS for the EP-adequate tests. I used the one-

tailed Mann-Whitney test (statistical significance level α = 0.05) [93] to look for statistical

evidence that EPC is more effective than EC. The reason that I used Mann-Whitney test

was that the comparison was between two independent tests: EC and EPC tests, with the

same OS. I applied each OS to the edge-adequate and EP-adequate tests for each program

and then compared the percentages of the faults detected by the two paired sets of tests

that have the same OS. The p-values were between 0.1977 and 0.5823 for all the OSes,

so I cannot reject H0 for HypothesesC . Therefore, the answer to RQ3 is that a stronger

coverage criterion (EPC) was not found to be more effective than a weaker criterion (EC)

with the same OS.

Tables 5.14 and 5.15 show how many distinct assertions were created by hand for each
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Figure 5.23: Qqplot for OT1 of edge-pair coverage

OS. Since a more precise OS checks more outputs and internal state variables than a less

precise OS, more distinct assertions were generated for the more precise OSes. Thus, the

cost of OS5 was greater than that of any other OS except OT5. Although OT5 checks

program states less frequently than OS5, it uses the same number of distinct assertions as

OS5. For each OTi, it uses the same number of distinct assertions as OSi, where 1 ≤ i ≤ 5

in this research.

Since testers need to write test oracles for all outputs and internal state variables that

appear in all transitions for each OT test oracle strategy, testers have to analyze the effects

of each transition by the end of each test. For the experimental subjects, I had to analyze

each transition and write the same test oracles as for OSi 1 ≤ i ≤ 5, because each distinct

transition produced different program states by the end of the tests. Thus, the cost of OTi

is equivalent to that of OSi. Furthermore, OS1, OS3, OS5, OT1, OT3, and OT5 required

similar numbers of distinct assertions but have far more assertions than OS2, OS4, OT2,

and OT4. This was because object members checked by OS1, OS3, OS5, OT1, OT3, and
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Figure 5.24: Qqplot for OT2 of edge-pair coverage

OT5 produced lots of assertions since I checked the member variables of objects recursively.

For the same OS, the EP-adequate tests did not have many more distinct assertions than

the edge-adequate tests. This was because I did not need to create many more mappings

to satisfy EPC than the mappings created for EC, as discussed in section 5.3.2.

For completeness, Tables 5.16 and 5.17 show the total numbers of assertions used for

each OS. NOS and SIOS are shown in both Tables 5.16 and 5.17 to make comparisons

among the total numbers of assertions used for test oracle strategies easier.
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Figure 5.25: Qqplot for OT3 of edge-pair coverage

Figure 5.26: Qqplot for OT4 of edge-pair coverage
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Figure 5.27: Qqplot for OT5 of edge-pair coverage

124



Table 5.14: Cost of Test Oracle Strategies – Total Number of Distinct Assertions - Part1

Programs
Cost of Test Oracle Strategies

Edge EdgePair
NOS SIOS OS1 OS2 OS3 OS4 OS5 NOS SIOS OS1 OS2 OS3 OS4 OS5

ATM 0 6 49 34 49 50 74 0 6 49 34 49 50 74
BlackJack 0 3 552 3 552 3 552 0 3 552 3 552 0 552
Calculator 0 9 123 9 123 9 123 0 9 123 9 123 9 123
CorssLexic 0 7 127 7 127 7 127 0 7 127 7 127 7 127
DFGraph
Coverage

0 7 163 7 163 7 163 0 7 163 7 163 7 163

Dynamic
Parser

0 15 23 15 23 15 23 0 15 23 15 23 15 23

Graph
Coverage

0 11 156 11 156 11 156 0 11 156 11 156 11 156

JMines 0 1 792 82 792 82 792 0 1 792 82 792 82 792
Logic
Coverage

0 8 181 8 181 8 181 0 8 181 8 181 8 181

MM
Coverage

0 16 587 16 587 16 587 0 16 584 16 587 16 587

Poly 0 6 12 10 12 10 12 0 6 14 12 14 12 14
Snake 0 8 463 8 463 8 463 0 8 463 8 463 8 463
TicTacToe 0 3 33 6 36 60 90 0 3 33 6 36 60 90
Tree 0 3 23 14 34 14 34 0 3 23 14 34 14 34
Triangle 0 5 42 6 51 9 51 0 5 42 6 51 6 51
Vending
Machine

0 6 17 9 17 9 18 0 6 19 9 20 9 21

Total 0 114 3,343 164 3,366 234 3,446 0 114 3,347 166 3,371 236 3,451
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Table 5.15: Cost of Test Oracle Strategies – Total Number of Distinct Assertions - Part2

Programs
Cost of Test Oracle Strategies

Edge EdgePair
NOS SIOS OT1 OT2 OT3 OT4 OT5 NOS SIOS OT1 OT2 OT3 OT4 OT5

ATM 0 6 49 34 49 50 74 0 6 49 34 49 50 74
BlackJack 0 3 552 3 552 3 552 0 3 552 3 552 0 552
Calculator 0 9 123 9 123 9 123 0 9 123 9 123 9 123
CorssLexic 0 7 127 7 127 7 127 0 7 127 7 127 7 127
DFGraph
Coverage

0 7 163 7 163 7 163 0 7 163 7 163 7 163

Dynamic
Parser

0 15 23 15 23 15 23 0 15 23 15 23 15 23

Graph
Coverage

0 11 156 11 156 11 156 0 11 156 11 156 11 156

JMines 0 1 792 82 792 82 792 0 1 792 82 792 82 792
Logic
Coverage

0 8 181 8 181 8 181 0 8 181 8 181 8 181

MM
Coverage

0 16 587 16 587 16 587 0 16 584 16 587 16 587

Poly 0 6 12 10 12 10 12 0 6 14 12 14 12 14
Snake 0 8 463 8 463 8 463 0 8 463 8 463 8 463
TicTacToe 0 3 33 6 36 60 90 0 3 33 6 36 60 90
Tree 0 3 23 14 34 14 34 0 3 23 14 34 14 34
Triangle 0 5 42 6 51 9 51 0 5 42 6 51 6 51
Vending
Machine

0 6 17 9 17 9 18 0 6 19 9 20 9 21

Total 0 114 3,343 164 3,366 234 3,446 0 114 3,347 166 3,371 236 3,451
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Table 5.16: Cost of Test Oracle Strategies – Total Number of Assertions - Part1

Programs
Cost of Test Oracle Strategies

Edge EdgePair
NOS SIOS OS1 OS2 OS3 OS4 OS5 NOS SIOS OS1 OS2 OS3 OS4 OS5

ATM 0 23 156 51 156 83 188 0 40 250 103 250 175 322

BlackJack 0 27 1, 313 27 1, 313 27 1, 313 0 52 2, 473 52 2, 585 52 2, 585

Calculator 0 168 1, 908 168 1, 908 168 1, 908 0 894 10, 047 1, 313 10, 047 1, 323 10, 047

CorssLexic 0 210 1, 304 410 1, 304 410 1, 304 0 757 4, 852 1, 261 4, 852 1, 261 4, 852

DFGraph
Coverage

0 79 1, 091 167 1, 091 167 1, 091 0 644 9, 016 1, 139 9, 016 1, 139 9, 016

Dynamic
Parser

0 409 456 409 456 409 456 0 1, 234 1, 417 1, 234 1, 417 1, 234 1, 417

Graph
Coverage

0 208 1, 796 448 1, 796 448 1, 796 0 606 4, 904 951 4, 904 951 4, 904

JMines 0 42 6, 428 805 6, 428 805 6, 428 0 152 21, 553 1, 911 21, 553 1, 911 21, 553

Logic
Coverage

0 95 1, 471 155 1, 471 155 1, 471 0 484 7, 766 674 7, 766 674 7, 766

MM
Coverage

0 229 4, 911 541 5, 208 541 5, 208 0 571 12, 746 1, 139 13, 226 1, 139 13, 226

Poly 0 58 81 91 91 91 91 0 238 333 357 357 357 357

Snake 0 121 3, 229 450 3, 229 450 3, 229 0 342 9, 128 718 9, 128 718 9, 128

TicTacToe 0 8 160 16 167 267 437 0 17 236 33 252 609 828

Tree 0 49 209 87 247 87 247 0 147 587 329 769 329 769

Triangle 0 37 310 90 315 90 315 0 272 2, 290 538 2, 340 538 2, 340

Vending
Machine

0 89 156 96 163 96 170 0 211 380 229 398 229 421

Total 0 1,852 24,979 4,011 25,343 4,294 25,652 0 6,661 87,978 11,991 88,860 12,639 89,531
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Table 5.17: Cost of Test Oracle Strategies – Total Number of Assertions - Part2

