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i

Abstract
A problem when testing timeliness of event-triggered real-time systems is that

response times depend on the execution order of concurrent tasks. Conventional
testing methods ignore task interleaving and timing and thus do not help determine
which execution orders need to be exercised to gain confidence in temporal correct-
ness. This thesis presents and evaluates a framework for testing of timeliness that is
based on mutation testing theory. The framework includes two complementary ap-
proaches for mutation-based test case generation, testing criteria for timeliness, and
tools for automating the test case generation process. A scheme for automated test
case execution is also defined. The testing framework assumes that a structured no-
tation is used to model the real-time applications and their execution environment.
This real-time system model is subsequently mutated by operators that mimic po-
tential errors that may lead to timeliness failures. Each mutated model is automat-
ically analyzed to generate test cases that target execution orders that are likely to
lead to timeliness failures. The validation of the theory and methods in the pro-
posed testing framework is done iteratively through case-studies, experiments and
proof-of-concept implementations. This research indicates that an adapted form of
mutation-based testing can be used for effective and automated testing of timeliness
and, thus, for increasing the confidence level in real-time systems that are designed
according to the event-triggered paradigm.

Keywords: Automated Testing, Real-time systems, Time constraints, Timeli-
ness, Model-based.
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Chapter 1

Introduction

The introduction chapter provides an overview of the contents covered by this the-
sis. The scientific problem and solution approach are briefly introduced and moti-
vated in section 1.1. The results and contributions are summarized in section 1.2.
Finally, section 1.3 presents the structure of the reminder of the thesis.

1.1 Overview

Real-time systems must be dependable as they often operate in tight interaction
with human operators and valuable equipment. A trend is to increase the flexibility
of such systems so that they can support more features while running on “off-the-
shelf” hardware platforms. However, with the flexibility comes increased software
complexity and non-deterministic temporal behavior. There is a need for verifica-
tion methods to detect errors arising from temporal faults so that confidence can
still be placed in the safety and reliability of such systems.

A problem associated with the testing of real-time applications is that their
timeliness depends on the execution order of tasks. This is particularly problematic
for event-triggered and dynamically scheduled real-time systems, in which events
may influence the execution order at any time (Schütz 1994). Furthermore, tasks
in real-time systems behave differently from one execution to the next, depending
not only on the implementation of real-time kernels and program logic, but also on
efficiency of acceleration hardware such as caches and branch-predicting pipelines.
Non-deterministic temporal behavior necessitates methods and tools for effectively
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2 Introduction

detecting the situations when errors in temporal estimations can cause the failure
of dependable applications.

The timeliness of embedded real-time systems is traditionally analyzed and
maintained using scheduling analysis techniques or regulated online through ad-
mission control and contingency schemes (Burns & Wellings 2001). These tech-
niques use assumptions about the tasks and load patterns that must be correct for
timeliness to be maintained. Doing schedulability analysis of non-trivial system
models is complicated and requires specific rules to be followed by the run-time
support system. In contrast, timeliness testing is general in the sense that it ap-
plies to all system architectures and can be used to gain confidence in assumptions
by systematically sampling among the execution orders that can lead to missed
deadlines. Hence, from a real-time perspective, timeliness testing is a necessary
complement to analysis.

It is difficult to construct effective sequences of test inputs for testing timeli-
ness without considering the effect on the current set of active tasks and real-time
protocols. However, existing testing techniques seldom use such information and
they do not predict which execution orders may lead to timeliness failures (Nilsson,
Andler & Mellin 2002).

In summary, problems with testing of timeliness arise from a dynamic environ-
ment and the vast number of potential execution orders of event-triggered real-time
systems. Therefore, we need to be able to produce test inputs that exercise a mean-
ingful subset of these execution orders. Within the field of software testing, several
methods have been suggested for model-based test case generation but few of them
capture the behavior that is relevant to generate effective timeliness test cases.

This thesis presents a mutation-based method for testing of timeliness that takes
internal behaviors into consideration. The thesis also describes experiments for
evaluating the effectiveness of this method.

1.2 Results and Contributions

The results of this thesis form a framework for automatic testing of timeliness for
dynamic real-time systems. In this context, a framework means theory and meth-
ods as well as associated tools for performing automated testing of timeliness in
a structured way1. As a requirement for applying our proposed framework, the
estimated temporal properties and resource requirements of real-time applications

1The reason for providing a framework and not simply a method is that there are several ways to
perform the steps in the chain from system modelling to test analysis.



1.3 Thesis Outline 3

must be specified in a model. As opposed to other approaches for model-based
testing of timeliness, properties of the execution environment are part of the model
which is used for generating test cases. This provides the advantage that the ef-
fects of, for example scheduling protocols and platform overheads, can be captured
during automatic test case generation.

A set of basic mutation-based testing criteria for timeliness is defined and vali-
dated using model-checking techniques. Two methods for generating test cases that
fulfill timeliness testing criteria are presented. One of the methods, based on model-
checking, is suitable for dependable systems where a stringent test case generation
method is preferred. For more complex target systems, the model-checking based
approach may be impractical. A complementary method based on heuristic-driven
simulations is presented and evaluated in a series of experiments. The thesis also
presents a prototype tool that integrates with MATLAB/Simulink and support the
heuristic-driven method for test-case generation. This tool allows control specific
constraints and processes to be used as input to mutation-based test case generation.

A scheme for automated test case execution that uses the added information
from mutation-based test case generation and has the potential to reduce non-
determinism is discussed. This method exploits advantages inherent in transaction
based systems and allows testing to be focused on the critical behaviors indicated
by test cases.

The mutation-based testing criteria and test case generation approaches are
evaluated in a series of experiments using model-checking and simulations. The
overall testing framework is evaluated by testing a simplified robot-arm control ap-
plication that runs on the Linux/RTAI platform. This study is an example of how
the testing framework can be applied and demonstrates the effectiveness and limi-
tations of the suggested approach.

1.3 Thesis Outline

Chapters 2 and 3 introduce relevant concepts from real-time systems development
and software testing. Chapter 4 provides a more detailed description of the problem
addressed by the thesis, motivates its importance, and presents our approach for
addressing it.

Chapter 5 presents an overview of a framework for mutation-based testing of
timeliness and defines concepts used in the reminder of the thesis, while the pro-
posed methods for test case selection and automated test case generation are in-
cluded in Chapters 6 and 7. The validation experiments of the proposed methods
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are also presented in this context.
Chapter 8 describes the tool support proposed for the framework, and Chapter 9

contains the result of a case study in which the proposed testing framework is used
for testing timeliness in a real system. In Chapter 10 the contributions of the thesis
are discussed and the advantages and disadvantages of the proposed framework are
described. Chapter 11 contains related work, Chapter 12 concludes the thesis and
elaborates on future work.



EPISODE I

Timeliness Demise
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Chapter 2

Dynamic Real-Time Systems

This chapter presents real-time systems terminology as well as the relevant back-
ground to understand the contributions of this thesis and the systems and situations
to which the results apply.

2.1 Real-time System Preliminaries

Real-time systemsdenote information processing systems which must respond to
externally generated input stimuli within a finite and specified period (Young 1982).
Typically, these kinds of systems are also embedded and operate in the context of a
larger engineering system – designed for a dedicated platform and application.

Real-time systems typically interact with other sub-systems and processes in
the physical world. This is called theenvironmentof the real-time system. For
example, the environment of a real-time system that controls a robot arm includes
items coming down a conveyor belt and messages from other robot control sys-
tems along the same production line. Typically, there are explicittime constraints,
associated with the response time and temporal behavior of real-time systems.
For example, a time constraint for a flight monitoring system can be that once
landing permission is requested, a response must be provided within 30 seconds
(Ramamritham 1995). A time constraint on the response time of a request is called
adeadline. Time constraints come from the dynamic characteristics of the environ-
ment (movement, acceleration, etc.) or from design and safety decisions imposed
by a system developer.Timelinessrefers to the ability of software to meet time

7



8 Dynamic Real-Time Systems

constraints (c.f. Ramamritham (1995)).
Real-time systems are sometimes calledreactivesince they react to changes in

their environment, which is perceived through sensors, and influence it through dif-
ferent actuators. Dependable systems are computer systems where people’s lives,
environmental or economical value may depend on the continued service of the sys-
tem (Laprie 1994). Since real-time systems control hardware that interacts closely
with entities and people in the real world, they often need to be dependable.

2.2 Tasks and Resources

When designing real-time systems, software behavior is often described by a set of
periodic and sporadic tasks that compete for system resources (for example, proces-
sor time, memory and semaphores) (Stankovic, Spuri, Ramamritham & Buttazzo
1998). When testing real-time software for timeliness, a similar view of software
behavior is useful.

Tasksrefers to pieces of sequential code that are activated each time a specific
event occurs (for example, a timer signal or an external interrupt). While a task may
be implemented by a single thread in a real-time operating system, a thread might
also implement several different tasks1. For simplicity, we assume a one-to-one
mapping between real-time tasks and threads in this thesis. A particular execution
of a task is called atask instance.

A real-time applicationis defined by a set of tasks that implements a particular
functionality for the real-time system. Theexecution environmentof a real-time
application is all the other software and hardware needed to make the system be-
have as intended, for example, real-time operating systems and I/O devices (Burns
& Wellings 2001).

There are basically two types of real-time tasks.Periodictasks are activated at a
fixed frequency, thus all the points in time when such tasks are activated are known
beforehand. For example, a task with a period of 4 time units will be activated
at times 0, 4, 8, etc.Aperiodic tasks can be activated at any point in time. To
achieve timeliness in a real-time system, aperiodic tasks must be specified with
constraints on their activation pattern. When such a constraint is present the tasks
are calledsporadic. A traditional constraint of this type is aminimum inter-arrival
timebetween two consecutive task activations. In this thesis we treat all real-time
tasks as being either periodic or sporadic, but constraints other than minimum inter-

1Theoretically, a particular task may span over several threads, where each thread can be seen as
a resource needed by the task
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arrival times may be assumed in some cases. Tasks may also have anoffsetthat
denotes the time before any instance may be activated.

An assumption when analyzing timeliness of real-time systems is that the worst-
case execution time (that is, the longest execution time) for each task is known be-
forehand. In this context, all the processor instructions which must be executed for
a particular task instance contribute to the task execution time. This also includes
execution time of non-blocking operating system calls and library functions used
synchronously by the task. Furthermore, if tasks have critical sections, the longest
execution time within such sections is assumed to be known. However, for many
modern computer architectures, these figures are difficult to accurately estimate.

The reason for this difficulty is that hardware developers often optimize the
performance of processors to be competitive for general computing. This is done
by using mechanisms that optimize average execution times, such as multiple levels
of caches and branch-predicting pipelines (Petters & Färber 1999). The combined
effect of several such mechanisms increases system complexity so that the exact
execution times appear non-deterministic with respect to control-flow and input
data of tasks. Nevertheless, estimates based on measurements and assumptions
are used during the analysis of dependable real-time systems, since no accurate
and practical method exists to acquire the exact worst case execution times. These
estimates may be the sources of timeliness failures.

Theresponse timeof a real-time task is the time it takes from when the task is
activated until it finishes its execution2. The response times of a set of concurrent
tasks depend on the order in which they are scheduled to execute. We call this the
execution orderof tasks.

In this thesis, ashared resourceis an entity needed by several tasks but that
should only be accessed by one task at a time. Examples of such resources include
data structures containing state variables that need to be internally consistent, and
non-reentrant library functions. Mutual exclusion between tasks can be enforced
by holding a semaphore or executing within a monitor.

Figure 2.1 exemplifies an execution order of tasks with shared resources on a
single processor. The ‘‖’ symbol denotes the point in time when a task is activated
for execution, and the grey shading means that the task is executing with a shared
resource. In the figure, task A has the highest priority (or is most urgent), and thus,
begins to execute as soon as it is activated, preempting other tasks. Task B has a
medium priority and shares a resource with the lower priority task C. In figure 2.1,
the second instance of task B has a response time of 6 time units since it is activated

2This includes the time passing while a task is preempted or blocked



10 Dynamic Real-Time Systems

A

B

C

Time0 5 10 15

Figure 2.1: Task execution model

at time 5 and finishes its execution at time 11.
Blockingoccurs when a real-time task scheduled for execution needs to use a

shared resource already locked by another task. In figure 2.1 the second instance
of task B is blocked from time 7 to time 9 because it has the highest priority, but it
cannot execute since task C has locked a required resource. Incorrect assumptions
about blocking are sources of timeliness failures.

Tasks may also be associated with criticality levels. One of the most simple
classifications of criticality is thathard real-time tasks are expected to meet their
time constraints, whereassoft real-time tasks can occasionally violate time con-
straints without causing failures.

2.3 Design and Scheduling

Since there are many different types of real-time systems this section presents clas-
sifications of real-time systems and clarifies in what context our problems and re-
sults are relevant.

Kopetz et al. describe two ways of designing real-time systems; time-triggered
and event-triggered (Kopetz, Zainlinger, Fohler, Kantz, Puschner & Schütz 1991).
The primary difference between them is that time-triggered systems observe the
environment and perform actions at pre-specified points in time, whereas event-
triggered systems detect and act on events immediately.

A pure time-triggeredreal-time computer system operates with a fixed period.
At the end of each period the system observes all the events that have occurred since
the period started and reacts to them by executing the corresponding tasks in the
following period. The computations that are made in one period must be finished
before the next period starts. Consequently, a time-triggered system design requires
that information about events occurring in the environment is stored until the next
period starts. The scheduling of time-triggered real-time systems is made before
the system is put into operation to guarantee that all the tasks meet their deadlines,
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given the assumed worst-case load. This means that a time-triggered real-time
system may have to be completely redesigned if new features are added or if the
load characteristics change.

In anevent-triggeredreal-time system, the computer reacts to events by imme-
diately activating a task that should service the request within a given time. The
execution order of the active set of tasks is decided by a system scheduling policy
and, for example, the resource requirements, criticality or urgency of the tasks.

It is also common to make a distinction between statically scheduled and dy-
namically scheduled systems. According to Stankovic et al. (Stankovic et al. 1998),
the difference is that in statically scheduled systems all the future activations of
tasks are known beforehand, whereas in dynamically scheduled systems, they are
not. Statically scheduledsystems are often scheduled before the system goes into
operation, either by assigning static priorities to a set of periodic tasks or by ex-
plicitly constructing a schedule (for example, using a dispatch-table or cyclic ex-
ecutive).Dynamically scheduledsystems perform scheduling decisions during op-
eration and may change the order of task execution depending on the system state,
locked resources, and new task activations. A time-triggered system is by definition
statically scheduled, whereas an event-triggered system can be scheduled statically
or dynamically. In this thesis, event-triggered real-time systems that are dynami-
cally scheduled are referred to asdynamic real-time systems.

One advantage of dynamic real-time systems is that they do not waste resources
“looking” for events in the environment. In particular, if such events seldom occur
and require a very short response time (such as an alarm signal or a sudden request
for an evasive action), a dynamic real-time system would waste less resources than
a statically scheduled real-time system. In a statically scheduled system a periodic
task would frequently have to “look” for events in the environment to be able to
detect them and respond before the deadlines. In this context, resources mean, for
example, processor-time, network bandwidth and electric power.

However, both paradigms have benefits and drawbacks. Statically scheduled
systems offer more determinism and are therefore easier to analyze and test. One
reason for this is that the known activation pattern of periodic tasks repeats after
a certain period of time. This period is called ahyper-periodand is calculated
using the least common multiplier of all the inter-arrival times of periodic tasks
(Stankovic et al. 1998). There are many useful results for analyzing and testing
statically scheduled real-time systems (Schütz 1993, Thane 2000).

This thesis addresses problems associated with the testing of dynamic real-time
systems, because such systems are suitable for many application domains but lack
effective methods for testing of timeliness.
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As an example of a system to which our testing methods can be applied, con-
sider an onboard control system for a high-speed train. The system is used in many
different types of rail-cars and should operate in changing environments that incor-
porate people, therefore it is desirable to use an event-triggered design for some
parts of this system. Each car in the train set has a cluster of sensors, actuators
and dedicated real-time computer nodes for the safety critical control of processes,
such as the brakes and the tilt of the cars. These components are interconnected
with a real-time network. On each rail car there is also a number of event-triggered
real-time system nodes. The dynamic real-time system is used for monitoring and
adjusting the operation of the underlying safety critical real-time control system,
performing data-collection for maintenance, and for communicating with nodes in
other rail cars and in the engine cockpit. The event-triggered nodes may also run
other real-time applications such as controllers for air conditioners, staircases, and
cabin doors. These kinds of applications need to be timely, but they are not critical
for the safety of the passengers of the train.



Chapter 3

Testing Real-time Systems

This chapter presents a relevant background to software testing, in particular con-
cepts relating to automated and model-based testing. Furthermore, issues related to
testing real-time systems are included.

3.1 Software Testing Preliminaries

Software testingmeans exercising a software system with valued inputs (Laprie
1994). In this thesis, the tested software system is called thetarget system. A large
fraction1 of the development cost of software is typically spent on testing. Testing
is important for development of dependable and real-time software, due to strin-
gent reliability requirements and to avoid high maintenance costs. Two purposes
of testing are conformance testing and fault-finding testing (Laprie 1994).Con-
formance testingis performed to verify that an implementation corresponds to its
specification whilefault-finding testingtries to find special classes of implementa-
tion or design faults. Common to these purposes is the underlying desire to gain
confidence in the system’s behavior.

However, a fundamental limitation of software testing is that it is generally im-
possible to test even a small program exhaustively. The reason is that the number
of program paths grows quickly with the number of nested loops and branch state-

1varying from 30 up to 80 percent in the literature, depending on the type of development project
and what activities are considered testing
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ments (Beizer 1990). For concurrent and real-time software, the number of possible
behaviors are even higher due to the interactions between concurrent tasks. Conse-
quently, testing cannot show the absence of faults (to prove system correctness), it
can only show the presence of faults (Dahl, Dijikstra & Hoare 1972).

According to Laprie et al. (Laprie 1994),faults are mistakes manifested in
software implementations. Examples of faults are the incorrect use of conditions
in if-then-else and the misuse of a binary semaphore in a concurrent program. An
error is an incorrect internal state resulting from reaching a software fault. If no
error handling is present, an error may lead to an externally observable system
failure. A failure is a deviation from the system’s expected behavior.

Testing is traditionally performed at different levels during a software devel-
opment process (Beizer 1990). This thesis focuses onsystem level testingthat is
done on the implemented system as a whole; this typically requires that all parts
of the system are implemented and integrated (Beizer 1990). The reason for this is
that some timeliness faults only can be revealed at the system level (Schütz 1994).
Other levels areunit testing, where a module or function with a specified interface
is tested, andintegration testingwhere the interaction between modules is tested.

A distinction is commonly made between structural and functional testing meth-
ods (Laprie 1994). Instructural testing methods, test cases are based on system
design, code structure and the systems internal architecture. Infunctional testing
methods, the system under test is considered a black-box with an unknown internal
structure; test cases are created based on the knowledge of system requirements
and high level specification models of the system.

This thesis presents a model-based testing method where both requirements and
structural knowledge are used. In particular, the method is an adapted version of
mutation-based testing.

One advantage of model-based testing is that it allows test cases to be automati-
cally generated, hence, moving effort from generating specific test cases to building
a model. Models can be built before the system is implemented and used as a ref-
erence or part of a specification of the system. It is also possible to build the model
directly for testing purposes after or concurrently with development. According
to, for example, Beizer (1990), errors and ambiguities in the specification may be
detected while building models for testing.

Mutation testing is a method in which a program (DeMillo, Lipton & Sayward
1978) or a specification model (Ammann & Black 1999) is copied and mutated
so that each copy contains an artificially created fault of a particular type. Each
mutated copy is called amutant. Test cases are specially generated that can reveal
the faults in the copies of the program or model (manually, or using reachability
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tools). For example, if one occurrence of the operator ‘>’ is mutated into the
operator ‘<’, then a test case must be selected that causes the mutated code to be
executed and the corresponding failure to be detected. If such a test case is found,
then the mutant iskilled.

An underlying hypothesis of these methods is that the test cases generated
should be able to find not only the mutations, but also many faults that are similar,
hence, achieving effective coverage of the tested program or system. If a specifica-
tion model is used as a source for mutation-based testing, then the implementation
may actually contain some fault that was added some of the mutant models. It is
thus useful that such faults correspond to ones likely to occur.

3.2 Testing Criteria

A desirable property of any testing method is to have an associated metric in which
the completeness of testing can be expressed. It is not trivial to formulate such a
metric, since it typically requires bounding the number of possible tests. To achieve
this, different test requirements and testing criteria are used.

Test requirementsare specific goals that must be reached or investigated during
testing (Offutt, Xiong & Liu 1999). For example, a test requirement can be to
execute a specific source code statement, to observe a specific execution order of
tasks, or to cover a transition in a state-machine model.

A testing criterion is a way to express some class of testing requirements.
Hence, examples of a test criterion can be execute all source code statements con-
taining the letter x, execute all possible execution orders of tasks that share data, or
cover all transitions in a state machine model.

Once testing criteria have been established, they can be used in two ways. They
can be used to measuretest coverageof a specific set of test cases, or they can be
used during test case generation so that the constructed set of test cases implicitly
fulfills an associated test criterion. A set of test cases that has been generated with
the purpose of fulfilling a specific testing criterion is called atest suitein this thesis.

Test coverage and testing criteria are also used to express the level of ambition
when testing software. That is, testing criteria sets a threshold for when an ap-
plication has been sufficiently tested, and the test coverage denotes the minimum
fraction of test requirements that should be covered.

Testing criteria for mutation testing are typically formulated with respect to
the number of mutated programs or models. That is, the standard testing criterion
is “kill all mutants”, but the thoroughness and test effort can be controlled by how
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many different types of mutant are created. For example, a test suite can be required
to kill all mutants where the variable ‘i’ has been replaced by the variable ‘j’.

When testing concurrent real-time systems, testing criteria for sequential soft-
ware can be used on each of the possible execution orders in the system (Thane
2000). However, even for a statically scheduled real-time system the number of
execution orders that need to be tested grows very quickly with the number of
task activations. For dynamic real-time systems, the problem is elevated by the
non-deterministic times between sporadic task activations. Hence, it is necessary
to develop testing criteria for selecting relevant sub-sets of all possible execution
orders.

3.3 Issues when Testing Real-Time Systems

Scḧutz (Scḧutz 1994) describes issues that need to be considered when testing real-
time systems. In particular, some issues impose requirements on the test case gen-
eration methods investigated and the experiments conducted in this thesis.

Scḧutz uses the termobservabilityfor the ability to monitor or log the behavior
of a tested system. Observability is usually achieved by inserting probes that reveal
information about the current state and internal state-changes in the system. A
problem in this context is that by introducing probes into the real-time software
you actually influence the temporal behavior of the system. Hence, you cannot
generally remove the probes once testing is complete without invalidating the test
results. This problem is usually referred to asprobe-effect(Gait 1986). The most
common way to avoid the probe-effect problem is to leave the probes in the system,
but direct their output to a channel that consumes the same amount of resources but
is inaccessible during operation (Schütz 1993). A special version of this is to have a
built-in component (software or hardware) that monitors the activity in the system
and then leave that component in the system, or compensate for the activity of such
a component during operation. In systems with scarce computing resources, the
probe-effect makes it desirable to keep the amount of logging to a minimum.

Two related concepts in this context are reproducibility and controllability.Re-
producibility refers to the property of the system repeatedly exhibiting identical
behavior when stimulated with the same test case. Reproducibility is a very de-
sirable property for testing, particularly it is useful during regression testing and
debugging.Debuggingis the activity of localizing faults and the conditions under
which they occur so that the faults can be corrected.Regression testingis done after
a fault is corrected to ensure the error is no longer present and that the repair did
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not introduce new faults.
In real-time systems, and especially in event-triggered and dynamically sched-

uled systems, it is very difficult to achieve reproducibility. This is because the
actual (temporal and causal) behavior of a system depends on elements that have
not been expressed explicitly as part of the system’s input. For example, the re-
sponse time of a task depends on the current load of the system, varying efficiency
of hardware acceleration components, etc. In this thesis, systems with this property
are callednon-deterministic.

Controllability refers to the amount of influence the tester has over the system
when performing a test execution. A high degree of controllability is typically
required to achieve effective testing of systems that are non-deterministic. It is
also useful to have high controllability to be able to reach maximum coverage of a
particular test suite when testing a non-deterministic system (see section 10.3.2 for
a discussion of this).

If the target system is non-deterministic and controllability is low, testers must
resort to statistical methods to ensure the validity of test results, which in turn
requires that the same test case may have to be executed many times to achieve
statistically significant results. A minimum requirement on controllability is that a
sequence of timed inputs can be repeatedly injected in the same way.

3.4 Testing of Timeliness

The purpose of testing of timeliness is to gain confidence that an implementation
of a real-time system complies to the temporal behavior assumed during the design
and analysis. In particular, these assumptions must hold in situations where devi-
ations would cause timeliness failures. It is also useful to test timeliness when the
behavior of the environment deviates slightly from assumptions.

In some cases, the generation of test cases for testing of timeliness is triv-
ial. Some scheduling analysis methods present algorithmic ways to derive worst-
case situations for their assumed system models. For example, a set of periodic
tasks, without shared resources using rate monotonic priority assignment, expe-
rience their worst case response time when all tasks are released simultaneously
and execute their longest time (Liu & Layland 1973). Hence, releasing all the
tasks simultaneously at a critical instant would be the only meaningful test case for
testing timeliness for such a system. However, not all real-time systems meet the
assumptions in such a simple model. For example, the worst-case response times
for a set of tasks sharing mutual exclusive resources are harder to derive analyti-
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cally, especially if dynamically scheduled tasks and advanced concurrency control
protocols are used (see analysis of worst case response times using the EDF al-
gorithm (Stankovic et al. 1998)). In fact, many scheduling problems with these
kind of characteristics are NP-hard or NP-complete (Stankovic, Spuri, Di Natale &
Buttazzo 1995). Other aspects that complicate derivation of worst-cases are spo-
radic tasks, tasks with multiple criticality levels sharing resources, different types
of precedence constraints and arbitrary offsets. Since there is a plethora of real-time
system scheduling and concurrency control protocols, it is useful to have general
methods and theory for testing of timeliness.

Scheduling models often neglect inherent application semantics and causal-
ity constraints in the environment. In particular, sporadic tasks could have more
complex constraints on consecutive arrivals than minimum inter-arrival times. For
example, it might be known that up to three requests for a particular task activation
can occur within 5 milliseconds, but after that interval, no new requests can occur
for half a second. By allowing environment models to be specified more accurately,
the derived situations will be more likely to correspond with the operational worst
cases instead of the theoretical worst cases defined by the generic task models.

Conversely, there are several model-based test case generation methods that
focus on covering a model of the environment, or a model of a real-time applica-
tion that abstract away from real-time design paradigms and interactions between
concurrently executing tasks (see section 11.1). Such approaches have little or
no knowledge of what type of inputs cause timeliness to be violated in an event-
triggered real-time system (Nilsson 2000). In this thesis, a method that is capable of
exploiting both knowledge about the internal behavior of event-triggered real-time
systems and complex temporal and causal relations in the environment is proposed
and evaluated. The method specially focuses on finding faults that cause timeliness
violations and is complementary to more general test methods that aim to cover
models of the system and its input domain.