Programs
Cost of Test Oracle Strategies

Edge EdgePair
NOS SIOS OT1 OT2 OT3 OT4 OT5 NOS SIOS OT1 OT2 OT3 OT4 OT5

ATM 0 23 68 42 69 80 92 0 40 85 56 87 99 119

BlackJack 0 27 475 27 475 27 475 0 52 556 52 556 52 556

Calculator 0 168 322 322 322 322 322 0 894 1, 323 1, 313 1, 323 1, 323 1, 323

CorssLexic 0 210 420 210 420 210 420 0 757 1, 288 757 1, 288 757 1, 288

DFGraph
Coverage

0 79 262 79 262 79 262 0 644 1, 675 644 1, 675 644 1, 675

Dynamic
Parser

0 409 428 409 428 409 428 0 1, 234 1, 260 1, 234 1, 260 1, 234 1, 260

Graph
Coverage

0 208 423 208 423 208 423 0 606 920 606 920 606 920

JMines 0 42 792 42 792 42 792 0 152 792 42 792 42 1, 802

Logic
Coverage

0 95 801 95 801 95 801 0 484 1, 870 484 1, 870 484 1, 870

MM
Coverage

0 229 3, 188 229 3, 188 229 3, 188 0 571 4, 832 571 4, 832 571 4, 832

Poly 0 58 63 68 68 68 68 0 238 250 250 250 250 250

Snake 0 121 359 121 359 121 359 0 342 595 342 595 342 595

TicTacToe 0 8 80 12 80 80 85 0 17 111 23 112 118 118

Tree 0 49 111 62 111 62 111 0 147 211 194 211 194 211

Triangle 0 37 85 42 85 42 90 0 272 488 295 488 295 511

Vending
Machine

0 89 90 94 94 94 94 0 211 212 219 219 219 219

Total 0 1,852 7,967 2,062 7,977 2,168 8,010 0 6,661 16,468 7,092 16,478 7,230 17,559
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Figure 5.28: Averages of Cost-effectiveness of Edge-adequate Tests

Figures 5.28 and 5.29 give the average cost-effectiveness (cost / the percentage of faults

detected by OSes) from formula 1 in section 5.3.1 over all the programs for EC and EPC.

Figures 5.30 and 5.31 show the differences for OSes whose cost-effectiveness values are below

100. Since the cost of generating test oracles for NOS is 0, the cost-effectiveness was not

used for NOS. Figures 5.28 and 5.29 show that SIOS is the most cost-effective, followed by

OS2, OS4, OT2, and OT4. The details about the cost-effectiveness of OSes for EC and

EPC are shown in Tables 5.18 and 5.19. Note that the figures reflect the cost-effectiveness

of OSes when they were generated by STALE, not by hand. More discussion will be in

section 5.3.5.

129



Figure 5.29: Averages of Cost-effectiveness of EdgePair-adequate Tests

Figure 5.30: Averages of Cost-effectiveness of Edge-adequate Tests Below 100

Figure 5.31: Averages of Cost-effectiveness of EdgePair-adequate Tests Below 100
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Table 5.18: Cost-effectiveness of Test Oracle Strategies - Part1

Programs
Cost-effectiveness of Test Oracle Strategies

Edge EdgePair
NOS SIOS OS1 OS2 OS3 OS4 OS5 NOS SIOS OS1 OS2 OS3 OS4 OS5

ATM 0.0 20.3 69.2 50.8 69.2 63.9 92.3 0.0 19.0 68.4 49.9 68.4 63.9 92.3
BlackJack 0.0 8.8 1405.1 8.8 1405.1 8.8 1405.1 0.0 8.8 1405.1 8.8 1405.1 8.8 1405.1
Calculator 0.0 21.7 266.5 21.7 266.5 21.7 266.5 0.0 19.9 247.0 19.9 247.0 19.9 247.0
CorssLexic 0.0 16.0 285.6 15.7 285.6 15.7 285.6 0.0 15.6 278.9 15.4 278.9 15.4 278.9
DFGraph
Coverage

0.0 17.4 268.3 17.4 268.3 17.4 268.3 0.0 17.4 268.3 17.4 268.3 17.4 268.3

Dynamic
Parser

0.0 22.0 33.8 22.0 33.8 22.0 33.8 0.0 22.0 33.8 22.0 33.8 22.0 33.8

Graph
Coverage

0.0 20.2 199.5 20.2 199.5 20.2 199.5 0.0 20.2 199.5 20.2 199.5 20.2 199.5

JMines 0.0 4.0 2636.7 4.0 2636.7 4.0 2636.7 0.0 1.3 1016.1 1.3 1016.1 1.3 1016.1
Logic
Coverage

0.0 9.3 207.1 9.3 207.1 9.3 207.1 0.0 9.3 207.1 9.3 207.1 9.3 207.1

MM
Coverage

0.0 53.9 1893.2 53.9 1893.2 53.9 1893.2 0.0 53.9 1893.2 53.9 1893.2 53.9 1893.2

Poly 0.0 6.2 12.4 10.4 12.4 10.4 12.4 0.0 6.2 14.5 12.4 14.5 12.4 14.5
Snake 0.0 20.3 629.1 11.4 629.1 11.4 629.1 0.0 20.3 627.6 11.4 627.6 11.4 627.6
TicTacToe 0.0 6.8 74.3 12.9 77.4 123.2 184.8 0.0 6.2 68.0 12.4 74.2 119.9 179.8
Tree 0.0 5.7 37.1 24.7 54.9 24.7 54.9 0.0 5.1 37.1 22.6 54.9 22.6 54.9
Triangle 0.0 10.3 78.9 9.5 79.8 9.5 79.8 0.0 10.3 78.9 9.2 78.0 9.2 78.0
Vending
Machine

0.0 10.0 24.5 10.8 20.4 10.8 21.6 0.0 9.8 26.6 10.7 23.7 10.7 24.9

Average N/A 15.8 507.6 19.0 508.7 26.7 516.9 N/A 15.3 404.4 18.6 405.6 26.2 413.8
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Table 5.19: Cost-effectiveness of Test Oracle Strategies - Part2

Programs
Cost-effectiveness of Test Oracle Strategies

Edge EdgePair
NOS SIOS OT1 OT2 OT3 OT4 OT5 NOS SIOS OT1 OT2 OT3 OT4 OT5

ATM 0.0 20.3 72.0 51.1 70.7 63.9 92.3 0.0 19.0 71.1 50.5 70.0 63.9 92.3
BlackJack 0.0 8.8 1472.0 8.8 1472.0 8.8 1405.1 0.0 8.8 1472.0 8.8 1472.0 8.8 1405.1
Calculator 0.0 21.7 271.3 21.7 271.3 21.7 271.3 0.0 19.9 253.2 19.9 253.2 19.9 253.2
CorssLexic 0.0 16.0 285.6 16.0 285.6 16.0 285.6 0.0 15.6 278.9 15.6 278.9 15.6 278.9
DFGraph
Coverage

0.0 17.4 268.3 17.4 268.3 17.4 268.3 0.0 17.4 268.3 17.4 268.3 17.4 268.3

Dynamic
Parser

0.0 22.0 33.8 22.0 33.8 22.0 33.8 0.0 22.0 33.8 22.0 33.8 22.0 33.8

Graph
Coverage

0.0 20.2 218.4 20.2 218.4 20.2 218.4 0.0 20.2 218.4 20.2 218.4 20.2 218.4

JMines 0.0 4.0 3063.2 4.0 3063.2 4.0 3063.2 0.0 1.3 1021.1 1.3 1021.1 1.3 1021.1
Logic
Coverage

0.0 9.3 207.1 9.3 207.1 9.3 207.1 0.0 9.3 207.1 9.3 207.1 9.3 207.1

MM
Coverage

0.0 53.9 1907.8 53.9 1907.8 53.9 1907.8 0.0 53.9 1907.8 53.9 1907.8 53.9 1907.8

Poly 0.0 6.2 12.5 10.4 12.5 10.4 12.5 0.0 6.2 14.5 12.4 14.5 12.4 14.5
Snake 0.0 20.3 926.0 20.3 926.0 20.3 926.0 0.0 20.3 926.0 20.2 926.0 20.2 926.0
TicTacToe 0.0 6.8 70.5 12.9 76.9 122.5 184.8 0.0 6.2 67.6 12.3 73.8 119.9 178.5
Tree 0.0 5.7 37.1 24.7 54.9 24.7 54.9 0.0 5.1 37.1 22.6 54.9 22.6 54.9
Triangle 0.0 10.3 73.6 10.7 84.9 10.7 84.9 0.0 10.3 69.9 10.2 80.8 10.2 80.8
Vending
Machine