3.5 Timeliness Faults, Errors and Failures

This thesis specializes the definitions of Laprie et al. (see section 3.1) for testing
of timeliness. The relation between the concepts are preserved, so that a timeliness
fault may lead to timeliness error which in turn, may lead to timeliness failure.

The termtimeliness faultdenotes a mistake in the implementation or configura-
tion2 of a real-time application that may result in unanticipated temporal behaviors.

2In this context, configuration is when an application is adjusted for a specific platform.
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In particular, this can become a problem if another temporal behavior is assumed
during analysis and design. For example, a timeliness fault can be that a condition
in a branch statement is wrong and causes a loop in a task to iterate more times
than expected for a particular input. Another example is when two tasks disturb
each other (for example, via unprotected shared hardware and software resources)
in a unanticipated way. Both these examples of timeliness faults may lead to the
timeliness error of some part of a task executing longer than expected. Another
type of timeliness fault is that the environment (or sensors and actuators) behave
differently than expected. For example, if an interrupt handling mechanism is sub-
ject to an unforeseen delay, then the internal inter-arrival time may become shorter
than expected.

A timeliness erroris when the system internally deviates from assumptions
about its temporal behavior. This is similar to a situation where a sequential pro-
gram internally violates a logical state invariant. Timeliness errors are difficult to
detect without extensive logging and precise knowledge about the internal behavior
of the system. In addition, timeliness errors might only be detectable and lead to
system level timeliness failures for specific execution orders.

A timeliness failureis an externally observable violation of a time constraint.
In a hard real-time system, this typically has an associated penalty or consequence
for the continued operation of the overall system. Since time constraints typically
are expressed with respect to the externally observable behavior of a system (or
component), timeliness failures are often easy to detect once they occur.
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Chapter 4

Problem Definition: Testing
Dynamic Real-Time Systems

This chapter motivates and describes the scientific problem addressed by this thesis.
Furthermore, the chapter presents the thesis statement and the scientific approach
taken to evaluate it.

4.1 Purpose

The purpose of this thesis is to investigate how automated testing of timeliness
can be performed in a structured and effective way for real-time systems that are
scheduled dynamically and have both periodic and sporadic tasks that compete for
shared resources. In particular, a framework for testing of timeliness based on
mutation testing is proposed and evaluated.

4.2 Motivation for Automated Testing of Timeliness

Real-time requirements are prevalent in commercial systems and there are strong
reasons to believe that the need for new products with real-time requirements is
increasing while the time-to-market for such systems remains short. For example,
dependable real-time systems such as autonomous vehicle control systems, sensor
network applications and ubiquitous computing devices with multimedia applica-
tions are being developed. Unfortunately, dynamic real-time system designs, that
may be suitable for applications of this type, are difficult to analyze using existing

21



22 Problem Definition: Testing Dynamic Real-Time Systems

methods. Hence, contributions to the verification and testing of such systems are
important.

A large proportion of the effort of developing software is spent on testing and
verification activities (see section 3.1). However, Schütz (1994) points out that
the testing phase generally is less mature than other phases of the development
cycle and that the typical testing methods do not address the issues specific for
testing real-time systems. In particular, industrial practitioners generally do not
have access to specific methods for testing real-time properties, and the methods
used for this are often case-specific or ad-hoc. Defining new practical methods for
testing real-time systems is an important area of research. For example, the issue of
specific test case generation methods for real-time systems is mentioned by Schütz
(Scḧutz 1993), and there are still few approaches for doing this in a structured and
effective way (see section 3.4).

The software development industry has been advocating automated testing for
a long time. The main emphasis has been on automating test execution for regres-
sion testing (Rothermel & Harrold 1997). Furthermore, while various methods for
automatic test case generation have been presented in the literature (c.f., DeMillo &
Offutt (1993)), few reports exist of methods that are being used for development of
commercial real-time systems. The advantage of automation is that it reduces the
risk of human mistakes during testing, and also potentially decreases the associated
time required for generating and executing test cases.

Furthermore, formal methods researchers advocate that software testing (and
other structured software engineering methods) are complementary to, and should
be integrated with, formal refinement for developing dependable software (Bowen
& Hinchey 1995). For instance, testing of the integration between formally devel-
oped components and standard libraries, which have not been part of the formal
development, may be necessary.

4.3 Problem Definition

Timeliness is one of the most important properties of real-time systems. Formal
proofs, static analysis and scheduling analysis that aim to guarantee timeliness in
dependable real-time systems typically require full knowledge of worst-case exe-
cution times, task dependencies, and maximum arrival rates of requests. Reliable
information of this kind is difficult to acquire, and if analysis techniques are ap-
plied, they must often be based on estimations or measurements that cannot be
guaranteed correct. For example, it has become increasingly complex to model a
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state-of-the-art processor in order to predict timing characteristics of tasks (Petters
& Färber 1999).

Further, many analysis techniques require that the tested system is designed ac-
cording to specific rules. For example, all tasks may be required to be independent,
or to have fixed priorities based on their periodicity or relative deadline.

In contrast to schedulability analysis and formal proofs, testing of timeliness
is general in the sense that it applies to all system architectures and does not rely
blindly on the accuracy of models and estimations; instead the target system is
executed and monitored so that faults leading to timing failures can be detected.
Hence, testing of timeliness is complementary to analysis and formal verification.

The problem in this context is the huge number of possible execution orders in
dynamically scheduled and event-triggered systems (Schütz 1993). In these kinds
of systems, schedules do not repeat in the same way as in statically scheduled sys-
tems and the number of execution orders grows exponentially with the number of
sporadic tasks in the system (Birgisson, Mellin & Andler 1999). This makes it im-
portant to develop test selection methods that focus testing on exposing situations
where timeliness failures are most likely to occur. However, it is generally not
trivial to derive test cases that exercise critical execution orders (that is, the worst
case interleaving of tasks) in systems that have internal resource dependencies and
are dynamically scheduled. Existing methods for testing of timeliness typically
only model the environment of the real-time system or cover abstract models of
real-time applications. Such test case generation methods miss the impact of vary-
ing execution orders and competition for shared resources, which definitely has an
impact on system timeliness (Nilsson, Offutt & Mellin 2006). A related problem
when performing testing of timeliness is associated with the lack of reproducibil-
ity on dynamic real-time systems platforms (Schütz 1994). In such a system it is
desirable to be able to control the execution so that a potentially critical, but rarely
occurring interleaving of tasks can be tested.

These problems can be summarized:

Analysis of timeliness for dynamic real-time systems relies on assumptions that
are hard to verify analytically. Hence, automated testing techniques are needed as a
complement to build confidence in temporal correctness. However, existing testing
methods, tools or testing criteria neglect the internal behavior of real-time systems
and the vast number of possible execution orders resulting from non-deterministic
platforms and dynamic environments. Consequently, the test cases that are exe-
cuted seldom verify the execution orders most likely to reveal timeliness failures.
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4.4 Approach and Delimitations

There are several ways of addressing the problem outlined in section 4.3. The
approach taken in this thesis is to refine an existing testing method so that it can
exploit the kind of models and assumptions used during schedulability analysis.
Such a method enables systematic sampling of the execution orders that can lead to
violated time constraints and, thus, can be used to assess the assumptions expressed
in the real-time system model. In particular, a method based on mutation testing
(see section 3.1) is proposed and evaluated for testing of timeliness.

We conjecture that mutation-based testing is suitable for refinement since it is
a mature, strong and adaptable testing method. In this context, mature means that
the original mutation test method has existed and evolved for over twenty years
(DeMillo et al. 1978). It is a strong testing method in the sense that it is often
used for evaluating the efficiency of other, less stringent, testing methods (Andrews,
Briand & Labiche 2005). Furthermore, many previous adoptions of mutation-based
testing, for example, for safety-critical (Ammann, Ding & Xu 2001) and object-
oriented software exist (Ma, Offutt & Kwon 2005).

However, it is not possible to directly apply mutation-based testing for the time-
liness testing problem. For example, a specification notation that captures the rel-
evant design properties of dynamic real-time systems must be adopted and the test
case generation method must be modified so that it copes with dynamic real-time
systems. This kind of issues are addressed by this thesis. Our hypothesis is outlined
in subsection 4.4.1 and our objectives are in subsection 4.4.2.

4.4.1 Thesis Statement

Based on the above observations, the following thesis statement is proposed:

Mutation-based testing can be adapted for automated testing of timeliness in a
way that takes internal system behaviors into consideration and generates effective
test cases for dynamic real-time systems

This thesis statement can be divided into the following sub-hypotheses:

• H1: There is a real-time specification notation which captures the relevant
internal behavior of dynamic real-time systems so that meaningful mutation
operators can be defined.



4.4 Approach and Delimitations 25

• H2: Test cases for testing of timeliness can automatically be generated using
mutation-based testing and models of dynamic real-time systems.

• H3: Test cases generated using mutation-based testing are more effective
than random test cases1 for revealing timeliness errors on a realistic target
platform.

4.4.2 Objectives

The following objectives are formulated as steps in addressing the outlined prob-
lem. For each objective, the thesis chapter that describes related efforts is given
within parentheses.

1. Identify the requirements on test cases and target system modelling nota-
tions so that structured and automated testing of timeliness can be supported
(Chapter 5).

2. Adopt a notation for modelling dynamic real-time systems that enable mean-
ingful testing criteria for timeliness to be formulated (Chapter 6).

3. Propose an automated and practical approach for generation of test cases
which exploits models of dynamic real-time systems (Chapter 7).

4. Implement tool prototypes for supporting the automatic test case generation
approach and for evaluating its feasibility (Chapter 8).

5. Investigate the applicability of the proposed testing method and its relative
effectiveness by using it for testing timeliness on a real-time target platform
(Chapter 9).

1This could potentially be generalized to test cases generated by any method that do not consider
internal state and execution orders. However, due to problems with the validation of such hypothesis,
random testing is used as a base-line method.
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EPISODE II

Rise of the Mutated Models
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Chapter 5

A Framework for Testing
Dynamic Real-Time Systems

This chapter provides an overview of the proposed framework for testing timeliness
and introduces solution specific concepts that are used in the reminder of this thesis.

5.1 Framework Overview

This section introduces central concepts that are used within the proposed frame-
work for testing of timeliness and presents a high-level introduction of how the test
framework can be applied.

Estimates of the temporal behavior of application tasks that run on the target
system are expressed in areal-time applications model. This model also contains
assumptions about the behavior of the system’s environment, for example, physical
laws or causality that limit certain task activations from happening simultaneously.

An execution environment modelreflects the policies and real-time protocols
that are implemented in the target system. For example, the execution environment
model may express that application tasks are scheduled using EDF-scheduling,
share data using monitors with FIFO semantics, and that context switches impose
an overhead of two time units. The execution environment model can potentially be
reused for several variations of real-time systems using the same type of platform
and protocols.

When both these models are integrated, we refer to the combined model as the
real-time system model.

29
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Figure 5.1: Overview of Framework Activities

Test case generation tools help testers to automatically generate test cases ac-
cording to particular testing criteria (see section 3.2). The real-time application
model and execution environment model are used as inputs for this.

Figure 5.1 depicts the flow of activities in the proposed testing framework. In
summary, testing of timeliness according to the proposed testing framework is per-
formed in the following way:

1. First, a real-time system model is built and testing criteria are decided upon.
These activities can be in any order

(a) An execution environment model is configured to correspond with the
architectural properties and protocols that are present in the target sys-
tem.

(b) The temporal behaviors of real-time tasks that make up the tested real-
time applications and the corresponding triggering environment entities
are modelled.

(c) Suitable mutation-based testing criteria are selected based on the re-
quired levels of thoroughness and the allowed test effort.

2. At this phase it is possible to perform an analysis of the system model and
refine the application models or testing criteria. In particular, the maximum
number of test cases produced with a specific testing criterion primarily de-



5.2 Timeliness Test Cases 31

Real-time 
Sys. Model

Testing 
Criteria

Mutation-based 
Test Case 
Generation

Input data 
models

Measurements/
Static Analysis

Task 
Code

Task Input Data Activation Patterns
+Execution Orders

Timeliness Test Cases

Figure 5.2: Timeliness tests overview

pends on the size of the system. The analysis of the model and testing criteria
may result in refinements before proceeding with test generation.

3. Test cases are generated automatically from the model in accordance with
the selected testing criterion. Based on the result of the automated test case
generation, the testing criterion may also be changed.

4. Sets of input data for individual tasks are acquired using compiler based
methods or temporal unit testing with measurements.

5. Each generated test case is executed repeatedly to capture different behaviors
of the non-deterministic platform. Prefix-based test execution techniques can
be used if the test harness and target platform supports it.

6. During test execution, the test harness produces logs that can be analyzed
off-line to further refine the model or isolate timeliness faults. If a particu-
lar execution order has not been sufficiently covered more test-runs can be
performed. The real-time system model, the implementation or testing crite-
ria can be refined based on the test results and a new iteration of timeliness
testing can be started.

5.2 Timeliness Test Cases

Figure 5.2 shows an overview of the data flow when generating timeliness test
cases. Information from the real-time application model and execution environment
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model, as explained in section 5.1, is used for generating activation patterns and
execution orders.

Activation patternsare time-stamped sequences of requests for task activation.
For example, an activation pattern may express that task A should be activated at
times 5, 10, and 14 while task B should be activated at times 12, 17 and 23.

The execution order part of test cases predicts how tasks are interleaved in a
situation where timeliness may be violated for a particular activation pattern. This
is sometimes referred to as acritical execution order. The execution orders can be
used to derive a test prefix (see section 5.4) for test execution; it can also be used
during test analysis to determine if a test run has revealed a dangerous behavior.

Timeliness test cases should also specify relevant input data for the various
tasks so that their execution behavior can be, at least partially, controlled during
timeliness testing.Task input data, in this context, are the values that are read
by tasks throughout their execution. For example, a task for controlling the tem-
perature in a chemical process might read the current temperature from a memory
mapped I/O port and the desired temperature from a shared data structure. Both
these values influence the control flow of the task and, thus, decide the execution
behavior of the task. Typically, it is interesting to use input data that cause long
execution times or cause shared resources to be used a long time.

There are several ways of obtaining such input data for tasks running undis-
turbed. For example, Wegener, StHammer, Jones & Eyres (1997) applied a method
based on genetic algorithms to acquire test data for real-time tasks. Petters & Färber
(1999) used compiler based analysis for the same purpose. Further, deriving task
input data is similar to deriving input data for unit testing of sequential software;
hence, methods from that domain can be adapted to ensure a wide range of exe-
cution behaviors is covered. Common to all such approaches is that they require
the actual implementation and information about the input domain of tasks. Hence,
these requirements are inherited by the framework for testing of timeliness. In
this thesis, we assume that suitable input data for the various tasks are available
and focus on generating activation patterns and execution orders for testing system
timeliness when several tasks execute concurrently.

5.3 Mutation-based Test Case Generation

Mutation-based testing of timeliness is inspired by a specification-based method
for automatic test case generation presented by Ammann, Black and Majurski
(Ammann, Black & Majurski. 1998). The main idea behind the method is to sys-
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Figure 5.3: Mutation-based test case generation

tematically “guess” what faults a system contains and then evaluate what the effect
of such a fault would be. Once faults with severe consequences are identified,
specialized test cases are constructed that aim to reveal such faults in the system
implementation.

Figure 5.3 illustrates the automated test generation process. In this figure,
rounded boxes denote artifacts whereas rectangles denote some type of process-
ing or transformation. The inputs to mutation-based testing of timeliness are a
real-time system model and a testing criterion. As mentioned in section 5.1, the
real-time system model contains assumptions about the temporal behavior of the
target system and its environment.

A mutation-based testing criterionspecifies what mutation operators to use,
and thus, determines the level of thoroughness of testing and what kinds of test
cases are produced.Mutation operatorsare defined to change some property of
the real-time system model, to mimic faults and potential deviations from assump-
tions that may lead to timeliness violations. For example, a mutation operator for
timeliness testing may change the execution time of a critical section.

A mutant generator tool applies the specified mutation operators to the real-
time model and sends each mutated copy of the model for execution order analysis
(marked “execution analysis” in figure 5.3). Execution order analysis determines
if and how a specific mutation can lead to a timeliness failure. Execution order
analysis can be performed in different ways. In this thesis, two complementary
approaches are proposed, model-checking (section 6.5) and heuristic-driven simu-
lation (section 7.2). If execution analysis reveals non-schedulability (or some other
timeliness failure) in a mutated model, it is marked as killed. A mutated model
containing a fault that can lead to a timeliness failure is called amalignant mutant
whereas one containing a fault that cannot lead to a timeliness violation is called a
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benign mutant. Ideally, an execution order analyzer should always be able to kill all
malignant mutants. Traces from killed mutated models are used to extract an acti-
vation pattern with the ability to reveal faults similar to the malignant mutant model
in the system under test. It is also possible to extract the corresponding execution
order of tasks that leads to deadline violations from such traces.

5.4 Test Execution

Figure 5.4 shows the components and artifacts associated with test execution and
test analysis.

Test executionis the process of running the target system and injecting stim-
uli according to the activation pattern part of the timeliness test case. Since the
target platform contain sources of non-determinism, several execution orders may
occur in the real system for the same activation pattern. Consequently, a minimal
requirement for applying the testing framework is that each activation pattern au-
tomatically can be injected repeatedly (see section 3.3). Each single execution of
a test case is called atest run(that is, a test case execution may consist of one or
more test runs). The outputs collected from the system during test execution are
collectively called atest outcome.

The execution orders from test cases provide the ability to determine when a po-
tentially critical execution order has been reached. Optionally, more advanced test
execution mechanisms, such as prefix-based testing (Hwang, Tai & Hunag 1995),
can be used to increase the controllability during test execution. In that case, the
system is initialized in a specified prefix state before each test run starts, increasing
the probability that a particular execution order can be observed. A discussion of
how this kind of test execution can be supported for timeliness testing, is available
in section 10.3.2.

The test harnessincorporates all the software needed for controlling and ob-
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serving a test execution of the target system. The design of the test harness is
critical for real-time systems since parts of it must typically be left in the opera-
tional system to avoid probe effects (see section 3.3). To be specific, the test object
in figure 5.4 is the part of the target system that is being tested.

During test analysis, the test outcome produced by the system during test ex-
ecution is analyzed with respect to the expected outcome. Atest resultindicates
whether a test execution succeeded in revealing an error or not. For timeliness
testing, the most relevant test outcomes are the execution orders and temporal be-
havior observed during a test run. Expected outcomes are that the specified timing
constraints are met and, optionally, that no critical execution order is observed. If
mutation-based testing has been used to generate a test case, then both the mutated
and original models can be used for test analysis.

Test analysis can be made both off-line or on-line. One motivation for off-line
test analysis is to avoid probe-effects, another is that more resources are typically
available for the algorithms which process the test outcome. It might also be easier
to predict the expected correct behavior after certain variables have been instanti-
ated during the test run. The advantage of on-line test analysis is that test results can
be acquired at run-time, making it possible to perform error handling or capture ad-
ditional data for debugging. The software that performs test analysis is sometimes
called atest oracle.
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Chapter 6

Mutation-based Testing Criteria
for Timeliness

This chapter introduces mutation-based testing criteria for testing of timeliness.
In addition, a method for automated test case generation using these criteria is
described.

6.1 Motivation

As mentioned in section 3.2, testing criteria are used to specify goals for testing.
Further, when a testing activity is limited in time, testing criteria are useful for
reporting the achieved level of coverage for each tested module or property. For
example, a test report may state that a module has been tested up to 78 percent
statement coverage, or that 85 percent of all pairwise combinations of startup para-
meters have been tested.

In the same way, it is useful to be able to state to what degree system timeliness
has been tested. However, if conventional testing criteria for sequential software
are applied on all possible execution orders of a dynamic real-time system (as sug-
gested for statically scheduled systems (Thane 2000)), then it becomes practically
impossible to reach full coverage. The reason for this is the exponential growth
of execution orders in event-triggered systems (Schütz 1993). Hence, covering all
execution orders in dynamic real-time systems is generally unfeasible and compa-
rable to full path coverage of sequential software.

Less ambitious and yet effective test criteria are needed for testing dynamic
real-time systems. Further, it is desirable to focus testing efforts on the execution
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orders where small deviations in assumptions may cause timeliness violations.
To formulate such testing criteria and generate test cases automatically, a no-

tation for modelling dynamic real-time systems is needed, as described in section
6.2. Based on this notation, mutation operators and corresponding testing criteria
are defined in sections 6.3 and 6.4 respectively. Section 6.5 describes our method
for generating timeliness test cases using model-checking; this method is subse-
quently used in a evaluation experiment described in section 6.6.

6.2 Adopted Modelling Formalism

The Timed Automata (TA) (Alur & Dill 1994) notation has been used to model
different aspects of real-time systems and to generate test cases that do not take ex-
ecution orders and platform information into consideration (e.g., Petitjean & Fochal
(1999)). An extension of timed automata, Timed Automata with Tasks (TAT) was
presented by Norström, Wall and Yi (Norstr̈om, A.Wall & Yi 1999) and refined by
Fersman et al. (Fersman, Pettersson & Yi 2002) (Fersman 2003). TAT includes
explicit means of modelling scheduling and execution behavior of concurrent real-
time tasks, so it is suitable as a source for mutation-based testing of timeliness.

A timed automaton (TA) is a finite state machine extended with a collection
of real-valued clocks. Each transition can have a guard, an action and a number
of clock resets. A guard is a condition on clocks and variables, such as a time
constraint. An action makes calculations, resets clocks and assigns values to vari-
ables. The clocks increase uniformly from zero until they are individually reset by
an action. When a clock is reset, it is instantaneously set to zero and then starts to
increase uniformly with the other clocks. TAT extends the TA notation with a set
of real-time tasks P. The elements of the set P represent tasks that perform com-
putations in response to an activation request. Formally, we use definition 6.1 from
Fersman (2003). In her definition,Act is a finite set of actions andζ a finite set of
real-valued variables for clocks.B(ζ) denotes the set of conjunctive formulae of
atomic constraints in the formxi ∼ C or xi−xj ∼ D wherexi, xj ∈ ζ are clocks,
∼ ∈ {≤, <, =,≥, >} and C & D are natural numbers.

Definition 6.1 A timed automaton extended with tasks over actionsAct, clocksζ
and tasksP is a tuple< N, l0, E, I, M > where

• < N, l0, E, I > is a timed automaton where

– N is a finite set of locations
– l0 ∈ N is the initial location
– E ⊆ N ×B(ζ)×Act× 2ζ ×N
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ID c d SEM PREC
A 4 12 {} {}
B 2 8 {} {}

Table 6.1: Task set for example TAT

– I : N 7→ B(ζ) is a function assigning each location with a clock
constraint

• M : N 7→ P is a partial function assigning locations to tasks inP

A state in TAT is defined by a triple consisting of the current location of the
automaton, instantiations for all data variables and clocks, and a task queue. The
task queue contains tuples with the remaining execution time as well as the time
remaining until the deadline is reached for each task instance. The first task instance
in the queue is assumed to be executing and its remaining execution time decreases
when the clocks progress. A task instance is placed into the task queue when a
location associated with the task is reached. If the remaining execution time reaches
0 for the first task in the queue, it is removed, and the next task starts to execute.
Preemptions occur when the first task in the queue is replaced before its remaining
execution time is zero. Parallel decomposition of multiple TA and TAT automata
can be done with synchronization functions (Fersman 2003).

Shared resources are modelled by a set of system-wide semaphores,R, where
each semaphores ∈ R can be locked and unlocked by tasks at fixed points in time,
0 ≤ t1 < t2 ≤ ci, relative to the task’s start time. Elements inP express infor-
mation about task types as quadruples(c, d, SEM, PREC). The variablec is
the required execution time andd is the relative deadline. These values are used to
initialize the remaining execution time and time until deadline when a new instance
is put in the task queue. The setSEM contain tuples of the form(s, t1, t2) where
t1 andt2 are the lock and unlock times of semaphores ∈ R relative to the start
time of the task. In this notation, precedence constraints are modelled as relations
between pairs of tasks, hence,PREC is a subset ofP that specifies which tasks
must precede a task of this type.

The precedence constraints and semaphore requirements impact the task queue
so that only tasks with their execution conditions fulfilled can be put in the first
position of the schedule (Fersman et al. 2002).

As an example, consider the TAT model in figure 6.1, and the simple task set
in table 6.1. All clocks start at zero, the task queue starts empty and the automaton
is in the Initial location. Two types of transitions may occur: (i) time may progress
an arbitrary time period (delay transitions), increasing all clock variables, or (ii) a
transition to location Alpha can be taken (an action transition). In this example, two
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Figure 6.1: Timed automaton with tasks
Transition State< location;clocks;queue>

Delay:0 →10 < Initial;x = 10; q[] >

Initial →Alpha < Alpha; x = 0; q[(4, 12)] >

Delay:10 →13 < Alpha; x = 3; q[(1, 9)] >

Alpha →Beta < Beta;x = 0; q[(2, 8), (1, 9)] >

Delay:13 →15 < Beta;x = 2; q[(1, 7)] >

Beta →Beta < Beta;x = 2; q[(1, 7), (2, 8)] >

Delay:15 →17 < Beta;x = 4; q[(1, 6)] >

Beta →Waiting < Waiting;x = 0; q[(1, 6)] >

Table 6.2: Trace of possible execution order

things happen on a transition to Alpha. First, Alpha is associated with task type A,
so an instance of task A is added to the task queue. Second, the transition to Alpha
contains a reset, so clock x is set to zero. Location Alpha has an invariant ofx <= 3
and a transition to Beta is taken whenx is 3, so the automata waits exactly 3 time
units. However, table 6.1 defines an execution time of 4 time units for A, so it
does not complete at this point if preemptive EDF scheduling is assumed. When
location Beta is reached, an instance of task B is added to the task queue. Tasks of
type B have a shorter deadline than tasks of type A, so the task queue sorts on the
earliest deadline and preempts the task of type A. The automaton stays in location
Beta for 4 time units. After 2 time units, task B finishes its execution (before its
deadline), and task A executes to completion. If the transition onx == 2 is taken
(allowed but not required), another task of type B is released. This allows multiple
task execution patterns. Table 6.2 provides a trace over the state changes for this
simple example.

In the TAT notation, task execution times are fixed. This may appear unrealistic
if the input data to a task is allowed to vary. However, to divide and conquer the
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testing problem, the test case generation step assumes that each task is associated
with a particular (typical or worst-case) equivalence class of input data (see the
case-study in chapter 9 for an example of how this can be handled).

6.3 Mutation Operators

As mentioned in section 5.3, the basis for mutation testing is the set of operators.
Mutation operators usually model possible faults, therefore the first step in design-
ing mutation operators is to understand the types of faults and errors that can lead
to timeliness failures. We have identified two categories of timeliness faults.

The first category represents incorrect assumptions about the system behavior
during schedulability analysis and design. This includes assumptions about the
longest execution paths, use of shared resources, precedence relations, overhead
times and cache efficiency. If the wrong assumptions are used then unforseen ex-
ecution orders may cause deadlines to be missed. Furthermore, incorrect assump-
tions about task attributes may result in incorrect behavior of admission control and
overload management protocols used in more complex real-time system architec-
tures (for example, as described by Hansson, Son, Stankovic & Andler (1998)).