0.0 10.0 28.2 11.7 22.1 11.7 23.4 0.0 9.8 31.1 11.6 25.7 11.6 27.0

Average N/A 15.8 559.2 19.7 561.0 27.4 564.9 N/A 15.3 429.9 19.3 431.6 26.8 435.5
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5.3.5 Discussion and Recommendations

I found statistical evidence that the more precise OS was more effective in terms of the

percentage of faults detected than the less precise OS for the pairs {NOS, SIOS}, {SIOS,

OS1}, {SIOS, OS3}, {SIOS, OS5}, {OS2, OS5}, {OS4, OS5}, {OS2, OS3}, {SIOS, OT1},

{SIOS, OT3}, {SIOS, OT5}, {OT2, OT5}, {OT4, OT5}, {OT2, OT3}, {SIOS, OS2},

{SIOS, OS4}, {OT1, OS3}, {OT1, OS5}, {OT2, OS3}, {OT2, OS4}, {OT3, OS5}, and

{OT4, OS5} but not for {OS1, OS3}, {OS3, OS5}, {OS1, OS5}, {OS2, OS4}, {OT1,

OT3}, {OT3, OT5}, {SIOS, OT2}, and {OT2, OT4}, {OT1, OT5} and {SIOS, OT4}.

This shows that if the precision difference of two OSes is not large enough, there is no

difference between their effectiveness.

In Table 5.12, the percentage of faults detected (mutation score) by the EP-adequate

tests for the most precise OS (OS5) in this paper is only 0.63. This is a low score considering

that 90% mutation is considered a good test set [7]. The test inputs were generated to satisfy

state invariants in the state machine diagrams while mutation-adequate tests usually require

more test inputs. This implies that mutation coverage is generally more effective at finding

faults than EC and EPC on the model. A previous paper [94] found that mutation can find

more faults than EPC at the unit testing level. Furthermore, the system tests generated in

this paper could only call methods that are mapped to the models at a high level.

Tables 5.12 and 5.13 show that NOS was not very good at revealing faults. This implies

that checking runtime exceptions is not enough. I also noticed that SIOS can reveal more

than 80% of the faults detected by OS5 but with many fewer assertions. Test inputs were

generated to satisfy state invariants, thus checking the limited number of outputs and

internal state variables used in the state invariants can reveal many faults. In contrast,

checking more program states (as OS5 does) that are not affected by the test inputs are

not likely to reveal more faults. If more program states have to be checked, checking return

values or parameter members (OS2 and OS4) gets better cost-effectiveness while checking

object members (OS1, OS3, OS5, OT1, OT3, and OT5) requires a lot more cost but gains
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little improvement in effectiveness.

The results show that checking outputs and internal state variables multiple times was

not significantly more effective than checking the same outputs and internal state variables

once for both EC and EPC. My belief is that program states are changed when execution

enters a different state of a state machine diagram. Therefore, most faults should be revealed

if all outputs and internal state variables are checked for each distinct diagram state only

once, as done by OTi, where 1 ≤ i ≤ 5. Checking the same outputs and internal state

variables multiple times does not seem to help much. Therefore, if testers use a tool such as

STALE to generate test oracles automatically, they should generate test oracles after each

transition to achieve higher effectiveness; otherwise, the testers should check outputs and

internal state variables at the end of tests to avoid writing redundant test oracles manually

for transitions that appear multiple times in tests.

Moreover, I found statistical evidence that EP-adequate tests were not significantly

more effective than edge-adequate tests. This may be because EPC did not require many

more mappings on the state machine diagrams, even though EPC had more tests. The

models could affect the results. If a model has lots of nodes that have multiple incoming

and outgoing edges, the edge-pairs could be very different from edges. Then EPC could

result in stronger tests than EC. Furthermore, if a state machine diagram is designed with

multiple variables, then each state represents multiple variable states (constraints). EPC

abstract tests are usually more complex than EC abstract tests, and tour the same states

multiple times. Satisfying the constraints (finding appropriate test values) in complex tests

is harder because it causes more program states, when compared with less complex tests.

In this case, EPC may need more mappings than EC.

Checking program states frequently could require too many assertions in tests. OT5

resulted in 8,010 assertions for EC (17,559 for EPC) but OS5 produced 25,652 (89,531 for

EPC), as shown in Tables 5.16 and 5.17. Checking lots of program states could cause the

size of a JUnit test method to exceed 65,536 bytes, resulting in a compiler error. Since

testers must split these methods by hand, this adds an additional hidden costs for the
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precision.

Figures 5.28 and 5.29 show that SIOS was the most cost-effective for both EC and EPC.

So if testers need to save time, SIOS is a good choice. Otherwise, testers should choose OS2

or OS4 because they are almost as effective as OS5 but require fewer assertions than OS5.

5.3.6 Threats to Validity

As in most software engineering studies, I could not be sure that the subject programs are

representative. The results may differ with other programs and models. Another threat to

external validity is that I generated test values by hand to satisfy EC and EPC. The results

such as the answers to RQ3 may differ if I used different tests. One construct validity threat

is that I used muJava to generate synthetic faults. Using real faults or another mutation tool

may yield different results. Another internal threat is that I identified equivalent mutants

by hand, thus, mistakes could affect the results in small ways.
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Chapter 6: Conclusions and Thoughts

This chapter concludes the research, specifies the contributions, and talks about the future

work.

6.1 Conclusions

This research studied three sub-problems for generating cost-effective criteria-based tests

from behavioral models: the minimum cost test paths problem (MCTP), the mapping

problem, and the test oracle problem. This research also presented solutions to each problem

and results from experiments to evaluate the solutions. Three groups of conclusions for each

problem are summarized below.

First, this research defined a new problem, the MCTP problem, and proved its hardness.

Four variants were proved to be NP-complete and one variant can be solved in polynomial

time. This research also presented and compared three solutions to the MCTP problem:

the breadth-first search based, the prefix-graph based, and the set-covering based solutions.

They were compared on 37 methods, 18 from open source programs and 19 constructed by

hand. Graphs were created by hand, and prime paths were generated automatically as test

requirements. Then all three solutions were used to generate test paths for the same set of

prime paths. Both the prefix-graph based and set-covering based solutions generated fewer

test paths than the breadth-first search based solution, however neither the prefix-graph nor

the set-covering solution was always better than the other and I could not quantify which

solution is preferable or when. The set-covering based solution took an extremely long time

with the largest sets of prime paths, so the prefix-graph based solution seems preferable.

Thus, this solution was implemented in the graph coverage web application [12]. This web

app is used by thousands of students and professors who use Ammann and Offutt’s book
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[7].

Second, this research created a general, practical solution to the mapping problem when

behavioral models are used: a structured test automation language (STAL). Testers use

STAL to define mappings between identifiable elements in the abstract tests to specific

sequences of code that will be part of the concrete executable tests. STAL was implemented

in a structured test automation language framework, STALE, which reads models and

automatically creates fully executable concrete tests.

The test automation language can be used whenever abstract tests include the same

elements many times, resulting in duplicate components of concrete tests. This research

explained STAL in the context of using graph-based test criteria defined on graphs that

were derived from UML state machine diagrams, but it can also be used with other models

and other techniques for designing model-based tests.

This research also compared test generation using STAL with manual test generation.

The results, based on 17 programs, showed that automatic test generation used 29.6% of

the time that manual test generation used. The manual tests also contained 48 errors in

which concrete tests did not map abstract tests correctly.

Third, this research proposed ten new test oracle strategies (OSes) to help find more

faults with less cost in model-based testing. These new OSes were compared with two

baseline OSes: the null and state invariant test oracle strategies (NOS and SIOS). Test

inputs were generated to satisfy edge coverage (EC) and edge-pair coverage (EPC) from

UML state machine diagrams for 16 programs. Then the twelve OSes were applied to the

edge-adequate and EP-adequate tests, resulting in 24 sets of tests for each program. These

sets of tests were run against faults. The effectiveness and cost of each OS were recorded

and the cost-effectiveness was calculated in section 5.3.

I had several findings from the experiments for the test oracle problem. First, NOS was

not very effective and testers need to check program states, not just runtime exceptions.

Second, the more precise OSes did not always detect more failures than the less precise

OSes. Third, an OS that checks outputs and internal state variables multiple times was not
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more effective than OSes that check the same outputs and internal state variables just once.