The second category represents the system’s ability to cope with unanticipated
discontinuities and changes in the load, for example, disturbances in the sampling
or in the constraints on the activation patterns of sporadic tasks. Faults of this type
may come either from the implementation of the mechanism that trigger task execu-
tion, or from incorrect modelling of the operational environment. If the operational
environment differs from the assumptions, even an extensively tested system may
fail during operation.

Mutation operators based on these two categories are described in this section.
For six operators, a parameter is used to indicate constant differences in time. This
time can be tuned by the tester to yield mutants that are easier or harder to kill,
hence,∆ is used to denote the size of the change. In the following descriptions, the
variablen denotes the number of tasks in the system’s task set andr is the number
of shared resources requiring mutual exclusion. In some systems, the same resource
is locked and released multiple times by the same task (for example, to decrease
blocking times), thereforel denotes the maximum number of times a resource is
locked by the same task.
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6.3.1 Task Set Mutation Operators

For each operator described below, the points in time when a resource is locked
and unlocked are bound by zero and the assumed execution time of the task. If the
mutation operator causes the lock or unlock times of a resource to fall outside of
this interval, it is adjusted to the appropriate endpoint.

Execution time mutation
Execution time operators change the assumed execution time of a task by a

constant time delta. These mutants represent an overly optimistic estimation of the
worst-case (longest) execution time of a task or an overly pessimistic estimation of
the best-case (shortest) possible execution time. For each task in a task set, two
mutants are created, one increases the execution time by delta time units, and one
decreases the execution time. The number of mutants created is2n.

Estimating worst-case execution times is known to be a difficult problem (Burns
& Wellings 2001, Petters & F̈arber 1999). In addition, the execution time when
running a single task concurrently with other tasks may be longer than running
the task uninterrupted if there are caches and pipelines in the target platform (due
to cache misses and resets of the pipeline). The∆− execution time operator is
relevant when multiple active tasks share resources in the system. A shorter than
expected best-case execution time of a task may lead to a scenario where a lower
priority task locks a resource and blocks a higher priority task so that it misses its
deadline.

Mutation Operator 1 : ∆+ execution time
Given a TAT model with task set P, for every task(ci, di, SEMi, PRECi) ∈ P ,
create one mutant in which the execution timeci is changed toci + ∆.

Mutation Operator 2 : ∆− execution time
Given a TAT model with task set P, for some task(ci, di, SEMi, PRECi) ∈ P ,
create one mutant in which the execution timeci is changed toci −∆.

Hold time shift mutation :
The delta +/- hold time shift mutation operator changes the interval of time a

resource is locked. For example, if a semaphore is to be locked at time 2 and held
until time 4 in the original model, a∆+ hold time shift mutant (with∆ = 1) would
cause the resource to be locked from time 3 until time 5. The maximum number of
mutants of this type created is2nrl.

Execution times differ and external factors vary in how they disturb the exe-
cution times, making it hard to accurately predict when a resource is acquired and
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released relative to the start of the task. The execution time before a resource is al-
located may also take more or less time than expected. This introduces new chains
of possible blocking.

Mutation Operator 3 : ∆+ hold time shift
Given a TAT model with task set P, for every task(ci, di, SEMi, PRECi) ∈ P
and every semaphore use(s, t1, t2) ∈ SEMi, create one mutant in whicht1 is
changed tomin(t1 + ∆, ci) andt2 is changed tomin(t2 + ∆, ci).

Mutation Operator 4 : ∆− hold time shift
Given a TAT model with task set P, for every task(ci, di, SEMi, PRECi) ∈ P
and every semaphore use(s, t1, t2) ∈ SEMi, create one mutant in whicht1 is
changed tomax(0, t1 −∆) andt2 is changed tomax(0, t2 −∆).

Lock time mutation
The delta +/- lock time mutation operator increases or decreases the time when

a particular resource is locked. For instance, if a resource is to be locked from time
2 until 4 in the original model, a∆+ lock time mutant (with∆ = 1) causes the
resource to be locked from time 3 to 4. The maximum number of mutants created
is 2nrl.

An increase in the time a resource is locked may increase the maximum block-
ing time experienced by a higher priority task. This mutation operator requires
test cases that can distinguish an implementation where a resource is held too long
from one where it is not. Furthermore, if a resource is held for less time than ex-
pected, the system may get different execution orders that can result in timeliness
violations.

Mutation Operator 5 : ∆+ lock time
Given a TAT model with task set P, for every task(ci, di, SEMi, PRECi) ∈ P
and every semaphore use(s, t1, t2) ∈ SEMi, create one mutant in whicht1 is
changed tomin(t1 + ∆, t2).

Mutation Operator 6 : ∆− lock time
Given a TAT model with task set P, for every task(ci, di, SEMi, PRECi) ∈ P
and every semaphore use(s, t1, t2) ∈ SEMi, create one mutant in whicht1 is
changed tomax(0, t1 −∆).

Unlock time mutation
Unlock time mutation operators change when a resource is unlocked. For ex-

ample, if a resource is to be locked from time 2 until 4 in the original model, a∆+
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unlock time mutant (with∆ = 1) causes the resource to be held from time 2 to 5.
The maximum number of mutants created is2nrl.

Mutation Operator 7 : ∆+ unlock time
Given a TAT model with task set P, for every task(ci, di, SEMi, PRECi) ∈ P
and every semaphore use(s, t1, t2) ∈ SEMi, create one mutant in whicht2 is
changed tomin(t2 + ∆, ci).

Mutation Operator 8 : ∆− unlock time
Given a TAT model with task set P, for every task(ci, di, SEMi, PRECi) ∈ P
and every semaphore use(s, t1, t2) ∈ SEMi, create one mutant in whicht2 is
changed tomax(t1, t2 −∆).

Precedence constraint mutation
Precedence constraint mutation operators add or remove precedence constraint

relations between pairs of tasks. This represents situations where a precedence
relation exists in the implementation that is not modelled during the analysis of the
system, or a precedence constraint was not implemented correctly. An additional
or missed precedence constraint may cause two tasks to be executed in the wrong
order, causing a task to break its deadline. These faults are not necessarily found
by other types of testing, since the program’s logical behavior may still be correct.

Precedence constraints can be modelled as relations between pairs of tasks. The
mutation operators add a precedence relation between pairs of tasks in the task set.
If there already is a precedence constraint between the pair, the relation is removed.
Hence the total number of mutants generated by these mutation operators isn2−n.

Mutation Operator 9 : Precedence constraint -
Given a TAT model with task set P and taskpi ∈ P , for each taskpj ∈ P , if
pj ∈ PRECi, create a mutant by removingpj fromPRECi.

Mutation Operator 10 : Precedence constraint +
Given a TAT model with task set P and taskpi ∈ P , for each taskpj ∈ P , if
pj /∈ PRECi, create a mutant by addingpj to PRECi.
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6.3.2 Automata Mutation Operators

The following mutation operators test the consequences of faults in the load hy-
pothesis or model of the system environment. These mutation operators assume
that each task is controlled by a separate, parallel decomposed TAT. Mutants are
created from the sub-automata processes in isolation and are then composed with
the rest of the model to form the TAT specifying the whole system. The parallel
decomposition works in the same way as in ordinary timed automata (Larsen, Pet-
tersson & Yi 1995).

Inter-arrival time mutation
This operator decreases or increases the inter-arrival time between requests for

a task execution by a constant time∆. This reflects a change in the system’s envi-
ronment that causes requests to come more or less frequently than expected. The
inter-arrival time operator is important in event-triggered systems when the tempo-
ral behavior of the environment is unpredictable and cannot be completely known
during design. The resulting test cases stress the system to reveal its sensitivity
to higher frequencies of requests. For periodic tasks, a decrease in invocation fre-
quency might also result in potential errors, for example if the system has been
built using harmonic frequency assumptions and offsets. The maximum number of
created mutants is2n.

Mutation Operator 11 : ∆− inter-arrival time
Given a TAT automaton< N, l0, E, I, M > with clock setζ and task setP ,
for every locationli ∈ M with clock constraint(x < C) ∈ I(li) and outgoing
transitions fromli with guards(x >= C) ∈ B(ζ), create a mutant that changes
the natural number constant C toC − ∆ in both the clock constraint and guards
on all outgoing transitions fromli.

Mutation Operator 12 : ∆+ inter-arrival time
Given a TAT automaton< N, l0, E, I, M > with clock setζ and task setP ,
for every locationli ∈ M with clock constraint(x < C) ∈ I(li) and outgoing
transitions fromli with guards(x >= C) ∈ B(ζ), create a mutant that changes
the natural number constant C toC + ∆ in both the clock constraint and guards
on all outgoing transitions fromli.

Pattern offset mutation:
Recurring environment requests can have default request patterns that have off-

sets relative to each other. This operator changes the offset between two such pat-
terns by∆ time units. This operator is relevant when the system assumes that two
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recurring event patterns have a relative offset so that their associated tasks cannot
disturb each other. An example of a fault causing this type of deviation is when pe-
riodic tasks are implemented using relative delay primitives that do not compensate
for cumulative drifts (Burns & Wellings 2001). Since this operator type changes
offsets on a per-task basis the maximum number of created mutants is2n.

Mutation Operator 13 : ∆+ pattern offset
Given a TAT automaton process< N, l0, E, I, M > with clock setζ, task set
P and initial location l0 with clock constraint(x < C) ∈ I(l0) and outgoing
transitions leading froml0 with guards(x >= C) ∈ B(ζ), create one mutant by
changing the natural number constant C toC + ∆ in both the clock constraint and
guards on all outgoing transitions froml0.

Mutation Operator 14 : ∆− pattern offset
Given a TAT automaton process< N, l0, E, I, M > with clock setζ, task set
P and initial location l0 with clock constraint(x < C) ∈ I(l0) and outgoing
transitions leading froml0 with guards(x >= C) ∈ B(ζ), create one mutant by
changing the natural number constant C toC −∆ in both the clock constraint and
guards on all outgoing transitions froml0.

6.4 Mutation-based Testing Criteria

Within the testing framework proposed in this thesis, testing criteria for timeliness
is formed by combining mutation operators, such as defined in section 6.3. For
example, a testing criterion may require that a set of test cases which causes all
malignant “2+ Execution time” and all “4− Inter-arrival time” mutants to reveal a
missed deadline is generated and run on the target system.

This thesis proposes a set of basic testing criteria that corresponds with the
mutation operators formally defined in section 6.3. However, it is the users of
the testing framework who to decide which of these mutation operators should be
used for a particular testing project. Furthermore, it is possible to add customized
mutation operators to the framework by adding, removing or changing entities and
relations in the system model. This is discussed in section 10.1.2.

For the basic testing criteria proposed in this thesis, the number of test require-
ments grows with the (structural) size of the model from which mutants are gen-
erated. In particular, the maximum number of mutants grows with the number of
tasks (n), resources (r), and mutual exclusive segments (l), as described in section
6.3 and summarized in table 6.3. These testing criteria are not directly affected by
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Mutation operator type Max. Mutants

Execution time n

Hold time shift nrl

Lock time nrl

Unlock time nrl

Precedence constraint n2

Inter-arrival time n

Pattern offset n

Table 6.3: Maximum number of mutants generated by each operator

the size of the reachable state space1 of the real-time system model or the imple-
mentation and, therefore, an exponential increase of test requirements (things to
cover) is avoided. An effect of this is that mutation-based testing criteria are more
scalable for dynamic real-time systems than testing criteria which require a fraction
of all execution orders to be covered.

Since the model used for test case generation is based on assumptions about
the system under test, and not the structure or implementation of the real system, it
is possible that the actual mutations of the model correspond with real differences
between the model and the implementation (timeliness errors). Hence, if mutation
operators correspond to deviations that are likely to occur and might lead to time-
liness violations, then test cases are generated that target these types of faults. This
relation between mutants and implementation faults makes it desirable to have a
comprehensible set of mutation operators.Comprehensivenessmeans that for all
types of errors which might lead to timeliness violations in a particular system,
there is a corresponding mutation operator. However, it is difficult to reach a com-
prehensive set of meaningful mutation operators, especially since the combined ap-
plication of mutation operators that individually cannot create malignant mutants
may become meaningful. In this context, a mutation operator ismeaningfulif it
creates at least one malignant mutant. Further, there might be several fault types
that are specific for a particular execution environment mechanism or design style.
Examples of such mutation operators, and guidelines for how to extend the testing
framework with new mutation operators are presented in section 10.1.

Similar to other types of mutation-based testing, mutation-based testing of
timeliness relies on the assumption that the generated test cases are also useful

1The reachable state space of a state machine (or program) is comprised of all states that might
be reached from the initial state, given any possible input (Fersman 2003)
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for detecting faults that do not exactly correspond to any mutant (see section 3.1).

6.5 Generation of Test Cases Using Model-Checking

Given a real-time system specified in TAT and an implementation of the aforemen-
tioned mutation operators, model-checking can be used to kill mutants, that is, find-
ing a trace that shows how a task in the mutated model violates a time constraint.
The mechanism that makes this possible is the generic schedulability analysis using
TAT model-checking described by Fersman et al (Fersman et al. 2002). This mech-
anism is implemented in the Times tool, developed at Uppsala University (Amnell,
Fersman, Mokrushin, Pettersson & Yi 2002).

Once a real-time system has been modelled in TAT, an implementation of the
mutation operators, defined in section 6.3, automatically produce each mutant and
send it to the model checker for schedulability analysis. If the mutant is malignant
the schedulablility analysis results in a trace of transitions over the automata model
that leads to a violated timing constraint.

From a timeliness testing perspective, the points in time in which different spo-
radic tasks are requested are interesting to use as activation patterns (a part of time-
liness test cases, as defined in section 5.2). Hence, by parsing the automata trace it
is possible to extract the points in time where stimuli should be injected in order to
reveal a fault in a system represented by the mutated model.

In the trace from TAT model-checker, such points are characterized by tran-
sitions to task activation locations (that is, a locationli whereM(li) maps to an
element inP ). For each such transition, the task associated with the activation
location,M(li), together with the current global time, are added to the activation
pattern part of the derived test case.

The same trace contains information of how the system is assumed to behave
internally for the timeliness failure to occur. This can be extracted by monitoring
the state changes over the set of active tasks in the ready queue (see table 6.2 for an
example). This information can be used during test case execution and test analysis,
as described in section 5.2.

The main advantage with this approach is that, theoretically, if a mutant is
malignant it is killed by the model-checker, given sufficient time and resources for
the analysis.

The model-checking approach for generating test cases can be used with ar-
bitrary complex automata modelling constraints on task activation patterns (in the
environment of the real-time system) without changing the modelling notation or
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model-checker implementation. This makes it possible to model systems where
some sporadic tasks always arrive in clusters and others never occur at the same
time. Hence, the test cases generated with this approach comply to or are close to
the operational worst-cases of a system instead of artificial constraints on activation
patterns such as minimum inter-arrival times.

However, when system models increase in size and a larger fraction of trig-
gering automata becomes more non-deterministic, the analysis performed by the
model-checker suffers from reachable state space explosion. A further limitation
of the model-checking approach is the assumption that the target system complies
with a limited set of execution environment models supported by the model-checker
tool. If the execution environment model must be changed, that change must be
done in the “back-end” of the model-checker2. It is unclear how such changes
affect the effectiveness of schedulability analysis.

6.6 Validation of Mutation Operators

To validate that the proposed mutation operators are meaningful a test case gener-
ation experiment was performed. If mutants are killed with this approach it means
the faults introduced in the model indeed represent faults that may cause timeliness
violation in a real-time system.

This case study uses a small task set that has a simple environment model but
relatively complex interactions between the tasks. Static priorities were assigned to
the tasks using thedeadline monotonic scheme, that is, the highest priority is given
to the task with the earliest relative deadline. Arbitrary preemption is allowed.

The model-checker implements a variant of theimmediate priority ceilingpro-
tocol to avoid priority inversion. That is, if a task locks a resource then its priority
becomes equal to the priority of the highest priority task which might use that re-
source, and is always scheduled before lower prioritized tasks. The FCFS policy is
used if several tasks have the same priority.

The model has five tasks. Two are controlled by TAT models such as the one
in figure 6.2. The automata are sporadic in nature but have a fixed observation grid
(denoted OG in the figure), which limits when a new task instance can be released
(for example, such a limitation may exist if requests may only arrive at certain slots
of a time-triggered network). These experiments use an observation grid of 10 time
units. The three remaining tasks are strictly periodic and controlled by generic

2In the Times tool, some changes of this type can be done by exporting the execution environment
model to the Uppaal model-checker



50 Mutation-based Testing Criteria for Timeliness

OFFSET
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Figure 6.2: TAT for case study task

automata, with defined periods and offsets.
The system has two shared resources modelled by semaphores, and one prece-

dence relation between tasks D and A, which specifies that a new instance of task
A cannot start unless task D has executed after the last instance of A.

Table 6.4 describes the task set. The first column (’ID’) indicates task identi-
fiers, column ’c’ provides execution times and column ’d’ relative deadlines. Col-
umn ’IAT’ provides the inter-arrival times for periodic tasks which are activated
with fixed periods and the associated constraint on the sporadic task’s activation
pattern as exemplified by the TAT template in figure 6.2. Column ’OFS’ describes
the initial offsets, or the delay before the first task may be activated, column ’SEM’
specifies the set of resources used and in which interval they are needed, and col-
umn ’PREC’ specifies which tasks have precedence over tasks of this type.

Mutants are automatically generated according to the mutation operators with
two different values for∆. Table 6.5 divides the results into two groups, based
on the∆ values. The number of mutants for each type is in column ‘µ’, and the
number of killed mutants of that type is in column “KMC”.

The number of killed mutants corresponds to the number of counter example
traces that were converted to test cases for the actual system.



6.6 Validation of Mutation Operators 51

ID c d SEM PREC IAT OFS

A 3 7 {(S1, 0, 2)} {D} ≥ 28 10
B 5 13 {(S1, 0, 4), (S2, 0, 5)} {} ≥ 30 18
C 7 17 {(S1, 2, 6), (S2, 0, 4)} {} 40 6
D 7 29 {} {} 20 0
E 3 48 {(S1, 0, 3), (S2, 0, 3)} {} 40 4

Table 6.4: Task set for base-line experiment

Mutation operator ∆ µ KMC ∆ µ KMC

Execution time 1 10 6 2 10 5
Hold time shift 1 14 1 2 14 0
Lock time 1 8 1 2 8 1
Unlock time 1 11 2 2 11 2
Precedence constraint - 20 15 - - -
Inter-arrival time 1 5 4 4 5 4
Pattern offset 1 10 5 4 10 4

Total - 78 34 - 58 16

Table 6.5: Mutation and model-checking results

As revealed in table 6.5, the model checker killed at least one mutant generated
for each testing criterion. This means that the errors corresponding to each mutation
operator potentially can lead to a timeliness violation.

Hence, to reveal timeliness faults, testing can focus on demonstrating that these
traces can occur in the system, when subject to the activation pattern extracted
from the model-checker trace. A perhaps counter-intuitive observation is that some
mutants that were malignant with small deltas become benign when the delta is
increased.
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Chapter 7

Generation of Test Cases Using
Heuristic-driven Simulations

This section presents an alternative method for generating mutation-based test cases
that are suitable for flexible real-time systems.

7.1 Motivation

In chapter 6 model-checking of TAT specifications is used for the execution order
analysis step of test case generation. This is possible since the counter-examples
from schedulability analysis shows the execution orders that can lead to missed
deadlines. Model-checking is a reliable method in the sense that timeliness vio-
lations are guaranteed to be revealed if they exist in the mutated model and the
model-checker terminates. However, for large task sets the computational complex-
ity of this type of analysis often becomes too great. In particular, the complexity of
analysis increases if many tasks use shared resources and are released in response
to sporadic requests1.

In dynamic real-time systems, there is potential for many sporadic tasks and,
thus model-checking may be impractical. We propose an approach for testing time-
liness of such systems where a simulation of the mutant model is iteratively run
and evaluated using heuristics. By using a simulation-based method instead of
model-checking for execution order analysis, the combinatorial explosion of full

1In TAT-models, each activation automaton for a sporadic task would require at least one local
clock, this is known to increase analysis complexity.
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state exploration is avoided.
Further, we assume that it is less time consuming to modify a system simulation

to correspond with the execution environment model, compared to changing the
model-checker in such a way that schedulability analysis remains feasible.

The transition from model-checking to simulation can be compared with a simi-
lar trend in automatic test data generation for sequential software, where constraint-
solving (DeMillo & Offutt 1991) has been successfully complemented with dy-
namic approaches in which actual software executions guide the search for input
values (Offutt, Jin & Pan 1999).

When simulation is used for execution order analysis, the TAT model task set
is mapped to corresponding task and resource entities in a real-time simulator. The
activation patterns of periodic tasks are known beforehand and are included into the
static configuration of the simulator. The activation pattern for sporadic (automata
controlled) tasks is varied for each simulation to find the execution orders that can
lead to timeliness failures.

Consequently, a necessary input to the simulation of a particular system (cor-
responding to a TAT model) is an activation pattern of the sporadic tasks. The
relevant output from the simulation is an execution order trace over a hyper-period
(see section 3.4) of the periodic tasks where the sporadic requests have been in-
jected according to the activation pattern. A desired output from a mutation testing
perspective is an execution order that leads to a timing constraint being violated.

By treating test case generation as an heuristic search problem, different heuris-
tic methods can be applied to find a feasible solution. In the following sections, we
present and evaluate an approach based on genetic algorithms.

7.2 Genetic Algorithms for Test case Generation

Genetic algorithms (also known as evolutionary algorithms (Michalewicz & Fogel
1998)) are suggested for the heuristic search of TAT models, since they are config-
urable and are known for coping well with search spaces containing local optima
(Michalewicz & Fogel 1998).

Genetic algorithms operate by iteratively refining a set of solutions to an opti-
mization problem through random changes and by combining features from exist-
ing solutions. In the context of genetic algorithms, the solutions are calledindivid-
ualsand the set of solutions is called thepopulation. Each individual has agenome
that represents its unique features in a standardized and compact format. Common
formats for genomes are bit-strings and arrays of real values. Consequently, users
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of a genetic algorithm tool-box must supply a problem specific mapping function
from a genome in any of the standard formats to a particular candidate solution for
the problem. It has been argued that the mapping is important for the success of the
genetic algorithm. For example, it is desirable that all possible genomes represent
a valid solution (Michalewicz & Fogel 1998).

The role of the fitness function in genetic algorithms is to evaluate the opti-
mality or fitnessof a particular individual. The individuals with the highest level
of fitness in a population and are more likely to be selected as input to cross-over
functions and of being moved to the next generation.

Cross-over functions are applied on the selected individuals to create new in-
dividuals with higher fitness in the next generation. This means either combining
properties from several individuals, or modifying a single individual according to
heuristics. Traditionally, a function applied on a single individual is called a “mu-
tation” but to avoid ambiguity2 we use the termcross-over functionsfor all the
functions that result in new genomes for the next generation.

There are generic cross-over functions that operate on arbitrary genomes ex-
pressed in the standard formats. For example, a cross-over function can exchange
two sub-strings in a binary string genome or increase some random real value in an
array. However, depending on the encoding of genomes, the standard cross-over
functions may be more or less successful in enhancing individuals. Using knowl-
edge of the problem domain and the mapping function, it is possible to customize
cross-over functions in a way that increases the probability of creating individu-
als with high fitness. On the other hand, some cross-over functions must remain
stochastic to prevent the search from getting stuck in local optima. A genetic al-
gorithm search typically continues for a predetermined number of generations, or
until an individual that meets some stopping criteria has been found.

In general, three types of functions need to be defined to apply genetic algo-
rithms to a specific search problem:(i) a genome mapping function,(ii) heuristic
cross-over functions, and(iii) a fitness function. The following subsections suggest
such functions for mutation-based timeliness test case generation.

The performance of a genetic algorithm can also be enhanced by preparing the
initial population with solutions that are assumed to have high fitness based on
application knowledge. Since this type of initialization is system specific, it is not
fully investigated in this thesis. However, some example enhancements of this type
are discussed in section 10.2.2.

2In this thesis, the term mutation refers to changes to a real-time system model that is done before
execution order analysis begins.
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        Task i
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Figure 7.1: Annotated TAT template
}OFS(i) }T(i,1) }MIAT(i)

}
T(i,2) }MIAT(i) }T(i,3)

a1 a2 a30

Figure 7.2: Activation pattern of sporadic task i

7.2.1 Genome Mapping Function

For the test case generation problem, only the activation patterns of non-periodic
tasks vary between consecutive simulations of the same TAT model. Thus, it is
sufficient that a genome can be mapped to such an activation pattern. Each acti-
vation pattern deterministically results in a particular execution order trace in the
simulation. The execution order traces are the individuals for this search problem.

Figure 7.1 contains an annotated TAT-automata for describing activation pat-
terns of sporadic tasks. Generally, activation patterns can be expressed by any
timed automata, but this mapping function uses sporadic task templates, since
event-triggered real-time tasks are often modelled as being sporadic (Burns &
Wellings 2001). The template has two parameters that are constant for each mutant.
The parameter OFS defines the assumed offset, that is, the minimum delay before
any instance of this task is assumed to be requested. The parameter MIAT defines
the assumed minimum inter-arrival time between instances of the sporadic task.

An array of real valuesT(i,1..m) defines the duration of thevariable delay in-
terval between consecutive requests of a sporadic taski. Herem is the maximum
number of activations that can occur during the simulation. Figure 7.2 depicts the
first three activations of a sporadic task and exemplifies the relation between the
automata constants and the values inT .

By combining the arrays forn sporadic tasks in the mutant task setP we form
a matrixT(1..n,1..m) of real values, where each row corresponds to an activation
pattern of a sporadic task. The matrixT can be used as a genome representation of
all valid activation patterns for the mutant model.
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7.2.2 Fitness Function

Since our genome representation of valid activation patterns is meaningless with-
out a particular TAT-mutant model, the simulation must be run with the activation
pattern matrix as input before fitness can be calculated. The fitness for each indi-
vidual in a population is computed in three steps. First, a genome is translated to an
activation pattern of sporadic tasks. Second, a simulation of the mutant TAT model
is run in which the sporadic tasks are requested according to the activation pattern.

Third, the resulting execution order trace from the simulation is used to cal-
culate fitness. A suitable fitness for the generation of timeliness test cases should
express how close a mutant is to violating a time constraint. Theslackis the time
between the response time of a task instance and its deadline (see section 2.2).
Hence, measuring the minimum slack observed during a simulation is one of the
simplest ways of calculating fitness. The highest fitness is given to the activation
pattern that results in the simulated execution order trace with the least minimum
slack. More elaborate fitness functions (for example, using weighting based on
diversity or average response times) can also be evaluated for improving the per-
formance of the genetic algorithm.

7.2.3 Heuristic Cross-over Functions

For timeliness testing, there are intuitive heuristics for what kind of activation pat-
terns are likely to stress the mutant model. For example, it seems possible that
releasing many different types of sporadic requests in a burst-like fashion is more
likely to reveal timeliness violations than an even distribution of requests.