Fourth, with the same OS, a specific stronger test coverage criterion (EPC) was not more

effective at finding faults than a weaker criterion (EC). In summary, checking only runtime

exceptions will result in many failures not being noticed. Checking only state invariants

(SIOS) is recommended for testers who are willing to sacrifice a little quality for time;

otherwise, testers should check state invariants, outputs and parameter objects. If testers

use a tool such as STALE to generate test oracles automatically, they should generate test

oracles after each transition to achieve higher effectiveness; otherwise, the testers should

check outputs and internal state variables at the end of tests to avoid writing redundant

test oracles manually for transitions that appear multiple times in tests.

In summary, the solutions to the three sub-problems result in more cost-effective tests

than previous solutions. The prefix-graph and set-covering based solutions can generate

abstract tests with less cost in terms of the number of tests and total number of nodes in

the tests. STAL can be used to transform abstract tests to concrete tests with less time

and fewer errors. Cost-effective OSes were also developed for the concrete tests.

6.2 Contributions and Recommendations

This research gave a complete solution to the problem of generating cost-effective criteria-

based tests from behavioral models, (including three sub-problems: the minimum cost test

paths problem, the mapping problem, and the test oracle problem). These solutions include

theoretical proofs, algorithms, a new language, new test oracle strategies, and practical

implementation. Specifically, the contributions and recommendations are listed below:

1. Defined the minimum cost test paths problem (MCTP), which generalizes common

objectives for reducing costs when generating tests from graphs. Five variants of

MCTP were also developed.

2. Proved four variants of MCTP to be NP-complete and the optimal solution of the

other to be solvable in polynomial time
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3. Developed the set-covering and prefix-graph based solutions to MCTP and imple-

mented the solutions in the graph coverage web application

4. Experimentally evaluated the new solutions to MCTP and recommended the prefix-

graph based solution

5. Invented a structured test automation language (STAL) to automate the mapping

problem when only behavioral models are used

6. Implemented the structured test automation language (STAL) in the structured test

automation language framework (STALE)

7. Experimentally compared STAL with manual transformation method from abstract

tests to concrete tests and recommended STAL

8. Proposed ten new test oracle strategies (OSes)

9. Compared the new test oracle strategies with two baseline test oracle strategies.

Checking only state invariants (SIOS) is recommended for testers who are willing

to sacrifice a little quality for time; otherwise, testers should check state invariants,

outputs and parameter objects. Testers should check program states after each tran-

sition if test oracles can be generated automatically using a tool; otherwise, check the

program states after the last transition.

10. Extended “Reachability-Infection-Propagation (RIP)” model to “Reachability-Infection-

Propogation-Revealability (RIPR)” model.

This research has three significant general contributions. First, this research gives a

complete solution for generating tests from behavioral models without any additional sup-

porting models. Second, this solution greatly reduces the cost in comparison with previous

solutions, both theoretically and experimentally. Third, a structured test automation lan-

guage framework (STALE) was developed for practical use.

The list below shows the publications related to my dissertation:

139



1. Nan Li and Jeff Offutt. An Empirical Analysis of Test Oracle Strategies for Model-

based Testing. 7th IEEE International Conference on Software Testing, Verification

and Validation. Cleveland, Ohio, USA. April 2014.

2. Nan Li and Jeff Offutt. A Test Automation Language for Behavioral Models. Sub-

mitted to MODELS 2014.

3. Nan Li, Fei Li, and Jeff Offutt. Better Algorithms to Minimize the Cost of Test Paths.

5th IEEE International Conference on Software Testing, Verification and Validation.

Montreal, Quebec, Canada. April 2012.
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posium of 5th IEEE International Conference on Software Testing, Verification and
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perimental Evaluation of SDL and One-Op Mutation for C. 7th IEEE International

Conference on Software Testing, Verification and Validation. Cleveland, Ohio, USA.

April 2014.

2. Vinicius Durelli, Jeff Offutt, Nan Li, and Marcio Delamaro. Predicates in the Wild:

Gauging the Cost-Effectiveness of Applying Active Clause Coverage Criteria to Open-

source Java Programs. Under revision for the Journal of Systems and Software.
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Tests to TDD. The Testing: Academic and Industrial Conference - Practice and

Research Techniques (TAIC-PART 2012). Montreal, Quebec, Canada. April 2012.

(Best Student Paper Award).

6. Jeff Offutt, Nan Li, Paul Ammann and Wuzhi Xu. Using Abstraction and Web

Applications to Teach Criteria-Based Test Design. 24th IEEE-CS Conference on

Software Engineering Education and Training. Hawaii, USA. May 2011.

7. Jingyu Hu, Nan Li, and Jeff Offutt. An Analysis of OO Mutation Operators. Mutation

2011: 6th International Workshop on Mutation Analysis. Berlin, Germany. March

2011.

8. Nan Li, Upsorn Praphamontripong, and Jeff Offutt. An Experimental Comparison
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6.3 Future Work

For the minimum cost test paths problem, it would be helpful to adapt other algorithms from

the shortest superstring literature. It would also be helpful to quantify properties of methods

so that testers could pre-determine which algorithm would work better. The number of test

requirements (prime paths) is an easy measure, but does not seem to be accurate. Checking

overlaps among the test requirements may work better. Further experimentation could also

measure other factors, such as the number of nodes and the structural complexity. It is

also possible that using dynamic programming and different test suite minimization and

splitting algorithms could yield different solutions. Furthermore, I plan to adapt the prefix-

graph based solution to solve other MCTP variants, including the fewest total nodes, the

minimizing maximum ratio of TR to TP subject to a number of test paths, the fewest test

paths subject to a bounded ratio of TR to TP, and the fewest total nodes subject to a
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bounded TR to TP ratio problems. Additionally, I also would like to modify the algorithms

to solve the infeasible paths problem (discussed in section 1.3.1).

In the future, I would like to extend the STALE to accept more diagrams such as UML

activity diagrams and use more programming languages such as C++. Moreover, I will be

looking for the possiblities to use this framework in the real world.

With regard to the test oracle problem, in the future, I would like to develop new OSes

and study their effectiveness and cost. For the research questions raised in this research, I

want to try more coverage criteria to check if the results differ. Using mutation analysis to

select which program states to check seems promising [72, 73], but could be costly because

testers have to run mutation analysis before providing test oracle data. I intend to seek a

way to select OSes that are effective but less costly.

I generated faults using mutation analysis in the experiments for the test oracle problem.

I would like to see if failures revealed by OSes could change if I use the minimal mutants

[95]. I also would like to use one-op mutation [96] to generate faults. I propose a new way

to generate mutants based on one-op mutation, called adaptive one-op mutation. One-op

mutation uses only one fixed mutation operator to all statements of a program. Adaptive

one-op mutation analyzes the structure of statements first, and then apply different mu-

tation operators to statements that have different structures (one mutation operator for

one structure). For instance, if a structure has a predicate with multiple clauses, using

relational operator replacement (ROR) mutation operator [97] may detect more faults than

using statement deletion (SDL) mutation operator [98] with not much more costs.
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Table A.1: Which Elements Need Mappings?

Element

Need mappings Entry Point, Exit Point, and Do Activity of a State, Tran-
sition, Constraint

Do not need mappings State Machine, Region, Initial PseudoState, Final State,
Fork, Join, Junction, Choice, Simple State, Composite
State, Submachine State

Not used in test models Shallow History PseudoState, Deep History PseudoState

Appendix A: A Manual for the Structured Test Automation

Language

This appendix is a manual for the structured test automation language (STAL). STAL can

be used for UML behavioral diagrams (so far only state machine diagrams) to transform

abstract tests to concrete tests. Thus, this manual focuses on UML state machine diagrams.

The example concrete tests are written in Java. This manual still uses the vending machine

example used in section 4.2.1.

Table A.1 summarizes which elements of a UML state machine diagram should be

mapped. The first row shows a set of elements that need mappings. The elements of

the second row such as Simple State and Composite State do not need mappings because

they can be accessed from Constraints and Transitions in the first row. The definitions of

constraints in UML specify which states the constraints are applied to and the definitions

of transitions specify the source states and target states. Although they are not directly

mapped to test code, they are used to generate test paths in state machine diagrams. Shal-

low History PseudoState and Deep History PseudoState in the third row do not specify the

current model behaviors, thus, they are not be used in test models.

STAL defines two kinds of mappings: element mappings and object mappings. Element

mappings directly connect an identifiable element in a UML state machine diagram to test

code. For instance, a transition coin may be mapped to the test code “vm.coin (c);”.