The variableM is a TAT model that containsn sporadic tasks controlled by
automata templates such as in figure 7.1. As described in section 7.2.1, a genome
matrix of sizen ∗ m is denoted by the variableT . The integer variablei is used
to index over the rows in a genome matrixT . The rows in such matrices corre-
spond to sporadic tasks, hence it is bounded by1 andn. The integer variablej
andk is used to index over the columns in genome matrices and is bounded by
1 andm. The variableε is used to denote a small positive real number. The ex-
pression[abeg, aend] v [bbeg, bend] means that the left hand interval[abeg, aend] is a
sub-interval of the right hand interval[bbeg, bend]. Formally, this can be expressed
([abeg, aend] v [bbeg, bend]) ⇐⇒ (abeg ≥ bbeg ∧ aend ≤ bend).

Definition 7.1 : Critical task instance
The task instance with the least slack in an execution order trace.
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Definition 7.2 : Idle point
A point in time where no real-time task executes or is queued for immediate execu-
tion on the processor.

Definition 7.3 : Critical interval [cibeg, ciend]
The interval between the activation time and response time of a critical task in-
stance.

Definition 7.4 : Loading interval[libeg, liend]
The interval between the latest idle point and the activation time of the critical task
instance. Note thatliend = cibeg.

Definition 7.5 : Delay interval matrixD
A matrix of sizen ∗m containing the variable delay intervals associated with each
sporadic task activation in T such that:

D(i,j) = [epat(i , j ), epat(i , j ) + T(i,j)]

Whereepat(i , j ) is the earliest possible arrival time of the j’th instance of
sporadic taski given a TAT modelM and a genome matrixT . For tasks activated
according to the automata template in figure 7.1,epat(i , j ) = OFS(i) +((j− 1) ∗
MIAT(i)) +

∑j
k=1 T(i,k).

Focus Critical interval
This cross-over function analyzes the logs from the simulation to find the crit-

ical interval. A sporadic tasks activation pattern is chosen by random and changed
so that requests become more likely to occur within or close to the critical interval.

Cross-over Function 1 : Focus critical interval left
Select any indexi. Let j be the largest index such thatD(i,j) v [0, cibeg] then
increaseT(i,j) with ε time units and decreaseT(i,j+1) with ε time units.

Cross-over Function 2 : Focus critical interval right
Select any indexi. Letj be any index such thatD(i,j) v [cibeg, ciend] and modify T
so thatT(i,j) = 0.

Critical interval move :
All sporadic tasks activation patterns are shifted a small random period so that

the sequence of sporadic activations leading up to a critical interval occurs at some
other point relative to the activations of periodic tasks.
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Cross-over Function 3 : Critical interval move right
For every indexi such thatD(i,1) v [0, cibeg] increaseT(i,1) with ε time units.

Cross-over Function 4 : Critical interval move left
For every indexi such thatD(i,1) v [0, cibeg] decreaseT(i,1) with ε time units.

New interval focus
This cross-over function generates new candidate critical intervals to keep the

optimization from getting stuck in local optima. A new point in time is chosen by
random and all the closest sporadic releases are shifted towards the selected point
in time.

Cross-over Function 5 : New interval focus
Let tnew be a new random instant within the simulation interval. For every indexi
select the largest indexj such thatD(i,j) v [0, tnew] and increaseT(i,j) with ε time
units. Also decreaseT(i,j+1) with ε time units.

Loading interval perturbation :
Theoretically, all task activations in the loading interval may influence response

time through the state in the system when the request of the critical task instance
occurs (Mellin 1998). In practice, it is more likely that changes at the end of the
loading interval have a direct effect on the timeliness of the critical task instance.
This cross-over function changes the activation pattern at the end of the loading
interval.

Cross-over Function 6 : Loading interval perturbation
Select any indexi and a positive valueε. Let j be the the largest index such that
D(i,j) v [libeg, liend] andj > 1, modify T so thatT(i,j−1) = ε time units.

7.3 Testing of Time Dependent Control Performance

The only failure type considered in the previous examples and experiments is the
violation of time constraints, and in particular, response time deadlines. With a
heuristic driven approach it is possible to use mutation-based testing to test more
complex time constraints (for example, expressed using the constraint graph no-
tation used by Berkenkötter & Kirner (2005)) and other properties that indirectly
depend on execution orders and temporal behavior of tasks.
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Further, a real-time system simulator can be extended to take more aspects of
the controlled system into consideration than those expressed in the real-time ap-
plication model. In particular, by changing the set of variables being traced during
simulation and by updating the fitness function and termination criteria, test cases
can be generated that test new types of time constraints and time dependent prop-
erties. One such property is control performance.

Many real-time systems have tasks that implement control applications. Such
applications interact with physical processes through sensors and actuators to achieve
a control goal. For example, a painting robot may have a control application that
periodically samples joint angles and sets different motor torques so that the robot
movement becomes smooth and aligned with the painted object.

Control algorithms contain built-in time constraints that are more subtle than
response time deadlines. The delay between sensor readings (typically done in the
beginning of task execution) and the actuator control (typically done at the end of
task execution) is known asinput-output latency. This includes the time passing
while the task is preempted and blocked. Hence, this interval is different from
response times and execution times, as defined in section 2.2.

Excessive input-output latency compromises the performance of a control sys-
tem, and may even cause instability. This means that an application may fail its
control goal causing acontrol failure to occur. Since the same types of errors that
cause timeliness failures may result in increased input-output latency (or a larger
difference between maximum and minimum input-output latency than expected),
it is possible to use the mutation-based testing criteria presented in section 6.3 for
this purpose.

By co-simulating the real-time kernel execution with continuous process mod-
els (for example, using Simulink) it is possible to measure the expected control
performance for a particular execution order of tasks. This means that it is possible
to use mutation-based testing to automatically generate test cases that can stress a
real-time control system to reveal control failures.

To support this type of test case generation, the closed-loop behavior of both
the controlled process and its controller logic (as implemented by real-time tasks)
must be included in the simulation. Further, control specific variables must be used
for calculating the fitness for the heuristic search problem.

In order to evaluate control performance it is common to use weighted quadratic
cost functions (̊Aström & Wittenmark 1997). For a scalar system, with one output
y and one inputu, the cost can be written
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J =
∫ Tsim

0

(
y2(t) + ρu2(t)

)
dt (1)

where the weight factor,ρ, expresses the relation between the two counteracting
objectives of control design(i) to keep the regulated output close to zero and(ii) to
keep the control effort small. The higher the cost measured during a simulation run,
the worse the control performance. Therefore, we assume that1/J is proportional
to the control performance when calculating the fitness of a particular execution
order trace3.

The fitness of a simulation trace where both timeliness of hard tasks and control
performance of soft, adaptive controllers should be considered can be defined as

F =
∑

k

1
Jk
− Smin ∗ w (2)

whereSmin denotes the least slack observed for any hard real-time task. The
variableJk denotes the value ofJ for adaptive controllerk at the end of the simula-
tion. A weight variablew is used to adjust the minimum slack so that the timeliness
factor is of the same magnitude as the control quality factor.

Apart from calculating the general fitness that drives the genetic algorithm
heuristics toward evaluating more fit solutions, the fitness function are also used
to detect failures and halt the search. Relevant failure conditions are that(i) a hard
deadline is missed,(ii) the control system becomes unstable (the cost,J , exceeds
some threshold value), or(iii) a control constraint is violated, for example, the mo-
tion of a robot arm becomes too irregular. Failure condition(i) and(ii) can easily
be detected by checking the minimum slack of hard tasks and the value of the cost
function for the controller tasks. Failure condition(iii) is application-specific and
might require checking one or several process variables.

7.4 Test Case Generation Experiments

To evaluate the proposed test case generation method, three experiments were con-
ducted. First, we establish basic confidence in the method by applying it to a sys-
tem of the same type as used in the model-checking experiment. This allows us to
evaluate the reliability of the proposed test case generation method in a base-line
experiment and detect if it has difficulties to kill some types of malignant mutants.

3This way of measuring control fitness was developed together with Dan Henriksson for the ex-
periment presented in Nilsson & Henriksson (2005)
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Second, we test the hypothesis that the approach based on genetic algorithms
can remain effective for larger and more complex system models where the model-
checking approach fails (because of the size of the reachable state space). In this
experiment we automatically generate test cases from a real-time system model
with a larger task set and a considerable fraction of sporadic tasks under complex
real-time system protocols.

Finally, we demonstrate the flexibility of the genetic algorithm based approach
by using it for generating test cases for both timeliness and control performance
from an extended real-time system model. In particular, this real-time system
model has a mixed load of soft and hard real-time tasks that share resources. The
periodic tasks are soft and implement adaptive controllers for three inverted pendu-
lums and the sporadic tasks are modelled to have hard deadlines.

To conduct the experiments, we extended the real-time and control co-simulation
tool TrueTimeto simulate the execution of TAT-models (see section 8.3 for a de-
scription of the added features). TrueTime was developed at the department of
automatic control at the University of Lund to support the integrated design of
controllers and real-time schedulers (Henriksson, Cervin &Årzén 2003). We also
configured and extended a genetic algorithm tool-box (Houck, Joines & Kay 1995)
to interact with our simulated model. For model-checking experiments we used the
Timestool, developed at Uppsala University (Amnell et al. 2002).

7.4.1 Base-line Real-time System

This experiment uses a small task set that has simple environment models but com-
plex interactions between the tasks. Static priorities were assigned to the tasks
using thedeadline monotonicscheme, that is, the highest priority was given to the
task with the earliest relative deadline. Arbitrary preemption was allowed.

The system used theimmediate ceiling priorityprotocol to avoid priority inver-
sion (Sha, Rajkumar & Lehczky 1990). That is, if a task locks a semaphore then
its priority becomes equal to the priority of the highest priority task that might use
that semaphore, and is always scheduled before lower prioritized tasks. The “first
come first served” policy is used if several tasks have the same priority.

The base-line setup has five tasks (denoted A-D, and listed in table 7.1). Two
tasks are sporadic and the three remaining tasks are strictly periodic. The system
has two shared resources and one precedence relation between tasks D and A. The
precedence relation specifies that a new instance of task A cannot start unless task
D has executed after the last instance of A.

Table 7.1 describes the assumptions of the task set. The first column (“ID”)
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ID c d SEM PREC MIAT OFS

A 3 7 {(S1, 0, 2)} {D} ≥ 28 10
B 5 13 {(S1, 0, 4), (S2, 0, 5)} {} ≥ 30 18
C 7 17 {(S1, 2, 6), (S2, 0, 4)} {} 40 6
D 7 29 {} {} 20 0
E 3 48 {(S1, 0, 3), (S2, 0, 3)} {} 40 4

Table 7.1: Task set for base-line experiment

indicates task identifiers, column ‘c’ gives execution times, and column ‘d’ pro-
vides relative deadlines. The “SEM” column specifies the set of semaphores used
and in which interval they are required. Column “PREC” reveals what other tasks
have precedence over tasks of this type. For sporadic tasks, the “MIAT” column
contains the minimum inter-arrival time assumptions. For periodic tasks the same
column contains the fixed inter-arrival time. Column “OFS” denotes the initial
offset constant.

Table 7.2 contains the results from mutation testing the task set in table 7.1. A
∆ value of 1 time unit was used to generate the mutants. The number of mutants
generated for each operator type is listed in column ‘µ’ and the number of mutants
killed by model-checking is contained in column “KMC”. For the genetic algo-
rithm setup, we used a population of 20 individuals per generation and searched
each mutant for 100 generations before terminating. We used the heuristic cross-
over functions described in section 7.2.3 as well as three generic cross-over func-
tions. The first generic cross-over function changed a random value in the genome
representation, the second created a new random individual in the population and
the third replaced a random value in the genome with 0. To gain confidence in the
results, each experiment was repeated in eight trials, each with a different random
seed. The number of mutants killed using genetic algorithms in any of the trials
is listed in column “KGA”. Column “KGA” lists the average number of malignant
mutants that were killed per trial. The average number of generations required to
kill malignant mutants of this type is contained in column “GEN ”.

As revealed in table 7.2, both the simulation-based and model-checking ap-
proaches killed all the malignant mutants. Strangely, the model-checking approach
also killed some mutants that was benign using the simulator implementation. By
comparing the execution orders of the benign mutants that were killed, we observed
that tasks sometimes inherited ceiling priorities before they started executing in the
traces produced by the model-checker. The number of mutants that where found
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Mutation operator µ µM KMC KGA KGA GEN

Execution time 10 6 6 6 5.8 7.6
Lock time 8 1 1 1 1.0 2.2
Unlock time 11 2 2 2 2.0 1.3
Hold time shift 14 0 1 0 - -
Precedence 20 14 15 14 14.0 1.2
Inter-arrival time 10 3 4 3 3.0 5.7
Pattern offset 10 3 5 3 3.0 2.5

Total 83 29 33 29 28.8 -

Table 7.2: Results from base-line system experiment

malignant after this comparison is listed in column “µM ”. We conjecture that the
model-checker tool implements a different version of the immediate priority ceiling
protocol than originally defined (Sha et al. 1990). Since we do not know the exact
semantics and properties of the model-checker’s implementation of the protocol,
we use the original definition4.

An interesting observation is that all the malignant mutants were killed within
10 generations on average (see column “GEN ” of table 7.2). Furthermore, all the
malignant mutants where killed in 7 of the 8 experiments.

7.4.2 Complex Dynamic Real-time System

The purpose of this experiment was to evaluate how well the genetic algorithm
based method generates test cases for a system consisting of more sporadic tasks
as well as complex scheduling and concurrency control protocols. In this setup
we use theearliest deadline first (EDF)dynamic scheduling algorithm together
with thestack resource protocol (SRP). The EDF protocol dynamically reassigns
priorities of tasks so that the task with the current earliest deadline gets the highest
priority. The SRP protocol is a concurrency control protocol that limits chains of
priority inversion and prevents deadlocks under dynamic priority scheduling. This
is done by not allowing tasks to start their execution until they can complete without
becoming blocked (Baker 1991).

This system consists of 12 hard real-time tasks, seven of which are sporadic
and only five periodic. The system has three shared resources but no precedence

4Given this discrepancy, the relevance of the comparison can be discussed. However, the systems
are very similar so the analysis problem should be at the same level of complexity.
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ID c d SEM PREC MIAT OFS

A 3 20 {(S1,0,2), (S2,0,2)} {} ≥ 28 10
B 4 24 {(S1,0,3)} {} ≥ 30 4
C 5 35 { (S2,2,5)} {} ≥ 38 6
D 6 57 {(S2,0,6), (S3,2,5)} {} ≥ 48 0
E 5 51 {} {} ≥ 52 7
F 6 39 {(S3,3,6)} {} ≥ 44 0
G 3 52 {} {} ≥ 52 2
H 3 38 {(S3,0,2)} {} 40 5
I 3 35 {(S1,1,2)} {} 48 2
J 4 52 {} {} 60 2
K 2 70 {(S2,0,2)} {} 80 10
L 3 59 {} {} 60 12

Table 7.3: Task set for complex real-time system

constraints. The complete task characteristics are listed in table 7.3, using the same
notation as in table 7.1.

For this system we found it to be very time consuming and complicated to man-
ually derive the number of malignant mutants. Moreover, model-checking cannot
be used for comparison since the reachable state-space becomes too large5. Since
we could not find an alternative way to efficiently and reliably analyze mutants, we
cannot guarantee that the method killed all the malignant mutants.

To increase confidence in the correctness of the original specification model,
every generated test case was also run on the original (un-mutated) TAT specifi-
cation. In a previous iteration of experiments, this kind of test actually revealed a
fault in a specification that was assumed to be correct.

For this experiment, we used a delta size of two time units for the mutations
of the execution patterns, and a delta size of six time units on the mutations on au-
tomata template constants. We ran the genetic algorithm and searched each mutant
for 200 generations or until a failure was encountered. Each experiment was per-
formed in five trials with different inial random seeds to guard against stochastic
variance. For each simulation performed during the heuristic search, a random test
was also conducted. This provides an indication of the relative efficiency between

5The Times tool does not currently support the SRP protocol and a sporadic task set of this size
was refused by the model-checker (the analysis was terminated when no more memory could be
allocated).
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Mutation operator µ KR KGG KGA KGA GEN

Execution time 24 0 0 12 9.2 62
Unlock time 16 0 0 0 - -
Inter-arrival time 24 0 0 8 3.8 90
Offset time 22 0 0 0 - -

Total 86 0 0 20 13.0 -

Table 7.4: Results from complex system experiment

random search and genetic algorithms with our heuristic. Furthermore, we ran a
genetic algorithm experiment using only the three generic cross-over functions, de-
scribed in section 7.4.1, to assess the added performance of our heuristics.

Since every mutant operator generated more mutants for this system model we
decided to use a subset of mutation operator types. Table 7.4 uses the same column
notation as table 7.2, but the additional columns “KR” and “KGG” include the
results from random testing and non-customized genetic algorithms respectively.

As table 7.4 indicates, no malignant unlock time or offset time mutants were
found for this particular system. The average number of generations required to
kill a mutant was higher for this system specification model, which indicates that
the search problem is much more difficult than for the more static system presented
in section 7.4.1.

The low average number of mutants killed in each experiment suggests that
the genetic algorithms may have to run longer on each mutant to achieve reliable
results. A possible explanation for this is that the genetic algorithm has trouble
finding comparable candidates without the iterative refinement from the heuristic
operators. Hence, it would often prematurely discard partially refined candidates.

A possible remedy for these problems is to redo the search multiple times using
a fresh initial population. Since searching the mutant models is a fully automated
process, the additional cost of multiple searches may be acceptable. If no new
mutants are killed after a specified number of searches, the process can be halted.

The comparison with random testing and generic genetic algorithms shows that
the heuristic cross-over functions are vital for the performance of the method.

7.4.3 Mixed Load Real-time Control System

The purpose of this experiment was to investigate if a mutation-based testing tech-
nique can generate test cases to reveal timeliness in flexible control systems where
there is a mixed load of soft, adaptive controllers and reactive real-time tasks with
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hard deadlines. To evaluate the control performance testing, described in section
7.3, test cases which target execution orders that result in unacceptable control
performance are also generated. Hence, this experiment evaluates whether the mu-
tation operators can create malignant mutants in this kind of system as well as how
effective our genetic algorithm based approach is in killing such mutants.

For this experiment, we simulated a real-time system with fixed priorities and
shared resources under the immediate priority ceiling protocol (Sha et al. 1990).
The task set consists of three soft periodic tasks that implement flexible controllers
for balancing three inverted pendulums. The linearized equations of the pendulums
are given as

θ̈ = ω2
0θ + ω2

0u (3)

whereθ denotes the pendulum angle andu is the control signal.ω0 is the natural
frequency of the pendulum. The controllers were designed using LQ-theory with
the objective of minimizing the cost function6

J =
∫ (

θ2(t) + 0.002u2(t)
)

dt. (4)

Further, the system has four sporadic real-time tasks with hard deadlines, as-
sumed to implement logic for responding to frequent but irregular events, for ex-
ample, external interrupts or network messages. The system also includes two
resources that must be shared with mutual exclusion between tasks.

Table 7.5 lists the exact properties of the simulated task set using the same
notation as in the previous experiments.

Three continuous-time blocks, modelling the inverted pendulums, was included
in the simulation and connected in a feedback loop to the TrueTime block that sim-
ulated the flexible control system. Each of the modelled pendulums have a slightly
different natural frequency,ω0, and the goal of the control application was to bal-
ance the pendulums to an upright position. The pendulums had an initial angle of
0.1 radians from the upright position when the simulation started. An application-
specific control failure was assumed to occur when the angle of a pendulum became
greater than or equal toπ/8 (∼ 0.39) radians.

A set of mutants was generated by applying the mutation operators described
in section 6.3 on the extended task set in Table 7.5 using a∆ of two time units
for the first three mutation operator types and four time units for the last two. The

6The controller design for the inverted pendulums was provided by Dan Henriksson (Nilsson &
Henriksson 2005).
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ID c d SEM PREC MIAT OFS

A 3 7 {(R2, 0, 2)} {} ≥ 30 10
B 5 15 {(R1, 0 , 3), (R2, 2, 5)} {} ≥ 40 20
C 4 20 {(R1, 0, 3)} {} ≥ 40 0
D 5 26 {(R2, 2, 5)} {} ≥ 50 28
E 5 20 {(R1, 4, 5)} {} 20 1
F 5 29 { (R2, 0, 4)} {} 29 1
G 5 35 { (R1, 0, 3)} {} 35 1

Table 7.5: Case study task set

total number of mutants generated for each operator type is listed in column ’µ’ of
table 7.6.

For the genetic algorithm setup, we used a population size of 25 activation pat-
tern matrices. The heuristic cross-over functions as presented in section 7.2.3 were
used for stochastically changing activation patterns. The fitness function defined in
section 7.3 was used when analyzing the simulation traces.

First, the unmodified system was simulated for200 generations to gain con-
fidence in the assumed correct specification. This was repeated five times with
different random seeds to protect against stochastic variance. No failures were de-
tected in the original model.

Second, each mutant was searched for100 generations or until a timeliness
or control failure was detected. When a mutant was killed, the same activation
pattern was used as input for a simulation of the assumed correct system model.
The motivation for this extra step was to further increase confidence in the safety
of the original model.

The experiment was repeated in five trials to assess the reliability of the ap-
proach. Table 7.6 summarizes the results for each mutation operator and failure
type using the same notation as in table 7.2.

As indicated in table 7.6, our mutation-based approach using the Flextime tool
automatically generates test cases for revealing both timeliness and control failures.
In addition, the malignant mutants that cause timeliness failures were killed in all
of the experiments. This result increases confidence in the genetic algorithm being
effective in revealing critical execution orders with respect to timeliness in models
of mixed load control systems of this size. The relatively low average of killed mu-
tants causing control failures indicates that finding a critical scenario with respect to
control is difficult. A possible explanation is that the optimization problem contains
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Failure type ⇒ Timeliness Control
Mutation operator µ KGA KGA GEN KGA KGA GEN

Execution time 14 1 1.0 2 6 5.2 29
Lock time 13 2 2.0 3 0 0 -
Unlock time 15 1 1.0 2 0 0 -
Inter-arrival time 14 0 0 - 5 2.1 16
Pattern offset 13 0 0 - 0 0 -

Total 69 4 4.0 - 11 7.3 -

Table 7.6: Mutants killed in case study

local optima with respect to control performance fitness. Another possible expla-
nation is that the controlled process only is sensitive to controller disturbance in
combination with some other disturbance that was not controlled in the simulation.

In this experiment we actually observed a number of malignant mutants with
control failures. This result support the claim that some mutation operators for
testing of timeliness are indeed useful for testing control performance.

This experiment demonstrated that the mutation-based testing framework can
be customized for non-trivial system models as well as for testing properties that
are similar to timeliness.
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Chapter 8

T 3: A Tool for Mutation-based
Testing of Timeliness

This chapter describes different parts of a prototype tool that support the framework
for mutation-based testing and implements the heuristic driven simulation approach
for test case generation described in chapter 7.

8.1 Overview

The Timeliness Testing Tool (T 3) consists of the real-time simulator extensions
provided by the Flextime add-on, as well as implementations of the defined muta-
tion operators, parametrization of the genetic algorithm, and the scripts that auto-
mate the test case generation process.

Figure 8.1 provides an overview of how the different parts of this prototype
tool are used to perform automated test case generation. As the figure indicates, a
real-time system model and a testing criterion must be supplied as input to the tool
(arrow 1a and 1b in figure 8.1). In the current prototype, the real-time application
model must be manually translated to a native tabular format. However, this in-
formation could be retrieved from an existing TAT modelling tool (such as Times
(Amnell et al. 2002)) or a graphical user interface. The execution environment
model can be modified by configuring the simulator using the Flextime add-on.

The mutation operators corresponding to the given testing criterion create a set
of mutant models. These operators have been implemented to operate on the tabular
representation of real-time application models. For each generated mutant in the
set, the corresponding model is given as input to the Flextime simulator add-on
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Figure 8.1: Test case generation tool

running on Simulink and TrueTime (arrow 2 in figure 8.1).

A genetic algorithm search is then initiated for each mutant. First, a population
of activation patterns is randomly generated by the adapted genetic algorithm and
supplied one by one to the simulator (arrow 3 in figure 8.1). For each simulation,
a trace is returned to the genetic algorithm (arrow 4 in figure 8.1) so that fitness
can be calculated and the activation patterns refined according to heuristics. The
new activation patterns are fed back to the simulator (arrow 3 in figure 8.1) and the
process is repeated until the mutant is killed or the search is terminated. After each
mutant has been searched for violated time constraints, a test suite is generated
containing one test case for each of the killed mutants (arrow 4 in figure 8.1).

8.2 Flextime Simulator Extensions

Flextime is an add-on to the real-time control systems simulator TrueTime (Henriksson
et al. 2003). The purpose of the Flextime add-on is primarily to support automated
analysis and mutation-based test case generation. For this purpose TrueTime must
be adapted to(i) do efficient simulation ofTATsystem models,(ii) support struc-
tured parametrization of simulations, and(iii) simplify extensions that are consis-
tent withTATspecifications.

When Flextime is used for mutation-based test case generation a mutantTAT
model should be mapped to simulation entities. The following subsections describe
the TrueTime tool and howTAT task sets and activation patterns are mapped to
simulations by the Flextime extension.
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8.2.1 TrueTime

TrueTime is an open source real-time kernel simulator based on MATLAB/Simulink
(Henriksson et al. 2003). The main feature of the simulator is that it offers the
possibility of co-simulation of task execution in a real-time kernel and continuous
dynamics modelling. The simulator is mainly used for the integrated design of con-
trollers and schedulers, and can be used to analyze the effects of timeliness errors
on the control performance of such systems.

The TrueTime kernel support the simulation of periodic and aperiodic tasks,
and the attributes of the tasks (such as periods and deadlines) may be changed
dynamically during simulation. The scheduling algorithm used by the kernel is
configurable and can be defined by the user. Synchronization between tasks is
supported by events and the protection of shared resources is simulated as mutual
exclusive monitors1.

Each task in TrueTime is implemented in a separate code function that defines
the execution behavior. The code function includes everything from interaction
with resources, I/O ports and networks to the specification of execution time of
different segments. The TrueTime code functions may be written as either C++
functions or as MATLAB scripts (called m-files).

8.2.2 Task Sets and Execution Patterns

For automated analysis and mutation-based test case generation, we find it useful
to distinguish between application functionality and execution behavior. Therefore,
in the Flextime extension, execution times, resource requirements, and precedence
constraints are specified separately from code functions. This design makes it pos-
sible to specify execution patterns of large task sets without having to generate
a specific code function for each type. The role of code functions in Flextime
is specialized to perform control related calculations and to interact with external
Simulink blocks.

Figure 8.2 shows a subset of the class diagram for Flextime. The classftTask
is an abstract class that maps down to the TrueTime tasks. This means that when
objects of any of the sub-classes to this class are created, a TrueTime task is also
created and initialized. The abstractftTaskclass contains basic information about
tasks, such as periods, deadlines and offsets. Moreover, theftTaskclass extends
TrueTime tasks with a list of execution items that define the execution pattern for
each instance of this task.

1These primitives can be used to implement other, more complex, synchronization mechanisms.
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Figure 8.2: Flextime classes

The sub-classes offtTaskandftResourceare primarily used for supporting dif-
ferent concurrency control protocols, but other types of execution environment ex-
tensions are also supported. For example, one pair of subclasses can be used to
simulate tasks and resources under the immediate priority ceiling protocol (Sha
et al. 1990), whereas another pair may be used for simulation of tasks under EDF
scheduling and the stack resource protocol (Baker 1991). The reason sub-classes
are needed for both types of entities is that such protocols often require specific
data to be kept with task and resource representatives.

When anftTaskbegins its execution, a virtualdo segmethod is called sequen-
tially on each item in the execution item list. Execution items of typetakeResand
releaseResspecify that a particular resource is to be locked or unlocked. Thedo seg
function in these execution items simply invokes a corresponding virtualtakeand
releasefunction in theftTaskclass with the resource identifier as a parameter. In
this way, the logic associated with acquiring and releasing resources can be imple-
mented in the protocol-specific sub-classes offtTask, and execution item classes
remain protocol independent. Execution items of the typeexecuteWorkare generic
and specify that execution of code should be simulated for some duration, and op-
tionally, that a segment of a Flextime code function should be executed. All the
aforementioned objects can be created using the factory method pattern to support
extendability and configuration (Gamma, Helm, Johnson & Vlissides 1994).

In the Flextime tool, task sets can be initialized in two different ways. One
is to create the Flextime tasks and populate execution item lists statically in the
TrueTime initialization code function. Figure 8.3 includes an example2 of the C++

2For simplicity, the task and execution pattern instances are explicitly constructed without the
factory method pattern in this example.
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void init(){
// String ID
static IPC_Resource R1("State_Sem");

// TYPE, StringID, Priority , MIAT, OFS, Deadline
static FP_IPC_Task A(SPOR,"Safety_check", 1 , 0.040,0.0,0.020);
A << 0.001 <<+R1<< 0.005 << -R1 << 0.002 << FINISHED;

static FP_IPC_Task B(PER,"Pendulum", 2 , 0.040, 0.020, 0.040);
B << 0.002 << +R1 << 0.006 << -R1 << 0.001 << FINISHED;

}

Figure 8.3: C++ Syntax for initializing task set

// Specify task and resource sub-types
RFactory<IPC_Resource> RCreator;
TFactory<FP_IC_Task> TCreator;

void init(){

// Import task set from MATLAB variables TS and XP
TasksetImporter TSI("TS","XP");
TSI.importRes(RCreator);
TSI.importTasks(TCreator);
TSI.importPrecs();

}

Figure 8.4: C++ Syntax for importing task set

syntax required for initializing a task set. The second way, which is assumed if
no specific C++ initialization file is given, is that the task set specification for a
simulation is provided through matrices in the global MATLAB workspace. See
figure 8.4 for an example setup in which a task set is imported.

The matrix representation of task sets has the advantage that different mutation
operators directly can be applied to create new mutants. However, if new task
types, concurrency control mechanisms or scheduling protocols are used, then the
C++ initialization file must be customized accordingly.

New tasks types may have additional constraints on activation patterns cor-
responding to timed automata models. For such task types, a C++ method that
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performs the mapping from the genome representation to a valid activation pattern
must be implemented, this is further discussed in section 10.2.2.

8.2.3 Activation Patterns

As previously described in section 7.2.1, the activation patterns from periodic tasks
are deterministic and can be initialized as usual with the TrueTime kernel block.
The activation pattern for sporadic tasks should be varied for each simulation to
find execution orders that can lead to timeliness failures. Consequently, a new
activation pattern for the sporadic tasks must be imported for each simulation run.
The FlexTime tool is capable of importing activation patterns in the genome format
described in section 7.2.1 or as a matrix with absolute activation times for each task
instance. In particular, activation pattern matrices of this type are also imported
from the global MATLAB workspace at the start of each simulation run.

Traces from each simulation run are stored and exported to MATLAB after the
simulation run has ended. For example, task activation times, start times3 as well as
response times are stored from each simulation. In the global MATLAB workspace,
these simulation logs can be visualized, analyzed, filtered and converted to timeli-
ness test cases (see section 5.2).

8.3 Test Case Generation Support

This section presents some different ways that the prototype tool can be used to
support modelling and test case generation.

8.3.1 Modes for Generating Test Cases

The prototype tool currently support two different modes for generating and ana-
lyzing mutant models, fixed delta mode and iterative delta reduction mode.

In the fixed delta mode, a mutation operator is invoked with a specified delta
value and mutants are created by changing some aspect of the original specification
with a constant value, delta. The heuristic search is run on each of the mutated
models and if a deadline violation is detected, a test case is generated and the search
is terminated.

In the iterative delta reduction mode, a maximum delta is specified together
with the mutation operator. This mode is a feature that supports generation of

3These are the points in time when tasks actually start executing in response to activations
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test suites with different delta parameters rather than an extension to the theory of
mutation-based testing of timeliness. Recalling the framework overview figure 5.1
this supports an automated feedback loop from activity 3 to activity 1.

In this mode, the tool starts by applying the mutation operator using the maxi-
mum delta on the original real-time system model to create a set of mutants. This
step is similar to the fixed delta generation mode. If a deadline violation is found
in a mutant, then delta is decreased with one time unit and all the individuals in
the test population are re-evaluated using the new model. A new heuristic search
is started on the new mutant using the end population of the previous search as an
initial population. This process is iterated until no deadline violation is found or
delta has been decreased to zero.

If the maximum delta is set high it is likely that the maximum number of test
cases is produced for each mutation operator. As the delta is decreased it becomes
harder to kill the malignant mutants, since the difference between the mutants and
the feasible model becomes smaller. Using the iterative delta reduction mode, the
user does not need to manually try different delta sizes before deciding which one
would give the best trade-off between test quality and test suite size. Instead, when
the test case generation terminates the user may choose between generated test
suites for different sizes of the parameter delta. It is also possible to create a test
suite containing only the test cases that can kill the smallest mutation of a partic-
ular entity. For example, one of the test cases might kill all∆− interarrival time
mutations of task A where∆ > 2 milliseconds, whereas another test case in the
same test-suite may kill all∆− interarrival time mutations of task B where∆ > 5
milliseconds. Figure 8.5 shows the pseudo code for the iterative delta reduction
mode where only one test case for each mutated entity is included in a test suite.

The effectiveness of this mode relies on the hypothesis that there is a subsump-
tion relation between mutants of the same type but with different delta sizes. This
means that a test case generated using a smaller delta should be effective for killing
all mutants of the same entity with larger deltas. Since such subsumption relation
does not holds for all system designs (for example, see section 6.6), the tool sup-
ports an extra validation step where the final test case is simulated on all previously
killed mutants with larger delta sizes. If a mutant that is generated using a large
delta cannot be killed using that test case, then the anomaly is logged and both test
cases are stored.
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Iterative_delta_reduction(TAT,operator,delta_max)

MSET=generate_mutant_set(TAT,operator,delta_max)

for each mutant M in MSET
begin

delta=delta_max;
trace=heuristic_search(M,Random_test());

while (killed(trace)==true) and (delta>0)
begin

killed_once=true;
critical_trace=trace;
delta=delta-1;
T = make_test(M,critical_trace);
M = remake_mutant(M,delta, operator);
trace = heuristic_search(M,T);

end

if (killed_once==true)
begin

T=make_test(M,critical_trace);
TSET.Add(T);
report(M, ’killed’, delta);

else
report(M,’not killed’,delta_max);

end
end

return TSET;
end

Figure 8.5: Pseudo-code for iterative delta reduction mode
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8.3.2 Support for Task Instance Modelling

The Flextime add-on and the mutant generator programs that implement the mu-
tation operators also support an extended form of task modelling that enables a
unique task execution pattern to be associated with each task instance.

This addition does not require an extension of the TAT notation since it can
be modelled as a TAT automata template that releases one different task for each
stimuli in an activation pattern. If task mutation operators are applied on systems
modelled in this way, each task instance may be mutated independently. However,
to maintain the semantics of the mutation operators and to keep the number of
mutants bounded by the maximum in table 8.2, all execution patterns of a particular
task must be mutated in the same way.

The advantage with this extension is that deterministic variations in task execu-
tion patterns can be modelled in a simple way. For example, if we know that every
third release of a particular task always executes longer or locks a different set of
resources, the behavior of that task can be modelled as a chain of task execution
patterns instead of one static task execution pattern. An example illustrating the
usefulness of this modelling style is presented in section 9.4.1.

To keep the simulation deterministic with respect to activation pattern, each
execution pattern for a particular task must be statically ordered so that the n’th
activation of task A always has the same execution pattern. A possible future ex-
tension would be to associate each task type with a “bag” of possible execution pat-
terns (behaviors) and let the heuristic search algorithm dynamically decide which
should be used for a particular task activation. However, this kind of extension
would further increase the domain of the search problem (see section 10.2.1).
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Chapter 9

Case Study: Testing using the
Mutation-based Framework

This chapter demonstrates how the framework described in chapter 5 can be applied
for testing of timeliness and presents some experiments that evaluate the generated
test cases.

9.1 Overview

The purpose of this case study is to assess the applicability of the approach for
mutation-based testing presented in chapter 5 (and the associated tool, presented in
chapter 8) for the automated testing of timeliness.

This case-study can be classified as acontrolled case-study, which means that
an idea is used in a limited situation with realistic assumptions. This does not
necessarily generalize to a broad range of cases, but can give indications that the
idea is useful. The idea in this context is using the mutation-based framework
to test timeliness. In particular, the proposed framework is used to test a small
control application running on an open source real-time operating system. The
configuration of the target system and the real-time system model is changed over
a set of experiments to identify under which conditions the framework is useful.

The effectiveness of test cases generated using the mutation-based testing frame-
work is compared with timeliness test cases generated using random testing. If
the applied framework is more effective than random testing for finding timeliness
faults, confidence is increased in the feasibility of the approach (also see the thesis
statement in section 4.4.1). Further, application on a realistic system platform may
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reveal if the method does contain any unforseen or inherent limitations.

9.2 A Flexcon Demonstrator Prototype

This section describes the design and implementation of a prototype of the Flexcon
demonstrator used to evaluate the testing framework presented in chapter 5.

Unfortunately, we have not found any publicly available benchmark implemen-
tations for this kind of testing research. Libraries and support systems for imple-
menting different kinds of real-time applications exists; but the applications them-
selves often require specific hardware platforms and are therefore difficult to access
for software experimentation purposes. In addition, time constraints are seldom
available, since they are typically closely connected with the target platform and
the controlled process. Hence, a prototype control system inspired by the Flexcon
robot demonstrator was specially built for this research. This section presents the
application and describes the design of the system and the test harness.

The application used as the Flexcon demonstrator is a control system for a robot
arm, hereafter referred to as the slave robot. The slave robot has the ability to move
in a fixed operational plane, using three servo motors for adjusting angles of joints
(figure 9.1). The purpose of the slave robot in this application is to balance a ball on
a beam while the other end of the beam is moved by an independent master (robot).
A camera is used to capture images of the beam angle as well as the ball’s position
on the beam. A force sensor on the arm of the slave robot is used to help determine
the movement of the other robot together with the camera images. This case study
focuses on a sub-part of the Flexcon demonstrator that controls the movement of the
slave robot. That is, the processing of camera images and movement of the master
robot arm are assumed to be handled by other nodes in the system and commands
from this control are sent to the slave robot in the form of trajectories.

9.2.1 Real-time Design

The system prototype consists of 7 tasks; of which 4 are periodic and 3 sporadic.
The terms used for these tasks as well as an overview of their relationships are
depicted in figure 9.2.

TheTrajectoryMgris a sporadic task that continuously maintains and updates
the current trajectory based on orders and adjustments received from a remote node.
This task updates a cyclic buffer containing the current trajectory and desired path
for the end-point of the beam, hereafter referred to asthe hand. New updates from
the network may require recalculation or extension of the planned trajectory. This
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task also translates trajectory coordinates in the form〈x, y, angle〉 to the corre-
sponding set points for the three joints. Herex andy are the position of the hand
relative to the base point of the robot arm;angle is the desired angle of the hand,
relative to the ground.

TheRefAdjustertask is coordinating the controllers by adjusting the reference
signal (set-points) to follow the precalculated trajectory. This sporadic task is ac-
tivated when the robot arm is within the bounds of certain intermediate via-points
along the trajectory.

In this prototype, the robot arm is assumed to be equipped with a sub-system
that sends interrupts when the force applied to the robot hand is changed. The
interrupts from the force sensor are serviced by the sporadicForceHandlertask
that filters the information and sends notifications to a remote node if changes are
above a certain threshold.

Three tasks (Controller 1, 2 and 3) are periodic controllers with a relatively high
sampling rate for accurately controlling the joints of the robot. These controllers
get feedback through angle sensors that are read at the beginning of each task exe-
cution. The implementation of controllers are of PID-type, configured according to
the dynamics of the controlled system. The three controller tasks are implemented
using a single thread similar to a cyclic executive (c.f., Burns & Wellings (2001)).
This means that the periods of the controllers harmonize and that the relative activa-
tion order of these periodic tasks is known. This implementation style is advocated
by Klas Nilsson, the domain expert within the Flexcon project (Nilsson 2005). For
test case generation purposes this thread can be modelled as a shared mutual exclu-
sive resource between the controller tasks.

A high priority Watch-dogtask is used to ensure that the hardware is always
serviced within a certain interval of time. The reason for this is that the robot
hardware requires the hardware interface to be polled with a certain minimum rate
(Nilsson 2005). To monitor the polling, a shared time stamp structure is updated
every time any task polls the hardware interface. If the watchdog detects that the
hardware has not been polled within the interval then actions are taken to service the
interface. Furthermore, the watchdog task is responsible for checking the integrity
of the control system and regularly sends messages to remote nodes indicating that
the controllers are up and running.

This design of the robot control prototype has four resources that require mutual
exclusive access, which are listed in table 9.1. Table 9.2 summarizes the applica-
tion task set and lists the various shared resources used by the different tasks. For
an application such as a robot arm controller, there is a trade-off between control
performance and the periods (sampling frequency), hence, it is the designer who
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Semaphore Protected resource
Q HW interface + Timestamps
R Current setpoint
S Trajectory buffer + indices
T Network interface

Table 9.1: Shared system resources

Task Resources
TrajectoryMgr S T
RefAdjuster R S

ForceHandler Q T
Controller 1 Q R
Controller 2 Q R
Controller 3 Q R
Watch-dog Q T

Table 9.2: Task set of prototype with shared resources

sets suitable periods. In other applications involving the Flexcon robots, the sam-
pling frequency of the joint controllers varies between 200 Hz (which is the lower
limit from the closed-loop dynamics of the system) up to 4 KHz to improve the
disturbance rejection of the system (Henriksson 2006). This prototype is designed
for a sampling frequency at 2.5 KHz, to get disturbance rejection while not not
overloading the system.

For sporadic tasks, the offsets, periods and timing constraints are typically de-
cided by properties of the environment, network protocols, or set by system de-
signers to meet end-to-end deadlines in distributed real-time applications. For the
testing experiments in this chapter, the attributes of sporadic tasks are chosen so
that the system remains timely in worst-case situations without wasting resources.
Hence, these attributes can be altered during experimentation. The reason for this
experiment design is that it is easier to change the deadlines and periods rather than
the system implementation or properties of the platform.

9.2.2 Target Platform

The target system for this application is a x86 based pc (a 450 MHz Pentium III)
running Linux with RTAI (Real-Time Applications Interface). The operating sys-
tem Linux/RTAI (Bianchi, Dozio, Ghiringhelli & Mantegazza 1999) has several
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advantages as a platform for this research. First and foremost, it is possible to run
hard real-time applications using an ordinary desktop computer. This avoids issues
with initialization and cross-compiling that often arise when developing embedded
software. Linux/RTAI has been used for implementing real-time applications and
is designed so that the Linux kernel and all the user-level processes can be fully pre-
empted when a real-time task is activated. This also means that the Linux operating
system runs in the background reclaiming “wasted” cpu resources for its desktop
applications. Theoretically, the only consequence this should have on the tested
real-time system is that shared hardware caches may be flushed when the real-time
system is assumed to be idle. However, this could also be the case if a RTAI-based
system would be used for hard real-time control while user-space threads are used
for independent, soft real-time (or non real-time) services.

An overview of the system is depicted in figure 9.3. As can be seen in this fig-
ure, the real-time application (shaded gray) has a layered structure where the code
of the real-time tasks are separated from the test harness and real-time operating
system using a layer called rt-interface. The conceptual relations between the test
harness, the application tasks and the real-time operating system is further depicted
in figure 9.4. In this figure, the rt-interface is denoted by double-headed arrows.
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The motivation for the layered structure is to hide the test-instrumentation from
the code of the application tasks and to make the robot application portable to other
real-time platforms. Obviously the timing and order of tasks may be completely dif-
ferent on non-real time hosts, but applications can be compiled and tested for logi-
cal and syntactical correctness on any supported platform. The MATLAB/simulink
target also makes it possible to test how the control application would interact with
a simulated hardware robot, given that the assumptions about temporal behavior
are correct. In this context, the test driver in figure 9.3 runs in linux user-space and
reads data files containing timeliness test cases into memory, so that it is available
as needed when a test run starts.

9.2.3 Test Harness

The test harness incorporates all the software needed for controlling and observing
a test-run on the target system. The design of the test harness is critical for real-
time systems since it often must be left in the operational system to avoid probe
effects. An important issue in this context is that the instrumentation code must not
change the execution behavior in other ways than increasing the execution time. For
example, the application behavior could be significantly altered if calls to logging
functions were blocking.

According to Scḧutz (1993), the following significant events need to be instru-
mented to capture an execution order of event-triggered real-time systems.

• Access to time

• Context switches

• Asynchronous interrupts

Apart from this, when testing timeliness it is necessary to log the start and end
time of each task instance so that it is possible to check that it executes within its
time constraints.

The instrumentation of interrupts can be added directly to the interrupt handler
functions. Access to time can be instrumented by logging the system calls used to
access the system clock.

The order of context switches can be indirectly monitored by logging the in-
vocation and completion of task instances. However, to obtain full information of
the timing when a context switch occurs it is necessary to be able to insert probes
in the system dispatcher. According to Schütz (1993), it is application dependent
whether the timing of these events is necessary or not.



90 Case Study: Testing using the Mutation-based Framework

Injecting Stimuli

During a test run sporadic stimuli should be injected at the points in time specified
by the activation pattern part of timeliness test cases. To realize this, the test harness
for the Flexcon application uses a sporadic task that emulates the interrupt-handlers
in the system. This task reads an activation pattern specification from a FIFO-
queue that has been populated by the test driver before testing starts. The activation
pattern specification contains the type of the next sporadic task to be activated and
an absolute point in time when it should be activated.

Since the test harness task for injecting stimuli executes on the highest priority
and does not share any resources with the application tasks, the execution distur-
bance from this task is assumed to be short and similar to that of the emulated
interrupt handlers. Further, the same mechanism is used to evaluate all the test
suites compared and therefore should not introduce any bias.

The activation of periodic tasks is handled by using the facilities provided by
the RTAI native interface. Hence, the periods and start times of tasks are specified at
system initialization and activation (stimuli) are generated by the operating system.

Monitoring and Logging

In the current prototype implementation, all tasks log their own events in separate
main-memory buffers. Thus, no synchronization between real-time tasks is neces-
sary for this purpose. The events in the log are time-stamped so they can be ordered
and analyzed after the completion of a test run. The main-memory buffers are also
accessible from user space (as devices in the Linux file system), hence it is possible
to perform on-line analysis of test logs concurrently. In the following experiments,
information from these main-memory buffers is collected after each test run, to
avoid unnecessary competition for resources.

Only partial information about context switches is acquired in this application
(through logging of task activation and completion times); the reason for this is
to make sure that the test execution harness does not depend on features of the
Linux/RTAI infrastructure. However, the information acquired is sufficient for de-
termining the execution order of the application tasks and checking that tasks exe-
cute within their time constraints. If necessary, context switch overhead times can
be approximated by the time a higher priority task (than the one currently running)
is requested and the logged time when the task begins its execution.
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static void Spor_Thread2(int dummy) {

const int MyID = ID_FSENSORH;
RT_TASK* ME = rt_whoami();

SPT2_data A;
SPT2_init(&A,MyID);

rt_task_suspend(ME); // Init done waiting for test scope to start

while (SYS_STATE==Operative) {
log(MyID,TS_Start);

SPT2_work(&A,MyID);
log(MyID,TS_End);
rt_task_suspend(ME);
// Sporadic tasks remain suspended until invoked by
// a new interrupt

}

}

Figure 9.5: RTAI-thread implementing sporadic task in test harness
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static void Per_ThreadALLContr(int dummy) {

PT0_data A; // Local Data (think C++ object state data)
PT1_data B;
PT2_data C;

PT0_init(&A,ID_CONTR1);
PT1_init(&B,ID_CONTR2);
PT2_init(&C,ID_CONTR3);

rt_task_suspend(rt_whoami()); // Init done

while (rt_get_time()<end_time) {

PT0_work(&A,ID_CONTR1); // Invoke controller 1
PT2_work(&C,ID_CONTR3); // Invoke controller 3
rt_task_wait_period(); // wait until (P * n)+(P/4)

PT1_work(&B,ID_CONTR2); // Invoke controller 2
rt_task_wait_period(); // wait until (P * n)+(P/2)

PT0_work(&A,ID_CONTR1); // Invoke controller
rt_task_wait_period(); // wait until (P * n)+(P * 3/4)

PT1_work(&B,ID_CONTR2); // Invoke controller 2
rt_task_wait_period(); // wait until (P * n+1)

}
rt_task_suspend(rt_whoami());

}

Figure 9.6: RTAI-thread implementing controller tasks in test harness
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Task Support

The real-time tasks are implemented as functions that are free from semantics as-
sociated with the target platform. The reason for this is to be able to support the
layered architecture suggested in section 9.2.2.

Hence, each real time task is assumed to have a data structure containing its
local context (state variables), an “Init” function called once at the start-up of the
system, and a “Work” function called at each invocation of the task. To support
concurrency, each task is typically implemented using a dedicated operating system
thread that is responsible for logging and calling the task-functions at the right time.
See figure 9.5 for an example of how a sporadic task is implemented. A similar
thread is needed for each sporadic task and it is possible to parameterize the setup
so that this indirection becomes transparent to the user of the test harness1.

It is also possible that tasks are implemented by more advanced threads, for
example, periodic tasks that share a common major cycle time can be implemented
using a single thread (see figure 9.6).

9.2.4 Task Implementation

The implementation of the robot application tasks is quite small, only approxi-
mately 1000 lines of C code (excluding code in library function calls etc).

As previously mentioned, the implementation of this prototype contains some
simplifications, but is assumed to be detailed enough to be representative of small
control applications. One simplification is that some parts are omitted, for example
no hardware device drivers or networks stacks are implemented. The parts not
implemented are replaced with stubs (function calls) that make dummy operations
using a busy delay primitive. A description of the implementation of the application
tasks including source code extracts is available in Appendix A.

9.3 Applying the Framework for Testing of Timeliness

When performing system level testing of timeliness (according to the framework
outlined in chapter 5), tasks are requested as specified by the activation pattern part
of timeliness test cases to exercise a particular execution order. During such a test
run the individual tasks are fed with input data that are good candidates for causing
long execution times or blocking times. This should stress the system to reveal
potential timeliness failures.

1In this way the test harness can be adapted for other applications and target platforms
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This section describes in detail how input data for individual tasks were de-
rived for this case-study and how these input data are combined to form system
level test cases (this is activity number 4 in figure 5.1). The system level input data
constructed by this method are used in the test execution experiments presented
in section 9.4. The models and mutation-based testing criteria required to auto-
matically generate activation patterns (activity number 1 in figure 5.1) are varied
between the testing experiments, and hence, these are presented in section 9.4.

9.3.1 Constructing Task Input Data

In this case study, the same task input data are used for all the experiments that
compare methods for testing of timeliness. Thus, the thoroughness of this step is
important for the success of any of the methods.

To do this systematically, a set of input data that yields a high degree of cov-
erage with respect to temporal behavior and control flow was constructed for each
task. The execution time of the task running undisturbed was measured using each
task input datum.

In particular, a black-box testing technique based on equivalence partitioning
and pair-wise coverage was used to create test suites for each task. The meth-
ods discussed in section 5.2 that are developed for deriving this type of input data
(for example, the compiler based method developed by Puschner & Schedl (1991))
could unfortunately not be used, since no version of the required tools was available
for the target platform.

Instead, equivalence partitioning was used as a basis for input data generation
and applied manually in order to exercise a wide range of temporal behaviors of
tasks. This means that parameters which change the execution time of tasks were
deliberately included.

For example, the behavior of the TrajectoryMgr task directly depends on coor-
dinates received from the network and the state of a circular trajectory buffer. Three
parameters were identified that might influence the behavior of this task; these pa-
rameters and their associated classes of inputs are listed in table 9.3. One of these
parameters is the size of the coordinate buffer when the task is invoked. This para-
meter is marked “Size of buffer” in table 9.3. Another parameter is the actual type
of operation sent to the TrajectoryMgr task (this parameter is denoted “Operation”
in table 9.3). The last parameter is called “Coordinate” and refers to the structure
of the actual coordinate data sent in the request. The variables N1 and N2 used in
table 9.3 are random positive real value between 200 and 1000. The values with
dagger symbols denote values outside the assumed operational profile.
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Size of buffer Operation Coordinate
0 Insert (N1,N2,1.57)
15 Move All (-N1,N2,0.0)
99 Adjust (10) (N1, -N2, 3.15)†
100 Adjust (99) (0,0,0.0)†

Table 9.3: Equivalence partitioning of TrajectoryMgr

From this equivalence partitioning, each parameter is pair-wise combined with
each of the other parameters. Table 9.4 lists an example suite that provides pair-
wise coverage of the parameter values in table 9.3.

After input data were created, each task was run on the target system without
any disturbances from other application tasks. For each input datum the task was
activated periodically 20 times, and the procedure was repeated 5 times. The sta-
tistics of the tasks execution behavior for a particular input datum, over these 100
invocations, were collected. Analysis tools were developed to automatically extract
worst-case, best-case, mean, median and standard deviation of the execution times
from the logs. Based on these measurements it is possible to rank each task input
datum with respect to the resulting execution time and execution pattern of the task.

These lists of input data for the different system tasks are then combined to cre-
ate sets of test data for system level testing of timeliness where all the tasks are run
concurrently. The equivalence partitioning, input data specifications and the results
from the measurements of the tasks in the Flexcon demonstrator application are
available in Appendix B. From the measurements it can be concluded that hard-
ware caching has a significant impact on the execution times for this application
and platform.