However, objects and parameters used in this element mapping, such as vm (an object of
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class VendingMachine) and c (an int parameter of method coin (int c)), also need to be

initialized in object mappings, which will be marked as required mappings of this element

mapping.

An element mapping is formally defined as:

Mapping mappingName TYPEOFELEMENT nameOfElement

Requires objectMappingName ...

[TYPEOFCONSTRAINT nameOfElement ...] ...

{testCode}

Mapping and Requires are keywords. The mapping name must be unique. TYPE-

OFELEMENT may vary depending on the actual type of one concrete element. Based on

Table A.1, TYPEOFELEMENT can be Transition, Constraint, Entry Point of a

State, Exit Point of a State, and Do Activity of a State. If a mapping uses an object

defined in another mapping, the names of additional mappings have to be included in the

Requires field. The notation “...” means that more than one mapping may be required.

If an element is a constraint, the mapping needs to give the type of the constraint and

elements in which the constraint is held. This manual considers three types of constraints:

state invariants, guards (pre-condition of transitions), and post-condition of transitions.

State invariants are used in states. Guards and post-conditions are used for transitions.

Thus, TYPEOFCONSTRAINT can be StateInvariants, Guards, and PostCondi-

tion. StateInvariants, guards, and post-conditions fields are optional and marked by “[ ]”

since they are used only for constraints. A constraint may be used as a state invariant in

states and guards and post-conditions on transitions at the same time. Test code is required

for any mapping and written in curly brackets.

An object mapping is formally defined as:
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Table A.2: Attributes of Element and Object Mappings

Attributes Element Object
Mapping Mapping

Element Name X

Element Type X

Mapping Name X X

Test Code X X

Required Mappings X X

State Invariants & Guards X

Object Name X

Class Name X

Mapping mappingName Class nameOfClass

Object nameOfObject Requires objectMappingName ...

{testCode}

An object mapping includes the class type and name of the object. An object initializa-

tion may also need other objects. So an object mapping may require extra object mappings

as well. Table A.2 indicates which attributes can be used in element and object mappings.

For the state machine diagram of the vending machine program in Figure 4.1, I need to

create mappings for four distinct transitions: initialize, addChocs, getChocs, and coin; and

define six constraint mappings. The first mapping is an element mapping for the transition

initialize:

Mapping vMachineInit Transition initialize

{ VendingMachine vm = new VendingMachine(); }

vMachineInit is the mapping name. The keyword Transition specifies that the mapping

vMachineInit is created for a transition.

Next is a mapping for the transition getChocs. The method getChoc (StringBuffer) is

used to get chocolates from the vending machine. The StringBuffer object “sb” represents

a chocolate.
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Mapping getChocolate Transition getChocs

{

StringBuffer sb = new StringBuffer (“MM”);

vm.getChoc (sb);

}

The mapping getChocolate gets only one chocolate from the vending machine. More

chocolates can be taken from the vending machine if the method getChoc (StringBuffer) is

called multiple times. Two objects, vm and sb, need to be initialized before this transition

is taken. Because the transition initialize appears at the beginning of every test path, the

object vm will be initialized before the test code for other mappings is run, thus, other

mappings do not need to specify the mapping vMachineInt to be required. A StringBuffer

variable sb is initialized directly in the test code of this mapping. Alternatively, the initial-

ization of sb could be defined in an object mapping and reused in other mappings. The next

example shows another mapping that gets two chocolates. It requires an object mapping

stringBufferInit.

Mapping getTwoChocolates Transition getChocs

Requires stringBufferInit

{

vm.getChoc (sb);

vm.getChoc (sb);

}

The object mapping for stringBufferInit is shown below:

Mapping stringBufferInit Class StringBuffer Object sb

{ StringBuffer sb = new StringBuffer (“MM”); }

Note that the initialization of an object should be either embedded in the test code of
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an element mapping, defined as an object mapping separately, but not both. Otherwise

the object will be defined twice. STALE will report to testers if such errors happen. The

examples above show that testers could generate multiple mappings with different test values

for the same transition (mappings getChocolate and getTwoChocolates for the transition

getChocs). Which mapping should be chosen depends on the constraint evaluation, which

is discussed in section 4.2.3. The next mapping, coinOneDollarAndTen, provides test code

for transition coin.

Mapping coinOneDollarAndTen () Transition coin
{

vm.coin (10);
vm.coin (25);
vm.coin (25);
vm.coin (25);
vm.coin (25);

}

This mapping adds $1.10 to the vending machine. The method coin is used to add

credits in the vending machine. The int parameter of the method coin represents how much

is added. If adding a different amount of money, testers have to create a new mapping.

Alternatively, the testers can create a parameterized mapping to avoid writing multiple

mappings.

Mapping coinAnyCredit (int c) Transition coin

requires cForCoin

{ vm.coin (c); }

Testers can provide multiple test values for primitive types and values will be chosen

arbitrarily. To provide test values for the parameter c in an object mapping, an object

mapping cForCoin can be written below:

Mapping cForCoin Class int Object c

{ 10, 25, 100 }
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The vending machine only accepts dimes (10), quarters (25), and dollars (100). One

of the three int values will be selected arbitrarily for the parameter c, potentially with a

different value each time cForCoin is used. Testers can also provide predicates such as {c

> 0, c ≤ 100}, separating conditions by commas.

Mapping anyValueBetween0And100 Class int Object c

{ c > 0, c ≤ 100}

The constraint solver Choco for numeric variables [80] used in STALE will return a value

such as 1 that satisfies the two boolean expressions. Choco has a limited language, and

only accepts numeric variables (int, float, and double) and arithmetic operators. Another

constraint solver Xeger [81] can return String values to satisfy regular expressions. Both of

the constraint solvers do not accept disjuncts or function calls. The string value “MM” of

the test code above StringBuffer sb = new StringBuffer (“MM”); can be generated using

Xeger.

Mapping sForMM Class String Object s

{“[M]{2,2}′′}

A mapping that specifies a constraint to be a state invariant is shown below. In this

example, Constraint1 is a state invariant for State3, State6, and State9. The credit of the

vending machine has to be equal to or greater than 90 cents in these three states. The test

code of this constraint is evaluated when tests go through a state to which the constraint is

applied. If the boolean expression is evaluated to false, the mapping prior to this state does

not satisfy this constraint and an alternative mapping needs to be used. This constraint

can also be explicitly expressed as test oracles in concrete tests.
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Mapping constraintForCredit Constraint Constraint1

StateInvariants State3, State6, State9

{ vm.getCredit() ≥ 90; }
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Appendix B: A Complete Example using the Vending

Machine System

This appendix gives all software artifacts for the vending machine system used in the ex-

periments for the mapping and test oracle problems in sections 5.2 and 5.3. The artifacts

include the implementation of the vending machine class, the UML state machine diagram,

the abstract tests, the mappings created for transforming the abstract tests to concrete

tests, and the concrete tests with various test oracle strategies (OSes).

B.1 The Implementation of Vending Machine System

The vending machine system was introduced in section 4.2. The vending machine system

has one class VendingMachine. Figure 1.3 shows the specification of this class. The actual

implementation is shown in Figures B.1 and B.2 below.

Figure 4.1 shows a UML state machine diagram for this vending machine example

created with the Eclipse Modeling Framework (EMF)-based tool Papyrus [78].

B.2 Abstract Tests

The UML state machine diagram was transformed to a general graph. Thus, the general

graph has 11 nodes and 26 edges. The initial node is 1 and the final node is 5. The edges

are:

1. [4, 7]

2. [3, 4]

3. [2, 6]

4. [6, 8]

5. [2, 9]

6. [9, 10]

7. [10, 11]
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8. [6, 10]

9. [8, 11]

10. [3, 2]

11. [11, 2]

12. [7, 8]

13. [10, 10]

14. [6, 6]

15. [2, 8]

16. [9, 11]

17. [9, 5]

18. [2, 5]

19. [3, 5]

20. [1, 3]

21. [4, 6]

22. [4, 4]

23. [3, 7]

24. [9, 9]

25. [11, 11]

26. [8, 3]

The abstract tests for edge coverage are:

1. [1, 3, 2, 9, 9, 11, 2, 5]

2. [1, 3, 4, 4, 6, 6, 10, 10, 11, 2, 9, 10, 11, 2, 5]

3. [1, 3, 4, 7, 8, 3, 2, 6, 8, 11, 11, 2, 8, 3, 2, 5]

4. [1, 3, 2, 9, 5]

5. [1, 3, 2, 5]

6. [1, 3, 5]

7. [1, 3, 7, 8, 3, 2, 5]

The edge-pairs are:

1. [4, 7, 8]