9.3.2 Combining Task Input Data for System Level Testing

Before starting system level testing on the target system it is necessary to choose
which input data for the different tasks should be combined when tasks run con-
currently. An intuitive choice is to combine all the input data that cause the longest
execution time into one single set of input data to use for all the test runs. However,
if only one set of input data is used then it is possible that only a small fraction
of the actual code is executed during system level testing. Furthermore, anomalies
might exist so that input data which cause a short execution time during measure-
ments (when the task is executing undisturbed) cause a disproportionately longer
execution time when a task is executed concurrently with other tasks.
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# Size of buffer Operation Coordinate
1 0 Insert (N,N,1.57)
2 0 Move All (N, -N, 3.15)
3 0 Adjust(10) (0,0,0.0)
4 0 Adjust (99) (-N,N,0.0)
5 15 Insert (0,0,0.0)
6 15 Move All (-N,N,0.0)
7 15 Adjust(10) (N,N,1.57)
8 15 Adjust(99) (N, -N, 3.15)
9 99 Insert (N, -N, 3.15)
10 99 Move All (N,N,1.57)
11 99 Adjust(10) (-N,N,0.0)
12 99 Adjust(99) (0,0,0.0)
13 100 Insert (-N,N,0.0)
14 100 Move All (0,0,0.0)
15 100 Adjust(10) (N, -N, 3.15)
16 100 Adjust(99) (N,N,1.57)

Table 9.4: Pair-wise combinations of parameters

Another extreme is to test each combination of input data derived in the previ-
ous step (described in section 9.3.1). For example, if the equivalence partitioning
and pair-wise combination resulted in 20 input data for task A and a similar process
resulted in 12 input data for task B, then this would give us 240 different sets of
input data when tasks A and B are running concurrently. These 240 input data
are then combined with each of the activation patterns (from mutation-based test
case generation) to form test cases for testing of timeliness. Clearly, this quickly
becomes an expensive test method. Again, it is possible to adopt existing testing
techniques to reduce the test effort. One way is to use the input data causing the
longest execution times as a “base-choice” (Ammann & Offutt 1994). Using this
test method, all the tasks except one execute with the input data causing the longest
execution time. The inputs to the last task are varied among the other candidates
for the longest execution time.

For the case study we selected three candidate input data for each sporadic
task and two input data for each periodic controller task and combined them using
the input data causing longest execution time as the base-choice. Except the base
choice, task input data candidates were chosen based on the diversity of the control
flow paths covered, with bias for such input data that cause long execution time.
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IDS TrajectoryMgr RefAdjuster ForceHandler Controllers
1 10 2 1 1 1 3
2 1 2 1 1 1 3
3 12 2 1 1 1 3
4 10 3 1 1 1 3
5 10 4 1 1 1 3
6 10 2 5 1 1 3
7 10 2 6 1 1 3
8 10 2 1 2 1 3
9 10 2 1 1 4 3
10 10 2 1 1 1 1

Table 9.5: Base choice and combinations of task input data

Table 9.5 lists the different sets of task input data, the bold numbers represent
deviations from the base choice. The column denoted “IDS” enumerate the dif-
ferent combinations and the other columns contain the identifiers of the input data
used for each task. These identifiers correspond to the task input data constructed
for each task (described in section 9.3.1). For example, the input data in row num-
bers 1, 10 and 12 from table 9.4 are used for the TrajectoryMgr task during system
level testing. The reason that only two input data were selected for the periodic
tasks is that the control flow is identical for these three tasks (except for constant
value differences), so in effect all four classes of input data are tested. The test
harness was setup so that each activation pattern was run at least once with each of
the input data sets. We assume that this approach provides a high coverage of the
candidate paths causing long execution times.

9.4 Demonstrator Testing Experiments

There are different decisions associated with applying the framework for testing
timeliness. One such decision is how data from measurements are used for mod-
elling. This section evaluates testing of timeliness of the Flexcon demonstrator
prototype in a number of experiments.

Two kinds of experiments are presented here. First, two different modelling
styles are evaluated. The purpose of the first experiment is to determine what mod-
elling style best captures the behavior of the target system and which model is the
one most suitable for this particular target system. This experiment also demon-
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strates the relative effectiveness between test suites generated using different kinds
of mutation-based testing and random testing.

The mutation-based testing framework is subsequently used to test a number
of variants of the Flexcon demonstrator prototype with seeded errors. The purpose
of this experiment is to investigate the relative effectiveness between test cases
generated with mutation-based testing and random test cases for finding the type
of errors seeded. This experiment also investigates the difference in response times
caused by the different kinds of test cases.

In this context, an effective test case is one that causes a time constraint to
be violated in at least one test run. One test suite is said to be more effective
than another if it contains a significantly larger fraction of effective test cases. As
previously mentioned, the same combinations of task input data are used for all the
generated test suites, thus, the activation patterns generated using mutation testing
and random testing is the only parameters that vary between the compared testing
methods.

9.4.1 Experiment 1 - Framework Testing Effectiveness

In the first experiment, two different types of real-time models are evaluated as a
base for test case generation and execution.

In the first model, all task instances are conservatively modelled to behave as
the task instance with the longest execution time. That is, the longest execution
time observed for a particular task is used to construct a task execution pattern that
is used for all task instances.

In the second model, the n’th task instance is modelled to behave as the worst
case behavior observed for that particular task instance. One effect of this is that if,
for example, the third invocation of a task always executes longer in all measure-
ments, then it is modelled to have a longer execution time.

From both models, test cases were generated using the heuristic driven simu-
lation approach described in chapter 7. Hence, this is similar to the setup in pre-
vious test case generation experiments (see section 7.4). The execution environ-
ment model encoded in the tool was configured to correspond to the fixed priority
scheduling and priority inheritance protocols defined by the RTAI documentation.

The same testing criteria and mutation operators were used for generating test
cases for both approaches.The testing criteria was based on the “+/-20 Execution
time”, “+/-20 Lock time” and “+/-20 Unlock time” mutation operators. To be able
to keep these testing criteria fixed, some time constraints and system attributes had
to be changed between experiments. The reason for this difference is that one of the
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Task Worst-case execution pattern
TrajectoryMgr 10,5 +T 5,5 -T 4,5 +S 399,9 -S 3,5
RefAdjuster 14,7 +S 6,7 -S 4,8 +R 1,9 -R 4
ForceHandler 7,0 +Q 5,4 +T 4,1 -T 2,7 -Q 3,1
Controller 1 11,5 +Q 8 +R 12,3 -R 6,7 -Q 3,5
Controller 2 12,2 +Q 12,4 +R 13,1 -R 14,6 -Q 11,9
Controller 3 9,6 +Q 7,7 +R 10,2 -R 7,7 -Q 3,4
Watch Dog 7,5 +Q 4,5 -Q 3,9 +T 4,1 -T 3,1

Table 9.6: Worst-case execution measurements (in micro-seconds)

modelling styles is more pessimistic with respect to resource consumption than the
other. Hence, if exactly the same system is modelled with both approaches, then
the more pessimistic approach results in a model that is unfeasible (that is, dead-
lines can be missed in the unmutated model) whereas the other model contains so
much slack that no generated mutant would be malignant. This difference makes it
impossible to compare the results from the different approaches directly. However,
since random testing is used as a base-line in both experiments, it is possible to
assess the relative effectiveness of the different models for this particular platform.

Setup 1

The motivation for the first modelling approach is that if the system is designed to
be timely it must cope with the longest execution times of tasks. Even if a “worst-
case” execution time of a particular task seldom occurs, it may eventually occur
together with other worst-cases.

Table 9.6 lists the execution pattern used for the different tasks. In the execution
pattern table, +X denotes that the task locks resource X and -X means that the task
unlocks resource X.

The task set attributes for this system are listed in table 9.7. The deadlines
for the sporadic tasks are set so that the model is feasible. Hence, for this unmu-
tated system model a genetic algorithm search did not find any deadline violations
(running 10 times for 200 generations).

Using the tool described in chapter 8, 70 mutants were automatically created
and analyzed. The system model defined by tables 9.7 and 9.6 as well as the mu-
tation operator types listed in table 9.8 were used as input (The columns headings
in table 9.8 have the same meaning as in section 7.4). Only 6 mutants were killed
for this system model. None of the mutation operators that changed the locking
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Task Period/MIAT Offset Deadline
TrajectoryMgr 1000 600 800
RefAdjuster 700 1500 650

ForceHandler 600 300 600
Controller 1 400 0 700
Controller 2 400 200 700
Controller 3 800 0 1500
Watchdog 600 0 500

Table 9.7: Task set attributes, setup 1

Mutation operator ∆ µ KGA KGA

Execution time 20 14 6 6.0
Lock time 20 28 0 0
Unlock time 20 28 0 0
Total - 70 6 -

Table 9.8: Results from mutation-based test generation

behavior actually caused any timeliness failures. Five test-suites were generated to
be able to repeat our experiment. Consequently, five test suites with 6 generated
activation patterns each were run on the target system to test its timeliness. Each
activation pattern was 10 times (once for each set of task input data).

For comparison, five test suites with 10 random activation patterns each were
also created and run with all sets of input data. All the random activation patterns
for this experiment were generated with uniform distribution so that the specified
minimum interarrival time was maintained while the average system load was at
the same level as when the mutation-based tests were run.

The result of the test execution is presented in table 9.9. In this table, the
column marked ‘#’ contains the number of random test cases in each test-suite.
The columns marked ‘F’ contain the number of test cases in each test suite that
revealed timeliness failures. Since no “+/-20 Lock time” or “+/-20 Unlock time”
mutants were killed, no tests of this kind could be run on the target system.

From table 9.9, it can be seen that two of the 50 random activation patterns
revealed a timeliness violation in at least one test run. Furthermore, 3 of the 30
activation patterns generated using mutation testing revealed timeliness failures.
The difference in effectiveness is negligible and consequently much smaller than
expected. An comment on this result is presented in the analysis part of this section.
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Random Exec.
Trial # F KGA F

1 10 0 6 1
2 10 1 6 0
3 10 0 6 1
4 10 1 6 0
5 10 0 6 1
Total 50 2 30 3

Table 9.9: Results from initial comparison with random testing

Task Period/MIAT Offset Deadline
TrajectoryMgr 600 600 800
RefAdjuster 700 1500 650

ForceHandler 600 300 600
Controller 1 400 0 400
Controller 2 400 200 400
Controller 3 800 0 800
Watchdog 600 0 500

Table 9.10: Task set attributes, setup 2

Setup 2

The hypothesis for the model used in this setup is that, for small applications a
large part of the task code and data fit in the system cache, and hence, the execution
time differs significantly between the first and the reminder of the task instances.
Furthermore, state changes in the tested tasks and variations of series of input data
read by the tasks may cause deterministic differences in execution behavior from
one task invocation to the next. Using the less pessimistic modelling style, the
model was feasible using the time constraints specified in table 9.10. Five test
suites of each kind were generated for this system configuration. Table 9.11 lists
the number of malignant mutants detected during the generation of these test suites,
and the number of mutants killed on average for each type.

Five test suites with ten random activation patterns were generated for compar-
ison. These were of the same type as the random tests used in setup 1.

To further check the relative effectiveness between mutation-based testing and
other naive testing approaches, we manually generated a test suite with two acti-
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Mutation operator ∆ µ KGA KGA

Execution time 20 14 7 7.0
Lock time 20 28 8 6.0
Unlock time 20 28 6 4.0

Total - 70 21 17.0

Table 9.11: Results from mutation-based test generation

Random Manual Exec Lock Unlock
Trial # F # F KGA F KGA F KGA F

1 10 0 4 0 7 4 7 5 4 1
2 10 0 4 0 7 4 7 4 5 1
3 10 0 4 0 7 4 5 4 5 0
4 10 0 4 0 7 5 5 1 4 1
5 10 0 4 0 7 3 6 2 2 0
Total 50 0 20 0 35 20 30 16 20 3

Table 9.12: Results from Test Execution

vation pattern types that we believed would reveal timeliness failures better than
random testing. The activation patterns were(i) to activate all sporadic tasks with
their minimal interarrival time, and(ii) let the first activation of all sporadic tasks
occur at the same instant and then with their minimum interarrival time. Each man-
ual test suite contained two activation patterns of each type.

Each test suite was executed on the target system and each test case was re-
peated 10 times using a different set of input data. The results are listed in table
9.12 using the same column headings as in table 9.9. As this table illustrates, all
test suites generated with mutation testing found timeliness violations in the real
system. A surprising result was that neither the manual nor the randomly generated
tests cases found any timing faults in any of the trials. Since all the random tests
cases were unique activation patterns, it can be concluded that any one of the five
test suites complying to “+/-20 execution time” coverage is more effective than 50
random activation patterns for this system setup.

Analysis of experiment 1

When comparing test logs from the first setup and simulation traces from killed
mutants it can be seen that most of the mutants are killed late in the simulation
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trace whereas almost all deadline violations in the real system are detected when
tasks are activated for the first time. It is also evident that the simulated task in-
stances execute much longer than the real software tasks on average. This effect is
particularly evident late in the simulation trace.

We believe that this behavior is due to the large size of hardware caches and
the relatively complex caching architecture of the target system. After the first
invocation of a task all the source code and local data for a task may have been
copied to the cache memory (first or second level). Since each real-time application
task is activated with a high frequency (relative to other threads running in Linux
user-space) the probability that the data used by the the real-time tasks remain in
the cache is high.

The effect of this discrepancy between the model and the real system’s behavior
is that the heuristic search algorithm often creates an activation pattern to stress
a critical interval late in the simulation. However, on the target system, the real
execution time is much shorter than in the simulation in this interval, and hence,
the generated activation pattern is unlikely to reveal any timeliness failures.

This effect is compensated by the modelling style applied in experiment setup
2. By modelling the task instances separately, the simulated model is more similar
to the system behavior. Consequently, the heuristic search algorithm has a better
chance of identifying the activation patterns that also stress the real system imple-
mentation. The improvement in the relative effectiveness of the mutation-based test
suites for the second setup indicates that the mutation-based framework is sensitive
to large mistakes in execution pattern modelling. This implies that it is useful to
exploit feedback from measurements collected during unit testing and not be overly
pessimistic when creating models for system level testing purposes.

Another observation is that for both experiment setups there exist intervals in
the test logs in which no real-time task is allowed to run even if several tasks have
been requested for execution. We assume this is caused by platform overheads and
disturbances that are not part of the model.

If overheads of this type occur deterministically for certain execution orders or
task executions, then they can be treated as a difference between the model and
the implementation and included in the execution environment model for a new
iteration of analysis and test case generation. However, transient faults that cannot
be controlled or predicted are difficult to model in a meaningful way.

Once transient faults have been identified as causing timeliness failures, there
are two ways of proceeding. The preferred way when building a real-time system is
trying to identify the causes of the transient timeliness faults (unpredictability) and
removing them from the system. If that is not possible (which may be the case when
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building real-time systems with off-the-shelf hardware and software components),
extra computing resources can be included, or features removed so there is slack in
the system to cope with the “noise” introduced by the transient faults.

A problem in this context is estimating the amount of slack needed to avoid
timeliness failures in the new system. The only way to gain confidence in a such
system may be testing since traditional analysis methods for real-time systems typ-
ically do not cope well with unpredictable disturbances (Burns & Wellings 2001).
Further, by allowing this types of timeliness faults in the system, the effectiveness
of timeliness testing methods is also negatively affected since test cases must be
run more times to obtain reliable results. In addition, it is generally impossible to
know if the worst case has been observed for a particular test case.

9.4.2 Experiment 2 - Effectiveness with Seeded Errors

The purpose of this experiment is to investigate the effectiveness of mutation-based
testing when the target system is designed to cope with some transient timeliness
faults. In particular, we investigated the relative effectiveness of the test suites in
testing system variants with both seeded errors and transient faults2. We compared
the results for different levels of slack to discover how much the different test suites
stress the non-deterministic system.

For this experiment, we created a number of variants of the Flexcon demonstra-
tor application with seeded errors by adding a busy delay at a random point in the
tasks code. The error seeding was controlled so that each task was affected by one
error. The basic block in the task code where the error was injected was chosen by
random. This means that the error can occur within a condition statement or in a
code segment where a shared resource is locked. The size of the busy delay added
to the source code was 80 microseconds. Table 9.13 summarizes the result of the
errors seeding for different variants of the system.

Since this experiment required running 7 times as many tests, we only did a
comparison between random testing and one of the mutation-based testing criteria
(approximately 6000 test runs were executed for this experiment). In particular,
five “+/-20 execution time” test suites and five random test suites from experiment
one were rerun on each of the 7 variants of the target system.

As an example, figure 9.7 shows the number of effective test cases for two test
suites executed on variant 7. In this figure, the solid line is the test cases generated
with mutation-based testing and the dashed line represents the random test cases.

2These remains in the seeded variants since we could not easily fix the transient faults detected in
the first experiment.
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Version Task Resources
1 TrajectoryMgr S
2 Refadjuster -
3 Force handler Q&T
4 Controller 1 Q
5 Controller 2 Q&R
6 Controller 3 -
7 Watch-dog T

Table 9.13: Software variants and affected entities of seeded errrors
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Figure 9.7: Failures detected in variant 7 of the system



106 Case Study: Testing using the Mutation-based Framework

1
2

3
4

5
6

7 50
150

250
350

450

0

2

4

6

8

10

Lateness
Software Version

E
ffe

ct
iv

e 
T

es
t C

as
es

Figure 9.8: Failures detected in seeded variants with random testing

Point 0 on the x-axis indicates the number of effective test cases (using the y-axis),
assuming the deadlines listed in table 9.10. The values along the x-axis represent
an iterative increase (in steps of 50 microseconds) of all the deadlines in table 9.10.
Since there is 7 mutation-based test cases and 10 random test cases in a test suite,
the maximum of the solid line is 7 whereas the maximum of the dashed line is
10. The graph is not normalized to maintain visibility of the number of test cases
leading to failures. This type of graph indicates how many test cases in each test
suite cause deadlines to be missed and how late the system responds when tested
with different kind of test suites.

An overview of the results for all the software variants is presented as a surface
plot in figures 9.8 and 9.9. These figures contains the results of the most effective
test suites for each software variant with seeded faults. The graphs contain the
same information as in figure 9.7, but each of the variants is plotted on the z-axis.
Similar plots for the least effective test suites and the mean effectiveness is given
in Appendix C.

From these surface plots it can be seen that the test suites generated with
mutation-based testing contain a larger percentage of effective test cases, and con-
sistently reveal behaviors with longer response times than random testing.
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Figure 9.9: Failures detected in seeded variants with mutation testing

Analysis of experiment 2

This experiment indicates that a large fraction of the mutation-based test cases re-
mains effective for finding seeded errors when the slack in the system is increased
to compensate for some transient errors.

A remarkable observation is that even after the software has been seeded with
deterministic timeliness errors, test cases with random activation patterns are often
incapable of causing any deadlines to be missed. This indicates that a system tested
only with random activation patterns can contain many potential timeliness errors
that are never revealed.

For example, if variant two of the system implementation was tested using 50
random activation patterns (that is, 500 test runs with different combinations of
task input data and activation patterns) no deadline violations would be detected3.
In the trial with the least effective mutation-based tests (see figure C.2 in Appendix
C), five of the timeliness test cases reveal missed deadlines in this system and the

3If we assume that the performance of executing random activation patterns is comparable to the
simulation experiments with random search, described in section 7.4, then it is likely that random
testing will perform badly even if the number of random tests are significantly increased.
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system was stressed so that a deadline was missed with over 200 microseconds
(this trial consisted of 70 test runs). These results support the claim from section
3.4 that methods for testing of timeliness benefit from exploiting information about
the internal behavior of real-time systems.

There are some issues concerning the setup of this experiment, that need to be
discussed. One such issue is that the errors seeded during experiment two are big
in relation to the measured execution behavior of tasks. The reason for this is that
the increase in system slack adds a “dampening” effect which makes small errors
difficult to detect. By adding big timeliness errors we increase the probability of
a deadline being missed in a system with additional slack and this makes it easier
to compare the testing approaches. A more thorough discussion related to seeding
timeliness errors is available in section 10.4.1.

Another important note is that execution orders are independent of the amount
of slack in the system when using fixed priority scheduling protocols. This is not
the case when using other execution environments. It is, thus possible that the
effectiveness of mutation-based test suites for such systems is more sensitive to
increasing the slack. Hence, the comparison presented in this section may not
necessarily generalize to systems with dynamic priority schedulers.



Chapter 10

Discussion

This chapter contains a discussion of the methods and experiments presented in this
thesis. Furthermore, some related ideas that remain to be evaluated are presented.

Referring to the framework overview in figure 5.1, issues relating to testing
criteria and model analysis (activity 1 and 2) are discussed in section 10.1, aspects
of test case generation (activity 3) are discussed in section 10.2 and a discussion of
how test execution (activity 5) can be performed in a way that exploits mutation-
based test case generation is found in section 10.3. Task input data generation
and test analysis (activities 4 and 6) are not addressed in this chapter, since no
significant contributions have been made for these activities.

Finally, section 10.4 contains a discussion of issues relating to validation and
the research presented in this thesis.

10.1 Mutation Operators and Testing Criteria

When discussing mutation-based testing criteria, three issues need to be addressed.
These are(i) comprehensiveness,(ii) meaningfulness, and(iii) cost effectiveness.

In this context, comprehensiveness means, that for all errors that might lead to
timeliness failures of a tested system, a corresponding mutation operator is defined.
A mutation operator is considered meaningful if it creates at least one malignant
mutant. It could also be argued that a meaningful mutation operator should gen-
erate mutants which represent some error type that actually can occur during the
design or implementation of real-time systems. This property is more difficult to
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evaluate, but if it is possible to come up with examples of faults that would cause
such an error (such as described in section 6.3), then it is likely that the operator is
meaningful even under that definition. A mutation operator is not cost effective if
it creates a huge number of rarely malignant mutants.

As previously mentioned, it is generally impossible to show that a set of muta-
tion operators is comprehensive. Further, it is possible that some mutation opera-
tors are not meaningful or too expensive for a specific system (for example, due to
properties enforced by real-time protocols).

These issues are encountered for most types of mutation testing, and knowledge
of comprehensiveness, meaningfulness and cost effectiveness typically develop as
a testing method matures and is used in different situations.

For comparison, a set of mutation operators for class testing (object-oriented
testing) were first presented by Kim, Clark & McDermid (2000). These were used
and refined by Chevalley & Th́evenod-Fosse (2002) two years later. At the same
time Offutt et al. developed a categorization for object oriented programming faults
(Offutt, Alexander, Y.Wu, Xiao & Hutchinson 2001). This resulted in a more com-
prehensive set of mutation operators for the Mujava tool (Ma et al. 2005). However,
subsequent experimental studies revealed that some of the mutation operators were
expensive compared to their fault finding capability when used on a set of open
source systems, whereas other operators were determined to be meaningless since
they only produced benign mutants (Offutt, Ma & Kwon 2006).

With this analogy in mind, our current impression is that the mutation operator
types in section 6.3 provide a comprehensive set of mutations which are meaningful
for real-time applications that can be modelled with the TAT notation. Subsection
10.1.1 also presents some additional variants of mutation operators and subsection
10.1.2 describes how new mutation operators could be integrated to the proposed
testing framework.

In this thesis, we generated mutation-based test cases for a small real-time ap-
plication (see section 9.3) and some different types of hypothetical real-time system
models (see section 7.4). It is thus too early to make general statements about the
overall cost effectiveness of the mutation operators in section 6.3. However, our
first impression is that the mutation operators which indirectly increase the load
in potentially critical intervals (for example,∆+ execution time mutants or∆−
inter-arrival time mutants) are more cost effective than the corresponding muta-
tions which decrease the system load. This is intuitive, since the load of real-time
systems is directly related to timeliness, whereas other types of mutations typi-
cally cause timeliness failures via increased blocking times and race conditions.
On the other hand, timeliness faults leading to dangerous race conditions may be
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hard to reveal using other testing methods (for example, brute force random test-
ing on a non-deterministic platform), and hence, the low cost effectiveness and the
increased computation effort might be acceptable in some situations.

10.1.1 System Specific Mutation Operators

As previously discussed, the mutation operators evaluated in this thesis are only
comprehensive for applications that comply with the TAT real-time application
model notation. This excludes some fault types that might lead to timeliness fail-
ures in some specific systems.

For example, the TAT notation presented in section 6.2 assumes that each re-
source is locked and unlocked by the same task instance before it terminates. In
practice, this means that the handling of semaphores must be encapsulated and
used only for protecting critical sections. This is typically the case if concurrency
control is provided to the user in the form of mechanisms such as condition critical
regions (where a compile-time warning is issued if a semaphore is incorrectly used)
or monitors (where locking and unlocking is handled implicitly when entering and
exiting monitor functions).

Unfortunately, not all execution environments for real-time applications en-
force programmers to use such well behaved concurrency control mechanisms1.

Further, in some systems, low level mechanisms such as semaphores might be
used for synchronization between tasks, or for modelling some condition in the
systems environment. For such situations, the basic TAT notation is not sufficient
to accurately model the possible execution orders in the target system.

However, the simulation based approach for test-case generation and the flex-
time tool is designed in such a way that it can still be used to support many exten-
sions. System specific extensions to the notation for real-time application models
and new types of mutation operators might therefore be needed to automatically
generate effective test cases. It is unclear if these kinds of extensions can be added
to a model checker tool so that the schedulability analysis used for killing mu-
tants can still be performed. If the simulation based approach is used, it should be
straightforward to add such extensions to the execution order analysis.

An example of such a mutation operator and the and associated extensions fol-
low. However, we have not conducted any experiments with these extensions.

1Despite many efforts in academia to raise the abstraction of real-time system design and imple-
mentation, many real-time operating systems and platforms still assume that low-level languages and
synchronization mechanisms are used directly.
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Lock omission mutant
In a system where semaphores must be manually set for protecting critical sections
it might be the case that unlocking a resource is not only delayed, but completely
omitted. Hence, the “lock omission” mutation operator removes the operations2

that lock or unlock resources.
Omitting the operation where a resource is locked does not have a direct ef-

fect on timeliness. However, since a mutual exclusion constraint is violated, it is
possible that a logical error eventually occurs which changes the control flow so
that tasks behave differently than expected. The effect of omitting the operation in
which a resource is unlocked is much more severe, since any other real-time tasks
which need to lock that resource are blocked indefinitely.

In addition, elusive race conditions might occur if a system contains errors in
which both lock and unlock operations for a particular resource are omitted by
different tasks.

To support this type of mutation operator, the notation for resource locking
would have to be extended with a special symbol†, representing “never”. With this
extended notation, the setSEM could contain tuples in any of the forms(s, t1, t2),
(s, t1, †), (s, †, t2). Given this extension, the lock point omission operators can be
defined.

Mutation Operator 15 unlock omission:
Given a TAT model with task set P, for every task(ci, di, SEMi, PRECi) ∈ P
and every semaphore use(s, t1, t2) ∈ SEMi, create one mutant in whicht2 is
changed to†.

Mutation Operator 16 lock omission:
Given a TAT model with task set P, for every task(ci, di, SEMi, PRECi) ∈ P
and every semaphore use(s, t1, t2) ∈ SEMi, create one mutant in whicht1 is
changed to†.

10.1.2 Guidelines for Adding Mutation Operators

The mutation-based framework for testing of timeliness proposed in this thesis is
intended to be general and support as many types of target systems as possible.
However, it is not feasible to predict all possible target systems and all the possible
system specific mutation operators that might be desirable for comprehensiveness.
Therefore, this section describes some guidelines for adding mutation operators.

2These are sometimes called the entry or exit protocols of a critical section.
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In principle, mutation operators can be defined to add, remove or change the
attributes of some entity or relation between entities in the real-time system model.
For example, such entities are tasks and resources and attributes are execution times
and constraints on the inputs (see Appendix D).

The following guidelines are based on what kinds of extensions are directly
supported by the proposed notation and the design of the Flextime tool. This pro-
vide an indication of how to model a particular hypothesized fault. We assume
that most of the guidelines also apply to extending a model-checking tool to per-
form execution order analysis, but this depends on the design and limitations of the
particular model-checker.