2. [3, 4, 7]
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3. [3, 4, 6]

4. [3, 4, 4]

5. [2, 6, 8]

6. [2, 6, 10]

7. [2, 6, 6]

8. [6, 8, 11]

9. [6, 8, 3]

10. [2, 9, 10]

11. [2, 9, 11]

12. [2, 9, 5]

13. [2, 9, 9]

14. [9, 10, 11]

15. [9, 10, 10]

16. [10, 11, 2]

17. [10, 11, 11]

18. [6, 10, 11]

19. [6, 10, 10]

20. [8, 11, 2]

21. [8, 11, 11]

22. [3, 2, 6]

23. [3, 2, 9]

24. [3, 2, 8]

25. [3, 2, 5]

26. [11, 2, 6]

27. [11, 2, 9]

28. [11, 2, 8]

29. [11, 2, 5]

30. [7, 8, 11]

31. [7, 8, 3]

32. [10, 10, 11]

33. [10, 10, 10]

34. [6, 6, 8]

35. [6, 6, 10]
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36. [6, 6, 6]

37. [2, 8, 11]

38. [2, 8, 3]

39. [9, 11, 2]

40. [9, 11, 11]

41. [1, 3, 4]

42. [1, 3, 2]

43. [1, 3, 5]

44. [1, 3, 7]

45. [4, 6, 8]

46. [4, 6, 10]

47. [4, 6, 6]

48. [4, 4, 7]

49. [4, 4, 6]

50. [4, 4, 4]

51. [3, 7, 8]

52. [9, 9, 10]

53. [9, 9, 11]

54. [9, 9, 5]

55. [9, 9, 9]

56. [11, 11, 2]

57. [11, 11, 11]

58. [8, 3, 4]

59. [8, 3, 2]

60. [8, 3, 5]

61. [8, 3, 7]

The tests for edge-pair coverage are shown below:

1. [1, 3, 2, 9, 9, 5]

2. [1, 3, 4, 6, 10, 10, 10, 11, 2, 5]

3. [1, 3, 2, 9, 9, 10, 10, 11, 11, 11, 2, 5]

4. [1, 3, 4, 4, 4, 7, 8, 11, 11, 2, 9, 10, 11, 11, 2, 9, 11, 2, 9, 5]

5. [1, 3, 2, 8, 11, 2, 6, 10, 11, 2, 6, 8, 3, 7, 8, 3, 2, 5]

153



6. [1, 3, 7, 8, 3, 4, 6, 6, 8, 11, 11, 2, 5]

7. [1, 3, 2, 9, 9, 9, 11, 11, 2, 6, 6, 6, 10, 11, 2, 8, 3, 4, 4, 6, 8, 3, 2, 6, 6, 8, 3, 4, 4, 6, 8, 3, 4, 7, 8, 3, 5]

8. [1, 3, 2, 5]

9. [1, 3, 5]

B.3 Mapping Creation

This section displays the mappings created for the model in Figures B.3 and B.4 for the

mapping problem experiment.

B.4 Concrete Tests

Because the concrete tests for the experiments take too much space, they are online at

http://cs.gmu.edu/∼nli1/dissertation/.
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import java.util.*;
import java.io.*;
import java.lang.reflect.*;

public class VendingMachine
{

private int credit; // Current credit in the machine
private LinkedList stock; // Used to store all chocolates

// Constructor: vending machine starts empty.
public VendingMachine()
{

credit = 0;
stock = new LinkedList();

}

// A coin is given to the vendingMachine.
// Must be a dime (10), quarter (25), or dollar (100).
public void coin (int coin)
{

if (coin != 10 && coin != 25 && coin != 100)
return;

if (credit >= 90)
return;

credit = credit + coin;
return;

}

// User asks for a chocolate. Returns the change
// and sets the parameter StringBuffer variable Choc.
public int getChoc (StringBuffer choc)
{

int change;
if (credit < 90 || stock.size() <= 0)
{

change = 0;
choc.replace (0, choc.length(), “”);
return (change);

}

change = credit - 90;
credit = 0;
choc.replace (0, choc.length(), (String) stock.removeFirst());
return (change);

}

Figure B.1: Implementation of VendingMachine Class - Part 1
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// Adds one new piece of chocolate to the machine.
public void addChoc (String choc)
{

if (stock.size() >= MAX)
return;

stock.add (choc);
return;

}

// Get the value of the current credit
public int getCredit ()
{

return credit;
}

// Get the number of chocolates
public int getStock ()
{

return stock;
}

}

Figure B.2: Implementation of VendingMachine Class - Part 2

156



〈 mappings 〉
〈 mapping 〉
〈 name 〉 vMachineInit 〈 /name 〉
〈 transition-name 〉 initialize 〈 /transition-name 〉
〈 code 〉 VendingMachine vm = new VendingMachine(); 〈 /code 〉

〈 /mapping 〉
〈 mapping 〉
〈 name 〉 getOneChocolate 〈 /name 〉
〈 transition-name 〉 getChocs 〈 /transition-name 〉
〈 code 〉 vm.getChoc(sb); 〈 /code 〉
〈 required-mappings 〉 stringBufferInit 〈 /required-mappings 〉

〈 /mapping 〉
〈 mapping 〉
〈 name 〉 getTwoChocolates 〈 /name 〉
〈 transition-name 〉 getChocs 〈 /transition-name 〉
〈 code 〉

vm.getChoc(sb);
vm.coin(100);
vm.getChoc(sb);

〈 /code 〉
〈 required-mappings 〉 stringBufferInit 〈 /required-mappings 〉

〈 /mapping 〉
〈 mapping 〉
〈 name 〉 addChocolate 〈 /name 〉
〈 transition-name 〉 addChocs 〈 /transition-name 〉
〈 code 〉 vm.addChoc (“MM”); 〈 /code 〉

〈 /mapping 〉
〈 mapping 〉
〈 name 〉 coinOneDime 〈 /name 〉
〈 transition-name 〉 coin 〈 /transition-name 〉
〈 code 〉 vm.coin(10); 〈 /code 〉

〈 /mapping 〉
〈 mapping 〉
〈 name 〉 coinOneDollarAndTen 〈 /name 〉
〈 transition-name 〉 coin 〈 /transition-name 〉
〈 code 〉

vm.coin(10);
vm.coin(25);
vm.coin(25);
vm.coin(25);
vm.coin(25);

〈 /code 〉
〈 /mapping 〉
〈 mapping 〉
〈 name 〉 stringBufferInit 〈 /name 〉
〈 object-name 〉 sb 〈 /object-name 〉
〈 class-name 〉 StringBuffer 〈 /class-name 〉
〈 code 〉 StringBuffer sb = new StringBuffer(s); 〈 /code 〉

〈 /mapping 〉

Figure B.3: Mappings for Vending Machine Model - Part1
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〈 mapping 〉
〈 name 〉 constraintStockOne 〈 /name 〉
〈 constraint-name 〉 ConstraintStocKOne 〈 /constraint-name 〉
〈 code 〉 vm.getStock().size() == 1; 〈 /code 〉
〈 state-invariant 〉 Credit0Stock1,Credit0To90Stock1,Credit90Stock1 〈 /state-invariant 〉

〈 /mapping 〉
〈 mapping 〉
〈 name 〉 constraintStockOneToTenMapping 〈 /name 〉
〈 constraint-name 〉 ConstraintStockOneToTen 〈 /constraint-name 〉
〈 code 〉 vm.getStock().size() >= 1 && vm.getStock().size() <= 10; 〈 /code 〉
〈 state-invariant 〉

Credit0Stock1To10,Credit0To90Stock1To10,Credit90Stock1To10
〈 /state-invariant 〉

〈 /mapping 〉
〈 mapping 〉
〈 name 〉 constraintCreditAtLeastNinty 〈 /name 〉
〈 constraint-name 〉 ConstraintCreditGTNinety 〈 /constraint-name 〉
〈 code 〉 vm.getCredit() >= 90; 〈 /code 〉
〈 state-invariant 〉

Credit90Stock0,Credit90Stock1,Credit90Stock1To10
〈 /state-invariant 〉

〈 /mapping 〉
〈 mapping 〉
〈 name 〉 constraintCreditZeroToNinety 〈 /name 〉
〈 constraint-name 〉 ConstraintCreditZeroToNinety 〈 /constraint-name 〉
〈 code 〉 vm.getCredit() > 0 && vm.getCredit() < 90; 〈 /code 〉
〈 state-invariant 〉

Credit0To90Stock0,Credit0To90Stock1,Credit0To90Stock1To10
〈 /state-invariant 〉

〈 /mapping 〉
〈 mapping 〉
〈 name 〉 constraintCreditEqualsZero 〈 /name 〉
〈 constraint-name 〉 ConstraintCreditZero 〈 /constraint-name 〉
〈 code 〉 vm.getCredit() == 0; 〈 /code 〉
〈 state-invariant 〉 Credit0Stock0,Credit0Stock1,Credit0Stock1To10 〈 /state-invariant 〉

〈 /mapping 〉
〈 mapping 〉
〈 name 〉 constraintStockEqualsZero 〈 /name 〉
〈 constraint-name 〉 ConstraintStockZero 〈 /constraint-name 〉
〈 code 〉 vm.getStock().size() == 0; 〈 /code 〉
〈 state-invariant 〉 Credit0Stock0,Credit0To90Stock0,Credit90Stock0 〈 /state-invariant 〉

〈 /mapping 〉
〈 /mappings 〉

Figure B.4: Mappings for Vending Machine Model - Part2
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Appendix C: An Experimental Guide for the Mapping

Problem

This experimental guide was used for the experimental participants to understand the exper-

iment for the mapping problem. The guide compares the automatic test generation using

the structured test automation language (STAL) with manual test generation through a

vending machine example.

C.1 Goal of the Study

The goal of this experiment is to study the automatic test generation using STAL in model-

based testing by comparison with manual test generation at the system level. STAL is

implemented in an structured test automation language framework (STALE). The effec-

tiveness and cost of the automatic test generation will be measured as well. All tests have

to be written in JUnit and Eclipse must be used.

This study requires participants to automate the mapping process from abstract tests

to concrete tests from UML models using STALE (state machine diagrams used in this

study). Then the participants create tests by hand from the same models. During the test

generation phase, the time for both the automatic approach and the manual procedure will

be measured. After the manual tests are generated, they will be examined to see if they

match the abstract tests, which are the test paths generated from the models.

An example project will be given to each participant for learning how to use STALE

to generate tests automatically. Each participant will receive a unique package that con-

tains the experimental guide, program under test, its model, example tests. Thus, each

participant will be working on a different program.

Before generating tests, all participants have to read the program, model, and exam-

ple tests. By running the program example tests and studying the model, they should

understand the behaviors of the system and how to test the program.
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C.2 The Mapping Problem

In model-based testing (MBT), a model is an abstract partial description of a program that

usually reflects functional aspects of the system. Tests expressed in terms of a model are

called abstract tests. An abstract test can be a path in a state machine diagram starting

from an initial state, going through transitions, and ending with a final state and. Concrete

tests are expressed in terms of the implementation of the model. Thus, a JUnit test is a

concrete test. Abstract tests must be transformed to concrete tests since abstract tests

cannot be applied directly to the actual program. The mapping problem refers to the

problem of converting abstract tests to concrete tests.

Testers currently map abstract tests to concrete tests by hand. If an abstract test

consists of several transitions, testers have to write the code for each transition by hand. If

one transition is used multiple times in different abstract tests, testers must write redundant

code for the same transition. Furthermore, transitions may have the same name and that

can be mapped to the same code. Thus, testers have to write redundant code for these

transitions as well. This process is time-consuming, labor-intensive, and error-prone. For

example, to write a concrete test for a transition authentication for an account, testers may

have to set up the test environment, including making a database connection and creating

an account, and then write test sequences and an oracle. If this event is used in multiple

abstract tests, testers have to do the same process for all concrete tests.

C.3 The Structured Test Automation Language (STAL)

One solution to solve the mapping problem is to automate the mapping process. My ap-

proach directly creates mappings from identifiable elements (e.g., transitions in a state

machine diagram) of a behavioral diagram to concrete test code without other supporting

diagrams. When an element appears in an abstract test, the corresponding test code will be

generated automatically based on the mappings. An abstract test may look like: [transition
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1, ..., transition i, ..., finalTransition]. This abstract test will be transformed to [map-

pingForTransition1, ..., mappingForTransitionI, ..., mappingForFinalTransition]. Then the

mapping sequence will be converted to test code [testCode1, ..., testCodeI, ..., finalTest-

Code].

The vending machine example is the same as what is used in section 4.2. Figure 4.1 is

a UML state machine diagram for this vending machine example created with the Eclipse

Modeling Framework (EMF)-based tool Papyrus [78]. Figure 4.1 has one initial state, one

final state, nine normal states, and 26 transitions. It also includes six constraints that are

used as state invariants for states. Figure 1.3 in section 1.2.2 shows the implementation of

the VendingMachine class.

The test automation language defines the rules about how to write mappings. Three are

two kinds of mappings: are element mappings and object mappings. An element mapping

directly connects an element to test code. For instance, a transition coin may be mapped to

the test code vm.coin (c);. However, objects and parameters used in this element mapping

such as vm (an object of class VendingMachine) and c (an int parameter of method coin

(int)) may also need object mappings for the object initializations. Object mappings used

in an element mapping will be marked as the required mappings of this element mapping.

An element mapping for an element such as a transition has five main fields: element

name, element type, mapping name, test code, and required mappings. Since this exper-

iment uses state machine diagrams, element mappings are used only for transitions and

constraints. If an element mapping is a constraint mapping, this mapping has to specify

the constraint. This study only uses state invariants as constraints. A state invariant has to

be satisfied in specified states. Thus users have to provide proper mappings to satisfy the

constraints. An object mapping has five fields: mapping name, object name, class name,

test code, and required mappings. Object mappings are used for initializing objects used

in the test code of element mappings. Table A.2 shows the fields of element and object

mappings.

Users may not have to use object mappings because the object initializations can be

161



done in the very first transition initialize if there is one. In this case, the following element

mappings do not need to put a mapping for the transition initialize in the required-mappings

field. Since the mapping for initialize is executed ahead of mappings for other transitions,

the objects used in those mappings could be initialized before the use in an executable test.

Below is an example of creating new mappings for transitions: Suppose that an abstract

test consists of two transitions (initialize and coin) and one constraint (Constraint1). For

each transition, users can create as many mappings as possible. STALE will automatically

pick one mapping that satisfies the next constraint. The transition initialize means ini-

tializing a vending machine and coin means inserting coins in the vending machine. The

constraint Constraint1 says that after the transition coin, the credit of the vending machine

has to be greater than ninety cents. Below is a mapping created for the transition initialize.

This mapping does not depend on any other mapping so the field of required mappings is

empty.

Element name: initialize

Element type: transition

Mapping name: vendingMachineInit

Test code: VendingMachine vm = new VendingMachine();

Required mappings:

A mapping for the transition coin is created below:

Element name: coin

Element type: transition

Mapping name: coinADollar

Test code: vm.coin (100);

Required mappings:

This mapping requires the initialization of the object vm but does not need to specify

the mapping vendingMachineInit in the required mappings field because it will be executed
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before the mapping coinADollar.

For the constraint Constraint1, the state invariants field shows in which states the

constraint is held. In this case, in the state 3, credit has to be greater than 90 cents. The

test code for the constraint has to be a Boolean expression.

Element name: Constraint1

Element type: constraint

Mapping name: constriant1Mapping

Test code: vm.getCredit() > 90;

Required mappings:

State invariants: State 3

The rest of Appendix A and Appendix B use different names for the states and con-

straints in the UML state machine diagram for the vending machine class. Those names

were used originally for the experiments. Then a new Figure 4.1 was created for readers to

better understand the diagram. Table C.1 shows the mapping from old notations to new

notations in Figure 4.1.

C.4 Downloading and Installing the Structured Test Automa-

tion Language Framework (STALE)

This section gives users the links to STALE and instructions for the installation.

C.4.1 Downloading STALE

The link to download STALE for Mac users is http://cs.gmu.edu/∼nli1/experiment/taf.zip.

The link to download STALE for Windows users is http://cs.gmu.edu/∼nli1/experiment/

taf Windows.zip.
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Table C.1: Mappings from old notations to new notations

Old Notations New Notations in Figure 4.1

Credit0Stock1 State4

Credit0Stock0 State1

Credit0To90Stock0 State2

Credit0To90Stock1 State5

Credit90Stock0 State3

Credit90Stock1 State6

Credit0Stock1To10 State7

Credit0To90Stock1To10 State8

Credit90Stock1To10 State9

ConstraintCreditZero Constraint3

ConstraintStockZero Constraint6

ConstraintCreditZeroToNine Constraint2

ConstraintStockOne Constraint5

ConstraintCreditGTNinety Constraint1

ConstraintStockOneToTen Constraint4

C.4.2 Installing STALE

After downloading and unzipping the zip file, you should be able to see two files: taf.jar

(taf Windows.jar for Windows users) and a directory called ”project”, as shown in Figure

C.1.