Do not add errors that make the real-time model non-deterministic

If the simulation of a mutant with a particular activation pattern becomes non-
deterministic (for example, by modelling the execution time of tasks as a random
distribution), then it is difficult to determine if the activation pattern leads to a
dangerous execution order or not. Hence, the search for an effective activation
pattern is disturbed. If a particular fault is transient, model the behavior when the
fault occurs, find an activation pattern to reveal it, and run it multiple times on the
non-deterministic target system instead. This is a way to divide and conquer the
testing problem.

Combine the effect of existing mutation operators

This means that several mutation operators are applied to the same model, but po-
tentially mutating different entities. For example, by applying two existing muta-
tion operators (“∆− Interarrival time” and “∆− Execution time”) it is possible to
test if a system is untimely when the period of task A is extended and the execution
time of task B is decreased. This does not require any changes in the notation for
the real-time system model. It is notable that one effect of specifying this type of
mutation is that one mutant is created for every possible combination.

Iteratively apply existing mutation operators

This means that several mutation operators are applied in series for mutating a
specific entity. For example, it is possible to test the consequences if the execution
time of task B is longer than expected and the point in time when a resource is
unlocked is also delayed. This does not require any changes in the notation for the
real-time system model. Also, this kind of mutation becomes a specialization of
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an existing mutation operator so the maximum number of mutants created will not
increase.

Add or replace some real-time task

If timeliness errors can be modelled as real-time tasks which execute with a certain
activation pattern that is predictable or controllable during testing, then a mutation
operator could add such tasks to the system without changing the notation for the
real-time system model. For example, if a suspected error is that the application
periodically is disturbed by some undocumented kernel overhead (or a task created
by a COTS software module), but the frequency or what the consequences might
be is unknown, then it is possible to create a mutation operator that adds different
variants of a periodic task. The mutants are then analyzed to discover the malignant
variants and generate test cases that can reveal such behavior.

Inject or modify specialized execution segments

With a small extension to the TAT-notation and the FlexTime add-on it is possible to
model timeliness errors by creating new types of execution items (see section 8.2).
Mutation operators can then be specified that inject or modify execution items in
the execution pattern of tasks. For example, the system specific mutation opera-
tor outlined in section 10.1.1 could be implemented with an operator that removes
the execution items which perform the locking and unlocking of resources. An-
other example is adding an execution segment that cannot be preempted or one that
blocks the task and waits on a particular data dependency.

Modifying tasks instance execution patterns

As described in section 8.3, all the current mutation operators change a task execu-
tion pattern so that the behaviors of all task instances are changed in the same way.
The extended modelling style used in the case study described in section 9.4.1 and
the associated support in the timeliness testing tool (T 3) actually allow mutation
operators to change a subset of task instances. Hence, it is possible to create mu-
tation operators that modify only one of the execution patterns. For example, it is
possible to create a mutant operator that change the second instance of task A to
execute twice as long as the previous one.
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Mutating some execution environment model property

The mutation-based test case generation approach proposed in this thesis typically
assumes that the execution environment model is fixed for all mutants and that only
properties of the real-time application models are modified by mutation. However,
if properties of the execution environment model are parameterized (so that changes
do not require recompilation of the kernel simulator), then it is possible to define
mutation operators that change aspects of the execution environment. For exam-
ple, a mutant can be that the priority inheritance protocol has been implemented
incorrectly.

10.2 Test Case Generation Issues

The test case generation method proposed in this thesis is primarily associated with
generating activation patterns for event-triggered tasks. Since the target platform
contains sources of non-determinism (for example caches), several different execu-
tion orders are expected for a particular activation pattern of sporadic tasks. Once
a particular activation pattern has been generated the test execution techniques pre-
sented by Thane and Pettersson (Thane 2000, Pettersson & Thane 2003) can be
used to gain coverage of these expected execution orders. Furthermore, the execu-
tion order descriptions generated by our approach provide added value since it is
possible to determine a subset of these execution orders that are most the relevant
to cover for testing of timeliness. The generated execution orders can also be used
to support prefix-based testing (see section 10.3).

The execution order analysis performed during test case generation can be seen
as a rudimentary form of automated sensitivity analysis for event-triggered real-
time systems (c.f. Andersson, Wall & Norström (2006)). However, since we cannot
guarantee that our method will find timeliness violations in a model, we do not
claim it is rigorous enough to be used this purpose. Testing has the fundamental
limitation that it can only show the presence of errors, but not their absence (Dahl
et al. 1972). The heuristic-driven execution order analysis shares this property and
should therefore be used primarily for testing.

Another possibility is to take the activation patterns generated from mutated
models and simulate them on the un-mutated model. This can be seen as testing
the timeliness of the model. Obviously, this does not state anything about the prop-
erties of the implemented system, but it is likely that such test cases can reveal
timeliness violations in models difficult to analyze formally due to reachable state
space explosion.
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10.2.1 Scalability of Test Case Generation

As opposed to model-checking, the memory consumption does not increase as
quickly as the reachable state space of the analyzed model when using a method
based on heuristic driven simulation. In addition, the analysis can be halted any
time to give the current “best-try” for killing a mutant. Nevertheless, when test
cases should be generated from complex system models, the computing time re-
quired for on analyzing mutants increases. The following three factors contribute
to this effect:

1. The number of mutants created by the selected mutation operators (for ful-
filling a given test criteria) increases in a polynomial way with the number of
tasks and resources, as outlined in section 6.3.

2. As the search problem expands, more iterations of the genetic algorithm
search are required to gain confidence that all the malignant mutants have
been killed. The impact of this factor depends on the characteristics of each
particular search problem (c.f., Michalewicz & Fogel (1998)), for example,
how many execution orders that kill a mutant or if those execution orders
correspond to local optima which the heuristic cross overs are likely to exer-
cise. Clearly, it is difficult to estimate the impact of this factor in a general
way.

3. The third factor is the time required for each simulation run in the fitness
function. The dominating variable in this context is the number of events in
the simulation interval and consequently the length of the simulation interval.
The length of the simulation interval is determined by the hyper-period of the
periodic tasks, that is, the least common multiplier of their periods3. Hence,
if there are many periodic tasks with relative prime periods, then the simula-
tion interval may be long. However, this factor can be bounded to a constant
by using a global offset as part of the genome and simulating a shorter sub-
interval starting from that offset. With this modification, the simulation time
can be considered constant with respect to the input domain.

10.2.2 Genetic Algorithm Enhancements

The genetic algorithm suggested for generating test cases in this thesis should be
considered a prototype for investigating the feasibility of the test case generation

3Plus the time for the longest offset in the task set
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method. The method can be extended in several ways to improve its performance,
for example, by evaluating more sophisticated fitness and cross-over functions.

One such extension is preparing the initial population of a genetic algorithm
with activation patterns suspected of causing long response times. For example,
letting all the activations occur as fast as possible is an intuitive heuristic for stress-
ing a real-time system. Another case that could result in long response times is
to activate all the sporadic tasks at the same time. In general, if there exists algo-
rithms (with polynomial time complexity) that can generate the “worst-case” acti-
vation pattern under specific conditions, these can be added for preparing the run
on the initial population. Hence, if the execution environment model used happens
to fulfill these conditions, then it becomes trivial to kill mutants.

Another useful extension is modifying the implementation of the heuristic cross-
over functions so that they can be used on a larger class of triggering TA templates.

We believe that the cross-over definitions presented in section 7.2 are useful in
the general case. However, if the triggering automata templates are complex and
contain additional application specific constraints (except task constraints, such as
minimum interarrival times), it is non-trivial to implement the cross-over functions
to change the activation pattern in the defined way without violating automata con-
straints. In particular, a transformation is needed from an activation pattern to a
particular valid trace in a specified triggering automata. As long as the triggering
automata patterns are small and can be isolated (using parallel decomposition (c.f.,
Fersman (2003))), we assume that an exact implementation can be made using con-
straint solving. Another alternative is to implement an artificial neural network that
is continuously trained on the “inverse mapping function” for a specific automata.
Since the heuristic operators already contain stochastic elements, this may provide
a fast and sufficiently precise approximation for generalizing the cross-over imple-
mentation.

10.3 Prefix-based Test Case Execution

This section outlines a method that enhances test case execution in event-triggered
real-time systems. Further, the approach has the possibility of exploiting the in-
formation about critical execution orders that is generated using mutation-based
testing of timeliness.

When executing timeliness test cases in an event-triggered system we want
to concentrate our efforts on testing the situations in which the critical tasks are
likely to miss their deadlines. However, a problem when executing tests in real-
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time systems is the controllability issue which is related to non-determinism (see
section 3.3). This leads to problems in ensuring that a particular execution order
has been sufficiently tested.

As previously mentioned, most test case generation methods for testing timeli-
ness are limited to generating activation patterns, that is, sequences of events with
time-stamps. However, the system-wide state in which these inputs occur is sel-
dom specified in test cases. This implies that the same activation patterns must be
run multiple times to gain confidence in the system’s behavior, hoping that some
particular execution order occurs. In some situations, this becomes problematic.
As an example, consider the simple case when two tasks are executed on the same
processor and 70% of all the executions tasks are interleaved in the same way. To
reveal an error associated with the reversed execution order of these tasks, the sys-
tem must be executed at least 13 times to give 99% probability of observing the
reversed order one time. Further, assume that the error in this particular execution
order is only revealed using one of 100 input data. If non-deterministic testing is
used we must execute and analyze 1300 tests to have a high probability of revealing
the error.

As discussed by Schütz (Scḧutz 1994), the number of possible execution or-
ders grows very quickly with the number of activated tasks instances in an event-
triggered system, hence, the probability of observing a specific execution order de-
creases accordingly, even if a uniform distribution of execution orders is assumed4.

The alternative is to have some mechanism that controls the execution so that a
desired execution order always occurs, or a mechanism that increases the probabil-
ity that of an execution order occurring during testing.

However, when performing timeliness testing (and other time dependent test-
ing), intrusive probes cannot be inserted in the execution environment during test
execution and then removed, as this would change the temporal behavior of the
tested system so that it becomes different from the system used in operation (see
section 3.3). For the same reason, a “forced” execution must be exactly the same as
a behavior that would occur without the enforcing mechanism. According to Shütz,
it is difficult to force a single execution order without modifying the target system
in a way that alters its timing (Schütz 1993).

A potentially less intrusive approach to enhance the efficiency of test case exe-
cutions is to increase the probability that a particular execution order occurs. One
way of doing this is to include a state description as a test-prefix in each test case,
and hence, enable a more controlled test execution even if no single execution order

4It is possible that some execution orders occur much more seldom than others, making it even
harder to reach them.
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is forced (Hwang et al. 1995).
However, adding state-information prefixes to test cases has some implications

for test case generation and execution. First, the test case generation method must
support the generation of prefixes. Second, the test harness must be able to force
the system to an arbitrary specified system state. This generally requires that the
system can be monitored and controlled at instruction level precision – to pre-empt
each task at the exact instruction specified by the test case. This is generally not
feasible on a non-deterministic hardware platform.

By using constraints on the system architecture as described by Mellin (1998)
and Birgisson et al. (1999), the problems associated with realizing prefix based
testing are simplified. In particular, including designated preemption points reduces
the number of observable intermediate states in the system and supports the test
execution scheme described in section 10.3.2.

10.3.1 Prefixed Test Cases for Testing of Timeliness

Test cases for prefix-based timeliness testing contain an activation pattern, an ex-
pected outcome and an initial state description (prefix).

In complex systems such as concurrent real-time computers, a state description
can be expanded almost infinitely by considering more detail. However, to enhance
test execution on non-deterministic platforms it is sufficient to specify the initial
state in such a way that the probability of reaching a specific execution order is in-
creased compared to executing the system from an idle or start-up state. To achieve
this, the prefix state-description suggested below comprises:

• Pre-emption points of active tasks

• State of system-wide locks

• State of ready queue and/or schedule

• Time relative start of the loading interval

This mean that prefixes can be specified at the granularity of pre-emption points
in the code and that an execution order trace of the loading interval and critical
interval can be used to define a prefix. Hence, if these kinds of constraints are
supported, the mutation-based test case generation methods presented in this thesis
can be used to generate interesting prefixes. In particular, this information can be
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Figure 10.1: Test execution phases

generated by injecting the test-case activation pattern on the mutated real-time sys-
tem model and then store a snapshot of the simulation state just before the mutated
entity may affect the simulation.

In addition to the prefixes, the test case information specified in section 5.2 is
still required for prefix-based testing of timeliness.

10.3.2 A Prefix-based Test Case Execution Scheme

The first step in executing a test case with this scheme would be to run the system
into the specified prefix state. Under a strict pessimistic concurrency control pol-
icy, the active transactions have also acquired locks on all the required resources
(Gray & Reuter 1993). Hence, serial execution up to the required transaction states
is possible while no time dependencies are reflected in the data objects (in Figure
10.1; transactions T1, T2, and T3 are executed sequentially to specified preemp-
tion points). Obviously, the state of the locked objects influences the execution
time of the individual transactions; hence, relevant states of shared objects should
be treated as task input data. Once each active task is executed to the specified
preemption point, they are combined into a concurrent prefix state. Pending trans-
action tasks which have not yet been allowed to execute, but are part of the prefix
specification, are added to the ready queue. If a dynamic scheduler is used, it is
assumed to have updated the ready queue as a direct response to incoming events
and hence, one must allow it to build an initial schedule before the test execution
begins. At this point the specified prefix has been reached.

In the second phase the system is executed from the prefix state and inputs are
externally injected according to the activation pattern part of timeliness test cases.
The behavior of the system is continuously monitored and logged using the event
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monitoring facilities present in the architecture. The event logs are used after the
test case execution to verify that a correct execution order was observed and that
all the outputs occurred within their time constraints.

10.4 Validation of Mutation-based Testing of Timeliness

This section contains a discussion of the issues related to validating timeliness test-
ing methods in general, and the hypotheses outlined in this thesis in particular.

10.4.1 Evaluating Timeliness Test Cases

A typical way of comparing the effectiveness of testing methods is runing test suites
to see which ones find the most faults. This requires access to a set of software that
contains the type of faults used for comparison. There are three ways of obtaining
to such software.

One is to use software systems that already contain faults. These may be faults
that have been found, documented and corrected in a new release. It is also possible
to use non-tested software that has (at least not tested at this particular level or for
a specific type of faults). This approach was used for the experiment described in
section 9.4.1. A second way is to automatically seed faults in an assumed correct
software by changing the software system directly (as opposed to the mutation
operators in section 6.3 that only change the model of the system). This approach
results in a number of variants of the system, each containing a fault at a randomly
chosen location. This is similar to the approach used in the experiment described
in section 9.4.1. A third way is to let a person manually seed faults in copies of
the software. If this approach is used, it is important to separate the task of seeding
faults from the task of applying a test method, since it may introduce some bias if
the tester knows the location of faults.

It is often difficult to manually seed realistic timeliness faults. The reason is
that such faults may arise from subtle interactions between software and hardware
components, or configuration decisions that are not visible in the application source
code. Further, for testing of timeliness there are some constraints on what kinds of
faults are meaningful and possible to seed. A dynamic real-time system design ex-
ecuting on a non-deterministic platform would probably contain some slack to tol-
erate transient disturbances (for example, see section 9.4.1). Hence, seeding very
small faults would probably not cause any timeliness failures and would therefore
not be detected using any of the compared testing methods. Conversely, faults cas-
ing substantial timeliness errors would be detected by running almost any execution
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order, and would consequently be detected using almost any testing method. The
faults difficult to find, and the ones that best evaluate the relative effectiveness of
testing methods, are those that only few of the possible execution orders can reveal.
This complicates the manual seeding of faults since it is hard for an independent
fault seeder to know what kind of faults that would cause such errors.

Another issue that complicates fault seeding is that some seeded faults might
cause logical errors that cannot be detected by the timeliness testing method. For
example, an output value might be incorrectly calculated from state variables and
certain input values. Such faults are assumed to have been found during unit testing
and are not meaningful to seed for evaluating this type of testing methods.

10.4.2 Validation of Thesis Statement

A significant part of the research in this thesis is associated with the development
of new techniques and the adaption of existing ones for a new problem domain.
This kind of research is guided by experience from small laboratory experiments,
intuition and continuous literature studies. Once basic confidence for an idea is
established, it is evaluated or demonstrated in a larger or more formal experiment.
Furthermore, the research is guided by the objectives presented in section 4.4.2. In
particular, the sub-hypotheses from section 4.4.1 and the corresponding objectives
and validation experiments are recapitulated and discussed in the following para-
graphs.

H1: There is a real-time specification notation which captures the relevant
internal behavior of dynamic real-time systems so that meaningful mutation oper-
ators can be defined.

Chapter 5 summarizes the activities and requirements for mutation-based test-
ing of timeliness so that both test case generation and test execution can be auto-
mated (objective 1). Based on these requirements, chapter 6 adopts a previously
defined real-time modelling notation (TAT) that captures the relation between ac-
tivation patterns and internal execution orders of dynamic real-time systems (ob-
jective 2). Subsequently, a set of mutation operators is defined for this modelling
notation and evaluated in a model-checking experiment. This experiment corrobo-
rates sub-hypothesis H1.

H2: Test cases for testing of timeliness can automatically be generated using
mutation-based testing and models of dynamic real-time systems.
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In chapter 6 it is recognized that the same model-checking mechanism used for
validating the mutation operators can be used for automatically generating timeli-
ness test cases. However, since this method has limitations with respect to system
size and extendability, it is not practical for all types of dynamic real-time sys-
tems. Instead, chapter 7 presents another approach for automatically generating
mutation-based test cases using heuristic driven simulations (objective 3). This
method is evaluated in three test case generation case studies that corroborate sub-
hypothesis H2.

H3: Test cases generated using mutation-based testing are more effective than
random test cases for revealing timeliness errors on a realistic target platform.

To perform experiments and support extendability, a prototype tool was de-
veloped. The central features in the design of this tool are presented in chapter 8
(objective 4). In chapter 9, a case-study is described in which the mutation-based
testing framework is applied on a small real-time control application (objective 5).
The case-study exemplifies how the different activities in the framework can be
performed for a specific target system. It also contain an experiment that gives
confidence in the effectiveness of mutation-based test cases, given that large de-
terministic variances in execution patterns are captured during test case generation.
Hence, this experiment corroborates sub-hypothesis H3 under the condition that the
mutation-based test cases are generated using a suitable model of task instances.

Consequently, we conclude that this thesis provides one possible solution of
the problem outlined in section 4.35. An mutation-based testing method has been
adapted so that it can be used to automatically generate activation patterns that
target execution orders that are likely to reveal timeliness failures. Since the popu-
lation of dynamic real-time systems is unknown (this holds for most types of soft-
ware), it is difficult to assess the general applicability of a testing method based on
laboratory experiments and even industrial case studies (the problem is to obtain a
representative sample). However, the adapted method is defined in the context of
an extendable framework and, hopefully, this will encourage practitioners and re-
searchers to apply the method and its associated tool for other platforms and similar
testing problems.

5Note that it is possible to negate each of the sub-hypotheses and express the experiment results
as counter examples. However, we find it more natural to present the sub-hypotheses as statements
in the positive form.
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Chapter 11

Related Work

This chapter presents related work in the joint area of software testing and real-time,
reactive systems. The focus is on test case generation but other relevant contribu-
tions in the area of testing are also discussed.

11.1 Test Case Generation

This section describes the state-of-the-art methods of generating test cases for real-
time systems. In particular, there is a focus on methods that claim to generate test
cases for real-time, embedded or reactive systems. Table 11.1 lists the authors of
related work and classifies the contributions with respect to three categories. When
the same authors have several related publications addressing different aspects of
the same method, only one is included in the table. The first category (the column
denoted ‘T’) indicates whether the approaches are developed for system level test-
ing of time constraints. Generally, such approaches use some formal or structured
model for capturing time constraints.

The column denoted ‘I’ indicates if the related work uses information about
concurrent tasks, shared resources and real-time protocols for deciding relevant in-
puts. In contrast to our approach, few other methods based on formal notations
include this in their models (probably to avoid of the associated state space explo-
sion). However, if the internal behavior is not modelled, it is generally impossible
to predict the worst case activation pattern for a system that is implemented using
conventional real-time operating systems and task models. For example, exactly
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# Authors T I C
1 Braberman, Felder & Marré (1997)

y

y
y

2 Cheung, Chanson & Xu (2001) n
3 Clarke & Lee (1997)

n

y
4 Petitjean & Fochal (1999)
5 Hessel & Pettersson (2004)
6 Krichen & Tripakis (2004)
7 Mandrioli, Morasca & Morzenti (1995)
8 Cardell-Oliver & Glover (1998)
9 En-Nouaary, F. Dssouli & Elqortobi (1998)

n
10 Nielsen & Skou (2000)
11 Raymond, Nicollin, Halbwachs & Weber (1998)
12 Hahn, Philipps, Pretschner & Stauner (2003)
13 Watkins, Berndt, Aebischer, Fisher & Johnson (2004)
14 Morasca & Pezze (1990)

n
y

n15 Pettersson & Thane (2003)
16 Wegener et al. (1997) n

Table 11.1: Classification of related work

the same input sequence might give completely different behaviors depending on
the relative priority of active tasks.

The column denoted ‘C’ lists whether or not the related work proposes testing
criteria that are usable together with their method.

The method by Braberman et al. (1997) is the closest related work; they gen-
erate test cases from timed Petri-net design models. Similar to our method, a high
level notation, SA/SD-RT is used to specify the behavior of concurrent real-time
systems. In contrast to our approach, no mutant models are generated, instead their
design specification is translated to a timed Petri-net notation from which a reach-
ability tree can be derived and covered. Since the tree grows with the reachable
state space of the model, we conjecture that the number of tests becomes high for
dynamic real-time systems. Furthermore, no tool is publicly available to model
systems and automatically generate test cases using this approach.

Cheung et al. (2001) present a framework for testing multimedia software, in-
cluding temporal relations between tasks with “fuzzy” deadlines. In contrast to our
approach, the test cases generated are targeted for testing multi-media applications
and their specific properties. Similar to our approach, information about tasks and
precedence constraints are considered during test case generation.
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There are several methods for testing timeliness based on different kinds of for-
mal models. As mentioned above, these methods focus on covering the structure of
the model and typically do not model the behavior of real-time tasks and protocols
on the tested system. Further, none of these methods use mutation-based testing
techniques. These differences from our approach hold for all model-based methods
in this category, hence, they are not explicitly compared to our approach (see table
11.1, rows 3 - 13).

For example, Clarke & Lee (1997) propose a framework for testing time con-
straints on the request patterns of real-time systems. Time constraints are specified
in a constraint graph, and the system under test is specified using process algebra.
In contrast to our approach, only constraints on the inputs are considered and the
authors mention that it would be very difficult to test constraints on the output since
it depends on internal factors.

Petitjean & Fochal (1999) present a method where time constraints are ex-
pressed using a clock region graph. A timed automation specification of the system
is then “flattened” to a conventional input output automation that is used to derive
conformance tests for the implementation in each clock region. This method does
not describe the execution environment of the system such as scheduling protocols
and shared resources. However, a discussion of how clocks in the target system can
be handled when conducting model-based conformance testing is presented.

Hessel & Pettersson (2004) presents a method for automatically generating
conformance tests for real-time systems that are modelled using timed automata.
One of the main contributions of this work is the ability to use reachability analysis
tools to generate a “minimal” set of activation patterns that fulfill classical structural
coverage criteria for graphs (for example, as presented by Fujiwara, Bochmann,
Khendek, Amalou & Ghedamsi (1991)).

Krichen & Tripakis (2004) address limitations in the applicability of previous
black-box approaches and suggest a method for conformance testing using non-
deterministic and partially observable models. The testing criteria presented are
inspired by Hessel, Larsen, Nielsen & Skou (2003) but extended for test case spec-
ifications that allow several possible interactions with the implementation.

Mandrioli et al. (1995) suggest a method for testing real-time systems based on
specifications of the system behavior in temporal logic. The elements of test cases
are timed input-output pairs. These pairs can be combined and shifted in time to
create a large number of partial test cases; the number of such pairs grows quickly
with the size and constraints on the software. In a more recent paper, SanPietro,
Morzenti & Morasca (2000) expand the previous results to incorporate high-level,
structured specifications to deal with larger scale, modular software.
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Cardell-Oliver & Glover (1998) propose a method for generating tests from
timed automata models to verify the conformance to sequences of timed action
transitions. This method attempts to cover all reachable states and transitions in
the model, and hence, the number of test cases can become substantial. In a more
recent paper (Cardell-Oliver 2000), test views are introduced to limit the number
of test cases. However, no method for generating relevant test views are presented.
Another automata based approach is described by En-Nouaary et al. (1998). Their
approach exploits a sampling algorithm using grid-automata and non-deterministic
finite-state machines as an intermediate representation to reduce the test effort.
Similarly, Nielsen & Skou (2000) use a subclass of timed automata to specify real-
time applications. The main contribution of their method is a coarse equivalence
partitioning of temporal behaviors over the time constraints in the specification. In a
more recent paper (Nielsen & Skou 2003), the authors suggest strategies for choos-
ing delays within partitions, one of which is similar to random testing while another
tries to stress the system by choosing as short delays as possible. We assume that
the latter strategy produces test cases similar to the manually created tests used in
the experiment described in section 9.4.1. Raymond et al. (1998) present a method
of generating test cases for reactive systems. Instead of explicitly generating acti-
vation patterns, this approach focuses on constraints imposed by the environment
and on generating external observers.

Hahn et al. (2003) describe a method for generating test cases based on models
of reactive systems that interact with physical processes in real-time. The main
contribution of their work is the concept of using a separate continuous model to
generate expected outcomes in the value domain. No testing criteria are used, in-
stead feedback from the test execution and the continuous process model is used in
a “closed-loop” fashion to generate new tests. By using the control system mod-
elling approach, described in section 7.3 of this thesis, similar expected outcomes
could also be generated using mutation-based testing.

In contrast to our approach and the other methods in this category, Watkins et al.
(2004) do not use a formal model as basis for test case generation. Instead, genetic
algorithms are used directly to test complex systems that contain time constraints.
Data are gathered during the execution of the real system and visualized for post
analysis. The fitness of a test case is calculated based on its uniqueness and what
exceptions are generated by the systems and test-harness during test execution.
Similar to this method, our genetic algorithm extensions can be used directly on a
target system instead of on a model. However, the search problem would be more
complex and no testing criteria could be used for measuring the progress of such a
test method.
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There is some related methods, not developed for system-level testing of time-
liness, that nevertheless are relevant or complementary to our approach (see table
11.1, rows 14 - 16).

Morasca & Pezze (1990) propose a method for testing concurrent and real-time
systems that uses high-level Petri-nets for specification and implementation. This
method does not explicitly handle timeliness, nor does it provide testing criteria,
but it is one of the first to model the internal concurrency of the tested real-time
system using Petri-nets.

Thane (2000) proposes a method to derive execution orders of a real-time sys-
tem before it is put into operation. It was suggested that each execution order can
be treated as a sequential program where conventional test methods can be applied.
During test execution, the tests are sorted according to the pre-analyzed execution
orders. In a more recent paper, Pettersson and Thane (Pettersson & Thane 2003)
extend the method by supporting shared resources. In contrast to our method, this
method is developed for real-time systems where all task activation times are known
at design time.