Figure C.1: A Overview of STALE Folder Structure

Because STALE calls the Java compiler to compile tests, the environment variable

JAVA HOME has to point to a JDK 7 directory and the environment variable PATH

has to include the $JAVA HOME/bin. Do not include any JRE in the PATH. For Mac

users: Open the Terminal, type “echo $JAVA HOME” and “echo $PATH” and make sure

the environment variables JAVA HOME and PATH are correctly set. Figures C.2 and C.3
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show examples for “$JAVA HOME” and “$PATH” variables.

Figure C.2: A Correct Java Home Variable Example

Figure C.3: A Correct System Path Variable Example

If users do not know how to install JDK 7 on a Mac, read the article (http://docs.

oracle.com/javase/7/docs/webnotes/install/mac/mac-jdk.html) about how to install JDK

7, and how to set up the JAVA HOME and PATH environment variables (http://www.cyber

citi.biz/faq/linux-unix-set-java home-path-variable/).

For Windows users: Open the command line, type “echo %JAVA HOME%” and “echo

%PATH%” to make sure the environment variables JAVA HOME and PATH are cor-

rectly set. If users do not know how to install JDK 7 on a Windows machine, read the

articles (http://docs.oracle.com/javase/7/docs/webnotes/install/windows/jdk-installation-

windows.html) about how to install JDK 7 and update the PATH environment variable.

An important note for users is that %JAVA HOME%/bin has to be put at the beginning of

the environment variable “PATH” so that STALE can find the Java compiler. Otherwise,

a Null Pointer Exception will occur when STALE is run.

C.5 Running STALE

This section discusses how to run STALE with no existing projects.

C.5.1 Starting STALE

For Mac users, type “java -jar taf.jar” in the Terminal. For Windows users, type the same

command “java -jar taf.jar” in the command line. Then users should be able to see a GUI,
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as shown in Figure C.4. Since there are no projects under the root directory ”project”,

STALE does not show any projects.

Figure C.4: STALE Started with No Existing Projects

C.5.2 Creating A New Project

Users can enter “VendingMachine” for the project name and press the button “Add a model

for a new project” for adding models to STALE. Figure C.5 shows that a file chooser will

pop up and then the users need to select a UML model.

After clicking on the “load” button, the model will be added to the project. Then the

elements of the model will be populated automatically, as shown in Figure C.6.

A directory called “VendingMachine” will be created under the root directory “project”

and four sub-directories “class”, “model”, ‘xml”, and “test” will be created as well. The

selected model has been put in the “model” folder. The “class” folder keeps the program

class files and dependent Jar files. But users have to put classes under test and dependent

Jar files (VendingMachine.class for this case) under the sub-directory “class” by hand. In
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Figure C.5: Adding a Model to STALE

the “xml” subdirectory, mappings are saved in an Xml file (e.g., projectNameFSM.xml) that

has the same name as the model (e.g., projectNameFSM.uml). Automatically generated

tests are in the “test” folder. There is another folder in the “test” folder called “temp”

which has intermediate test files that are used to evaluate constraints. Figure C.7 shows

the folder structure for the vending machine project.

C.5.3 Adding Mappings

Next step, users need to create mappings for elements in the model. Double clicking on an

element in the element list such as “initialize”. The name and type of the element will be

filled automatically in the comboBoxes “Element Name” and “Element Type”. Users need

to type a mapping name, test code or required mappings if necessary. Then click the “save”

button.

Figure C.8 shows a mapping for the transition “initialize”.

This initialization mapping will be required in other mappings because the object vm is

also used in other mappings.

Figure C.9 shows a mapping for the transition coin. When generating the test code

from this mapping, the object vm needs to be initialized. So users need to add the mapping
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Figure C.6: A Model is Added to STALE

Figure C.7: STALE Folder Structure for the Vending Machine Project

initializeVendingMachine defined above in the field of required mappings for the mapping

created for the transition coin. Thus, the test code for the transition coin will be executed

following the vm initialization. However, if in every test path, the transition initialize is

executed before the transition coin, users do not need to put the initialization mapping in

the required mappings field since the test code for the object initialization will be executed

before any other mappings.

Figure C.10 shows a mapping for the constraint ConstraintStockOne. When double

clicking on the constraint ConstraintStockOne, its name, type, and constrained elements will

be filled automatically as well. In this case, constraints are only used for state invariants.

Thus, the field of state invariants only shows the states that have the constraint.

Figure C.11 is a mapping for the transition getChocs that uses object mappings. Because

the parameter sb that is an object of class StringBuffer needs to be initialized, the parameter

will be mapped to test code for sb initialization.

Users can select “OBJECT” in the comboBox of “Element Type” and then fill in the
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Figure C.8: Adding a Mapping for Transition Initialize

Figure C.9: Adding a Mapping for Transition Coin

fields for adding the object mapping “stringBufferInit” for the parameter “sb”, as shown in

Figure C.12.

C.5.4 Generating Concrete Tests

Users may have to import declarations if necessary. The format is exactly as in Java. The

default import declarations in the tool are: “import java.io.*; import org.junit.*; and import

static org.junit.Assert.*;”. Besides the default import declarations, users need to add others

if required. Figure C.13 shows the import declaration field and test generation button.
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Figure C.10: Adding a Mapping for Constraint ConstrinatStockOne

Once all necessary mappings are generated, users should select the edge coverage cri-

terion and press the button “generate tests”. The generated tests will be under the sub-

directory “test”. The Terminal or command-line will show the time used for test generation,

as shown in Figure C.14.

C.6 Experimental Procedure

Before reading this section, participants should have read the experiment guide, known how

to use STALE, and understood program under test and its model. This section describes

the steps about how to generate tests by hand and by STALE. The diagram transformation

for the manual test generation will be introduced first.

C.6.1 Diagram Transformation

When generating tests by hand, a state machine diagram should be transformed to a general

graph. Table C.2 shows the transformation from states of UML state machine diagram to

nodes of a general graph. Both the automatic approach and manual process will use the

same test paths, which is shown below.

Test paths for edge coverage are generated using the graph coverage web application:
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Figure C.11: Adding a Mapping for Transition GetChocs

Figure C.12: Adding a Mapping for Object StringBuffer

1. [1, 3, 2, 9, 9, 11, 2, 5]

2. [1, 3, 4, 4, 6, 6, 10, 10, 11, 2, 9, 10, 11, 2, 5]

3. [1, 3, 4, 7, 8, 3, 2, 6, 8, 11, 11, 2, 8, 3, 2, 5]

4. [1, 3, 2, 9, 5]

5. [1, 3, 2, 5]

6. [1, 3, 5]

Figure C.13: Import Declaration and Test Generation
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Figure C.14: Time Spent for Test Generation

Table C.2: Mappings from States of the UML Diagrams to Nodes of the General Graph

States of UML Diagrams Nodes of General Graphs

Initial 1

Credit0Stock1 2

Credit0Stock0 3

Credit0To90Stock0 4

Final 5

Credit0To90Stock1 6

Credit90Stock0 7

Credit90Stock1 8

Credit0Stock1To10 9

Credit0To90Stock1To10 10

Credit90Stock1To10 11

7. [1, 3, 7, 8, 3, 2, 5]

C.6.2 Test Generation

Participants will first generate tests automatically, and then generate tests manually.

1. Download and install the test automation tool. The time used in this step will not be

measured.

2. Create a new project ”VendingMachine” and add the state machine diagram to the

project. Then put the program under test and dependent Jar files in test by hand.

Time will be measured.

3. Once the model is added, all elements are shown in the element list. Users need to

create mappings for transitions and constraints using the tool. Time will be measured.

4. Create concrete tests using the tool to satisfy the edge coverage criterion and the tool

will measure the time for this step. The time used for this step will be shown in the
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console.

The manual steps were:

1. Transform the FSM to a general graph. The test paths have been provided above

in the diagram transformation section. So this step does not need participants to do

anything.

2. Generate concrete tests from the test paths by hand. Create a new Java project using

Eclipse and put the class under test (VendingMachine.java) in this project. Then

create a JUnit test case in the same project and all tests in this test case. Measure

the time for this step of the test preparation.

3. For each test path, write a concrete test that matches it. The concrete tests have to

be written in the same order as the test paths. Be aware that students do not have

to write test oracles (assertions) but the constraints specified in states have to be

satisfied. At the last step, compile the test and make sure that all tests pass. Measure

the time for this step.
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