Wegener et al. use genetic algorithms to test temporal properties of real-time
tasks (Wegener et al. 1997). However, the main focus of their work is determining
suitable inputs for producing worst and best-case execution times. This approach
is a valuable complement to our method, since we assume that relevant classes of
input data exist for each real-time task before system-level testing of timeliness
starts.

11.2 Testing of Real-Time Systems

Thane (2000) presents results for testing and debugging distributed real-time sys-
tems. As previously mentioned, Thane focuses on statically scheduled systems
where it is tractable to analyze the possible execution orders before the system goes
into operation. The system is then executed until there is enough test coverage of
each of the anticipated execution orders. Thane does not present any method for
generating timeliness test cases or relevant execution orders; instead he suggests
that conventional methods can be used in combination with his execution order
analysis. Thane also proposes a method for deterministic replay and debugging
facilities for real-time systems. Both the non-deterministic test execution approach
and the replay and debugging facilities are useful complements to the testing frame-
work presented in this thesis.

Although the focus of Scḧutz’s (Scḧutz 1993) work is on testing time-triggered
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systems, he discusses test execution in event-triggered systems. The factors that
he identifies as important when instrumenting test objects are synchronization of
processes, access to time and synchronous interrupts. Further, Schütz discusses the
test effort of the two design approaches and concludes that the theoretical number
of execution orders in an event-triggered system increases exponentially.

Mellin (1998) and Birgisson et al. (1999) also elaborate on the test effort as-
sociated with the different paradigms and suggest some constraints that would po-
tentially decrease the test effort of event-triggered systems while maintaining their
event-triggered semantics.

For example, a task that executes in an event-triggered real-time system can be
preempted multiple times by different higher prioritized tasks. Each combination of
preemptions potentially results in a different state of the overall system. The enor-
mous number of states complicates the testing of event-triggered systems, since to
gain confidence in the timely delivery of a specific result, the introduction of related
events may need to be tested at each possible system state (Birgisson 1998).

Recently, Andersson et al. (2006) presented the ART framework for analyzing
the temporal behavior of complex embedded systems. The purpose of this frame-
work is mainly to increase analyzability of the current system behavior and to be
able to analyze potential changes to the real-time design. This means that a model
is constructed based on the execution behavior of an system, it is then changed and
simulated to reveal potential problems. This is quite similar to the execution analy-
sis part of mutation-based testing, as presented in this thesis, but the emphasis is
in analyzing the simulations of the changed system instead of deriving test cases
for the new version. Another difference is that the models of real-time applications
extracted by this approach are stochastic, meaning that the analysis becomes dif-
ferent and does not support the divide and conquer separation between test case
generation and test execution, advocated in this thesis (see section 10.1.2). It might
be possible to integrate support for mutation-based testing in the ART framework
and thereby increase the usefulness of both approaches. For example, such integra-
tion may provide the possibility of generating tests and formulating testing criteria
using the ART models.



Chapter 12

Conclusions

This chapter summarizes this thesis and elaborates on the impact of the results and
contributions. Future directions for research on this topic are also suggested.

12.1 Summary

Timeliness is a property that is unique for real-time systems and deserves special
consideration during both design and testing. A problem when testing timeliness
of dynamic real-time systems is that response times depend on the execution order
of concurrent tasks. Other existing testing methods ignore task interleaving and
timing and, thus, do not help determine what kind of test cases are meaningful for
testing timeliness. This thesis presents several contributions for automated testing
of timeliness for dynamic real-time systems. In particular, a model-based testing
method, founded in mutation testing theory, is proposed and evaluated for reveal-
ing failures arising from timeliness faults. One contribution in this context is that
mutation-based testing and models developed for generic schedulabilty analysis,
can be used to express testing criteria for timeliness and for automatic generation
of mutation-based test cases. Seven basic mutation operators are formally defined
and validated to represent error types that can lead to timeliness failures. These
operators can subsequently be used to set up relevant testing criteria.

Two approaches for automatically generating test cases for timeliness are de-
fined. One approach reliably generates test cases that can distinguish a correct sys-
tem from a system with a hypothesized timeliness error. The second approach is
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designed to be extendible for many target platforms and has the potential to gener-
ate test cases that target errors in the interaction between real-time control systems
and physical processes, modelled in MATLAB/Simulink. In addition, this thesis
outlines a scheme for prefix-based test case execution and describes how such a
method can exploit the information from mutation-based test case generation to
focus testing on the most relevant scenarios.

The contributions outlined above are put into context by a framework for au-
tomated testing of timeliness. This framework specifies activities, techniques and
important issues for conducting mutation-based timeliness testing – from system
modelling to automated test case execution.

The validation of the proposed testing approaches is done iteratively through
case studies and proof-of-concept implementations. In particular, the mutation-
based testing criteria are validated through a model-checking case study (see sec-
tion 6.6). This case study reveals that the generated mutants actually lead to time-
liness violations in a simple real-time system model. The simulation based test
case generation method is evaluated in a set of test case generation experiments
with different target system characteristics (see section 7.4). These experiments
indicate that the approach is applicable for generating test cases for non-trivial dy-
namic real-time systems and real-time control systems with mixed task loads. This
was not possible using previously existing methods due to problems with the size
of the reachable state space and limitations in tool support. Finally, the proposed
framework for testing of timeliness is demonstrated on a small robot control appli-
cation running on Linux/RTAI. This case study indicates that the mutation-based
test cases, that are generated using assumptions of the internal structure of the real-
time system, can be more effective than both naively constructed stress tests and a
suite of randomly generated test cases that are approximately ten times larger.

Consequently, our case studies and experiments corroborate the hypothesis pre-
sented in section4.4.1. Mutation-based testing can be used for generating effective
test cases by exploiting models that take internal behaviors into consideration.

12.2 Contributions

This section briefly summarizes the contributions of this thesis. The contributions
are the result of pursuing the objectives outlined in section 4.4.2.

• A mutation-based framework for testing of timeliness. The framework is
constructed to address the problems summarized in chapter 4 and is demon-
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strated to be effective in finding timeliness errors in dynamic real-time sys-
tems.

• An extendible set of mutation operators defined in terms of a modelling no-
tation which captures varying execution orders. This kind of mutation oper-
ators allows coverage to be expressed when testing timeliness.

• A method for automatically generating mutation-based test cases for timeli-
ness using model checking.

• A method for automatically generating mutation-based test cases for timeli-
ness using heuristic driven simulations.

• A tool prototype that allows automated test case generation according to the
proposed framework and supports modelling of the environment using MAT-
LAB/Simulink.

A part from these contributions, this thesis contains an example of how the
proposed framework can be applied for testing a simple robot arm control system.
Also, a scheme for pre-fix based test execution, that increases controllability and is
compatible with the mutation-based framework, is outlined.

12.3 Future Work

This section contains some spin-off ideas of how the framework for automatic test-
ing of timeliness can be extended beyond the scope of this work.

Field-study on Framework Applicability

The framework presented in this thesis has been shown effective using a combina-
tion of simulation, proof-of-concept and a limited feasibility case-study. To further
validate the applicability and flexibility of the presented framework it is desirable
to use it to test a wide range of commercial real-time applications. This kind of
study would reveal how well the proposed framework can be adapted for platforms
and applications used in commercial real-time system development. Furthermore,
it would be interesting to compare the effectiveness of ad-hoc methods used in
industry with our framework.
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Testing of Timeliness during Mode-changes

The testing experiments presented in this thesis have focused on testing the time-
liness of a real-time system from startup. This assumes that the system and its
environment continues to operate in a similar way during the rest of its execution.
However, for some systems the mode of operation may change at certain points
in time. This means that the system task set are altered or that different types of
services is requested or become more critical. A typical example of this is a control
system on an aircraft, where there is one mode of operation when the aircraft is
taxiing on the ground, and another when the plane is airborne. In these kinds of
systems it may be important that some services remain timely during the transition
from one mode of operation to another. The testing framework presented in this
thesis should be evaluated for generating timeliness test cases during the transition
from one mode to the other. We believe that such extension is possible and can
increase the usefulness of the timeliness testing framework even more.

Testing of Timeliness for Multi-Processor Systems

A emerging trend in general computing is to increase performance by utilizing par-
allel processors and specialized computing elements (for example, chips containing
field programmable gate arrays). Eventually, this trend will force developers to use
parallel platforms for dependable real-time applications.

Unfortunately, the problems motivating a structured and generalizable approach
for testing of timeliness are even more prevalent in architectures with several active
processing units. In particular, the relation between activation patterns and exe-
cution orders is more complex and the problems associated with finding critical
scenarios are elevated.

The framework presented in this thesis has currently only been evaluated for
single processor architectures. However, assuming that the scheduling protocol
in a multiprocessor system behave deterministically given a specified task set and
activation pattern, it may be possible to use the proposed methods and tools to
test timeliness of a multi-processor system. Consequently, the divide and conquer
approach provided by the combination of mutation testing, execution order analysis
and non-deterministic test execution should be evaluated for this domain. An initial
future work along this line is to perform a series of test case generation experiments
using a simulated multiprocessor platform.
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Evaluation of the Iterative Delta Reduction Mode

During initial experimentation with the different test case generation modes (de-
scribed in section 8.3), it was observed that, for some system models, the iterative
delta reduction mode killed mutants with small deltas more reliably than using
the fixed delta mode directly. However, it is still inconclusive wether the iterative
tightening of deltas actually improve the capabilities of the heuristic search or if
this effect only is a consequence of running more simulations. A series of con-
trolled experiments would be needed to investigate this. Furthermore, we leave as a
future work to determine if the hybrid test suites generated using the iterative delta
reduction mode can be as effective as the test suites generated using fixed deltas.

Validation of the Prefix-based Test Execution Scheme

The prefix-based test execution approach outlined in section 10.3.2 generally re-
quires support from the test harness and from the operating system where a real-
time application is run. Despite indications that designated pre-emption points
increase the controllability of dynamic real-time systems, it is still unclear what
penalties are associated with including them in real-time systems. An interesting
project would be to integrate the prefix-based test execution scheme with a real-time
operating system and compare the effort to observe a particular execution order.

A partial implementation of designated pre-emption points has been made on
the RTAI platform using a globally shared semaphore (execution token) that is tem-
porarily released and re-taken when certain system calls are issued or when specific
points in the task code are reached. During the state enforcement phase a high pri-
ority “enforcer task” is used for reading the prefix-description and waking up appli-
cation tasks in a specified order. A structured experiment is needed to determine if
this implementation of the prefix-based test execution scheme can be used without
a probe effect.

A Testable Platform for Dynamic Real-time Systems

Even if the testing framework presented in this thesis is developed to be general
and adaptable for many platforms, there are potential benefits in standardizing the
target system platform. For example, by providing a suite of tools for application
modelling, mutation-based test generation, predictable event monitoring and prefix
based test execution for a specific platform, real-time application developers can
try both the methods and the platform directly.
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One candidate platform for event-triggered real time applications is the Dis-
tributed activE real-timE Database System – DeeDS. The DeeDS prototype already
contains predictable event monitoring, transaction support and real-time scheduling
protocols. However, it is important that the real-time properties of such a platform
are evaluated experimentally and captured in an accurate execution environment
model.

Evidence-based online monitoring

The test case experiments presented in this thesis indicate that the tasks’ specified
worst case execution behavior often can be violated without jeopardizing system
level timeliness.

Malignant mutants contain cases where such violations can lead to problems.
Using execution order analysis of malignant mutants, it is possible to characterize
situations where timeliness failures may occur. From this it might be possible to
automatically create composite event descriptions that can trigger on sequences
of events leading up to a situation where a system level time constraint might be
violated. This could be used to predict dangerous situations before they occur and
prevent errors leading to timeliness failures.
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Scḧutz, W. (1994), ‘Fundamental issues in testing distributed real-time systems’,
Real-Time Systems7(2), 129–157.

Sha, L., Rajkumar, R. & Lehczky, J. P. (1990), ‘Priority inheritance protocols:
An approach to real-time synchronization’,IEEE Transactions on Comput-
ers9(39), 1175–1185.

Stankovic, J. A., Spuri, M., Ramamritham, K. & Buttazzo, G. C. (1998),Deadline
scheduling for real-time systems, Kluwer academic publishers.

Stankovic, J., Spuri, M., Di Natale, M. & Buttazzo, G. (1995), ‘Implications of
classical scheduling results for real-time systems’,IEEE Computer28(6), 16–
25.

Thane, H. (2000), Monitoring, Testing and Debugging of Distributed Real-Time
Systems, PhD thesis, Royal Institute of Technology. KTH, Stockholm, Swe-
den.

Watkins, A., Berndt, D., Aebischer, K., Fisher, J. & Johnson, L. (2004), Breeding
software test cases for complex systems,in ‘HICSS ’04: Proceedings of the
Proceedings of the 37th Annual Hawaii International Conference on System
Sciences (HICSS’04) - Track 9’, IEEE Computer Society, Washington, DC,
USA, p. 90303.3.

Wegener, J., StHammer, H. H., Jones, B. F. & Eyres, D. E. (1997), ‘Testing real-
time systems using genetic algorithms’,Software Quality Journal6(2), 127–
135.

Young, S. J. (1982),Real-Time Languages: Design and Development, Chichester:
Ellis Horwood.



Appendix A

Demonstrator Task Code

This appendix describes the implementation of the different tasks that realize the
robot application. The purpose of this is primarily to show examples of the applica-
tion code to increase the understanding of the tested application and its properties.
The current implementation of the robot application is small, consisting of approx-
imately 1000 lines of c code. This allows short response-times and high sampling
rates. The following subsections describe the implementation of each of the appli-
cation tasks.

TrajectoryMgr Task

As outlined in section 9.2 the trajectory manager (TrajectoryMgr) is responsible
for responding to requests from users or higher level control applications on other
nodes. For example, another node can send a sequence of viapoints for moving
the robot hand from position A to position B without smashing into an object or
breaking some rigid object attached to the robot hand (such as the beam in the
Flexcon application). The commands that can be issued to the trajectory manager
task is;

• Add a trajectory point

• Adjust current trajectory

• Adjust a trajectory point
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typedef
struct {

SetPoint J1; // Contains the required setpoint for joint 1
SetPoint J2;
SetPoint J3;
double x; // distance from robot base to hand in mm
double y; // height of the hand over ground in mm
double angle; // desired angle of the robot hand in radians
int live; // via-point is part of the current trajectory
double psens; // precision
double asens;

} ViaPoint;

Figure A.1: Definition of the ViaPoint data structure

The trajectory points are defined by the data-structure listed in figure A.1. As
seen in that figure, a “viapoint” store of both the coordinates in the plane of the
robot hand, and the corresponding setpoints for the joint motor controllers. When
a new via-point should be added to the trajectory the joint setpoints (angles) are
calculated from the coordinates by the trajectory manager (using the inverse kine-
matics function in figure A.3). The system uses a circular buffer to keep track of the
via points in a trajectory, the global data structure is protected using a priority in-
heritance enabled semaphore (handled by the LockResource and UnlockResource
functions). The source code for the trajectory manager task is listed in figure A.2.

RefAdjuster Task

When the robot hand reaches within specified bounds of its current setpoint or
after a new trajectory is calculated by the trajectory manager, this task becomes
activated. This task consumes the available via points in the trajectory buffer and
updates the setpoints for the controller tasks so that the robot hand is directed to-
wards the next point along the trajectory. If the next via-point is farther away than a
certain max-distance, an intermediate setpoint is calculated. This task also checks
that the next coordinate in the buffer is correct and within the operational range of
the robot arm. Figure A.4 contain a listing of the code performed by this task at
each activation.
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void SPT0_work(SPT0_data * TD,int MyID){
LockResource(NETWORK,MyID); // Lock network for reading data
SPT0_inputs IN;
ReadNetworkBuffer(&IN);
UnlockResource(NETWORK,MyID);
LockResource(TRAJBUF,MyID); // lock trajectory-buffer
if (IN.operation==ADD){ // Add coordinate

ViaPoint tmp;
tmp=InverseKinematics(IN.x,IN.y,IN.angle);
// Calculate angles corresponding to coordinate
tmp=CorrectCoordinate(tmp); // Check and move..
Trajectory[TCurrentP]=tmp;
Trajectory[TCurrentP].live=1;
int next=TCurrentP+1;
if (next>=CBUFFERSIZE) next=0;
if (Trajectory[next].live==0){

TCurrentP=next;
} else {

// commandbuffer overflow !! Perform error handling
}

} else if (IN.operation==ADJUSTALL){ // Move current Trajectory
int i;
for(i=0; i<CBUFFERSIZE;i++){

ViaPoint TVP;
TVP=Trajectory[i];
if (TVP.live==1){

ViaPoint tmp;
tmp=InverseKinematics(TVP.x+IN.x,TVP.y+IN.y,TVP.angle+IN.angle);
tmp=CorrectCoordinate(tmp);
Trajectory[i]=tmp;

}
}

} else if (IN.operation==ADJUSTONE) { //Move single Via-point;
int Cindex=TCurrentP-IN.index;
if (Cindex<0) Cindex=Cindex+CBUFFERSIZE;
if (Cindex>=0 && Cindex<CBUFFERSIZE){

if (Trajectory[Cindex].live==1){
ViaPoint TVP=Trajectory[Cindex];
ViaPoint tmp;
tmp=InverseKinematics(TVP.x+IN.x,TVP.y+IN.y,TVP.angle+IN.angle);
tmp=CorrectCoordinate(tmp);
Trajectory[Cindex]=tmp;

}
}

}
UnlockResource(TRAJBUF,MyID);

}

Figure A.2: Source code for trajectory manager task
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ViaPoint InverseKinematics(double x, double y, double angle){

// Temp variables
double B;
double q1;
double q2;
ViaPoint T;
double Angle1;
double Angle2;
double Angle3;

B=(x * x) + (y * y);
// uses pythagoras to calculate distance from robot
// base to desired endpoint along a imaginary line b
// Hence, B contains the length of line b squared

q1 = atan2(y,x);
// calculates angle between ground and line b
// (atan2 is arc-tan + knowledge of quadrants)

q2 = acos(((seglen1 * seglen1 )+ B - (seglen2 * seglen2))/(2 * seglen1 * sqrt(B)));
// uses the cosine theorem to calculate angle between
// line b and robot arm segment 1

Angle1=q1+q2; // The angle between the ground and robot arm segment 1
Angle2= acos(((seglen1 * seglen1)+(seglen2 * seglen2)-B)/(2 * seglen1 * seglen2));

// uses the cosine theorem to calculate angle between Arm segment1
// and Arm segment2

Angle3=angle-Angle1-Angle2;
// determine the angle of the last joint so that the
// robot "hand" get the desired angle.

T.J1.angle=Angle1;
T.J2.angle=Angle2;
T.J3.angle=Angle3;
T.x=x;
T.y=y;
T.angle=angle;
return T;

}

Figure A.3: Source code for simplified inverse kinematics
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void SPT1_work(SPT1_data * TD,int MyID){
ViaPoint TVP;
TVP=Trajectory[TCurrentC];
LockResource(TRAJBUF,MyID); // Lock Trajectory buffer

if (isSame(&CurrSetPoint,&TD->CurrViaPoint)){
// try to progress main counter
int next=TCurrentC+1;
if (next>=CBUFFERSIZE){

next=0;
}
if (Trajectory[next].live==1){

TCurrentC=next;
TD->CurrViaPoint = Trajectory[TCurrentC];

} else {
// Ultimate target reached

}
}
UnlockResource(TRAJBUF,MyID);
LockResource(SETPOINT,MyID); // Lock Current SetPoint

// check distance from here to next via-point
// if more than max, interpolate help-point
// else set curr-setpoints --> currViapoint

double Deltax=CurrSetPoint.x-(TD->CurrViaPoint.x);
double Deltay=CurrSetPoint.y-(TD->CurrViaPoint.y);
double dist = sqrt((Deltax * Deltax)+(Deltay * Deltay));
if (dist>MAXDIST){ // makes sure we don’t get div/0 error

// uses uniformity between triangles sides to split up
// the maxdistance on x and y
double newx=CurrSetPoint.x + ((-1 * Deltax)/(dist/MAXDIST));
double newy=CurrSetPoint.y + ((-1 * Deltay)/(dist/MAXDIST));
CurrSetPoint=InverseKinematics(newx,newy,CurrSetPoint.angle);
CurrSetPoint=CorrectCoordinate(CurrSetPoint);

} else {
CurrSetPoint=TD->CurrViaPoint;

}
UnlockResource(SETPOINT,MyID); // unlocks Current SetPoint data-structure

}

Figure A.4: Source code for the RefAdjuster Task

ForceHandler Task

The ForceHandler task is assumed to be triggered when a change in the force ap-
plied to the tip of the robot hand is detected. The force values read by the force
sensor are assumed to differ at each reading, due to imprecision of the hardware,
hence, a sliding average is used to determine if the registered change is large enough
to be reported to subscribers on the network. Figure A.5 lists the code that is exe-
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void SPT3_work(SPT3_data * TD, int MyID){

LockResource(HARDWARE, MyID); // lock hardware interface

SPT3_inputs IN;
ReadSPT3Data(&IN);

if (IN.force>MAXF) IN.force=MAXF;
if (IN.force<MINF) IN.force=MINF;
int i;

for(i=0;i<5;i++){
TD->oldforce[i]=TD->oldforce[i+1];

}
oldforce[5]=IN.force;
double omean=(TD->oldforce[0]+TD->oldforce[1]+TD->oldforce[2])/3;
double nmean=(TD->oldforce[3]+TD->oldforce[4]+TD->oldforce[5])/3;

double fchange=abs(nmean-omean);
if (fchange>DELTAF){

LockResource(NETWORK,MyID);
SendForceUpdate(fchange,omean,nmean);
// Reports large changes in force read
UnlockResource(NETWORK,MyID);

}

UnlockResource(HARDWARE, MyID);
}

Figure A.5: Source code for Force sensor handler

cuted for the force sensor handler.

The Controller Tasks

The controller tasks used in this prototype are of PID type, the source code of one
such controller is listed in figure A.7. The controllers read the current angles of
the joints and then adjust the motor torques so that the joint angle changes and
the robot arm moves smoothly towards the desired position. The current setpoint
is shared with the refadjuster task and the other controllers, and is protected by a
semaphore. Furthermore, the hardware interface (access to I/O ports or memory
mapped registers) is protected by another semaphore. The controller parameters
need to be adjusted for the properties of the particular process. Figure A.6 lists the
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void PT2_init(PT2_data * TD,int MyID){
// Example controller parameters

const double K = 50; // Decide P part
const double Ti = 0.25; // Decide I part
const double Td = 0.2; // Decide D Part
const double h = 0.1; // Controllers assumed sampling period
const double N = 10; // Maximum derivative Gain

const double Tr = 1; // Tracking constant - for anti-windup
const double beta = 1; // Setpoint weighting

// Pre-calculated coefficients
TD->K = K;
TD->bi = K * h/Ti;
TD->ad = Td/(Td + N * h);
TD->bd = K * Td* N/(Td + N * h);
TD->tk = h/Tr;
TD->beta = beta;

// State variables
TD->yold = Get_init_pos(3);
TD->ui = 0;
TD->ud = 0;

}

Figure A.6: A. Initialization of constants

initialization part of the controllers where controller parameters are set and constant
expressions are precalculated.

Watchdog task

The watchdog task runs periodically to check the integrity of the control system.
This is done by examining a set of time-stamps indicating when the controller tasks
last read data from the hardware interface. If the controllers have omitted reading
the sensor values within a certain time the watch-dog task performs a dummy read-
operation to avoid an incorrect state of the hardware. In addition, the periodic
controller tasks update individual time-stamps so that the watch-dog task can detect
they are alive and operating. The watch-dog task also sends status messages to
a monitoring node on the network so that cooperating nodes can detect system
failures. Figure A.8 contains source code for this task.
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void PT2_work(PT2_data * TD,int MyID){

LockResource(HARDWARE,MyID); // Locks hardware
PT2_inputs IN;
ReadPT2Data(&IN);
LastRead=PT2alive=GetTimeD(1);// Tell Watch-dog that we are alive

LockResource(SETPOINT,MyID);
// Locks Current setpoint structure
double ysp;
if (IN.ref==NOVAL){

ysp = CurrSetPoint.J1.angle;
// Gets the setpoint as assigned by the Ref-adjuster

} else {
ysp=IN.ref; // Gets the setpoint from ’’manual mode’’

}
if (ysp>YMAXJ3){

ysp=YMAXJ3;
} else if (ysp<YMINJ3) ysp=YMINJ3;

double y = CurrPos.J3.angle = IN.y_actual;
UpdatePosition(&CurrPos,&CurrSetPoint); // Performs Kinematics-update
UnlockResource(SETPOINT,MyID);

// Calculate control signal (u)
double up = TD->K * (TD->beta * ysp - y);
TD->ud = TD->ad * TD->ud - TD->bd * (y - TD->yold);
// U = P + I + D
double u = up + TD->ui + TD->ud;

// Makes sure output signal is within specified bounds
double usat;
if (u>UMAXJ3){

usat=UMAXJ3;
} else if (u<UMINJ3){

usat=UMINJ3;
} else usat=u;

WriteOutput(usat,0,0,MyID);
UnlockResource(HARDWARE,MyID);
TD->ui = TD->ui + TD->bi * (ysp - y) + (TD->tk * (ysp - y));
// last term is added for (anti wind-up)tracking...
TD->yold = y;

}

Figure A.7: Source code for PID-controller task
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void PT3_work(PT3_data * TD,int MyID){

LockResource(HARDWARE,MyID); //Locks hardware interface
double Now = GetTimeD(1);
double SinceR=(Now-LastRead);
double SincePT0=(Now-PT0alive);
double SincePT1=(Now-PT1alive);
double SincePT2=(Now-PT2alive);
int status=0;
if ((LastRead!=0.0) && (SinceR>MAXPOLLTIME)){

DummyReadHWinterface();
LastRead=GetTime(1);

}
UnlockResouce(HARDWARE,MyID);

if ((PT0alive!=0.0)&&(SincePT0>(2 * PT0_PERIOD))){
// Perform some local error-handling
status+=ErrorHandling();

}
if ((PT1alive!=0.0)&&(SincePT1>(2 * PT1_PERIOD))){

// Perform some local error-handling
status+=ErrorHandling();

}
if ((PT2alive!=0.0)&&(SincePT2>(2 * PT2_PERIOD))){

// Perform some local error-handling
status+=ErrorHandling();

}
LockResource(NETWORK,MyID);

// Send i’m alive message
SendIMAlive(status);
UnlockResource(NETWORK,MyID);

}

Figure A.8: Source code for Watchdog Task
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Appendix B

Demonstrator Tasks Testing

This appendix contains the detailed description of how equivalence partitioning
was done on each task to derive classes of input data. As previously mentioned,
there are several methods for deriving this kind of input data. The method used
for this experiment is a refinement of equivalence partitioning and pair-wise com-
bination coverage (for example, compare with Ammann and Offutt (Ammann &
Offutt 1994)), adapted for temporal unit testing.

TrajectoryMgr testing

The behavior of this task when invoked is dependent on the inputs read from the
network and the state of the circular trajectory buffer at the beginning of the test.
Three properties of these input data were suspected of influencing the temporal
behavior of this task. The parameters and their associated classes of inputs are listed
in table B.1. One of these parameters is the size of the coordinate buffer when a
new coordinate is received. This parameter is denoted “Size of Buffer” in the table.
Another parameter is the actual type of operation sent to the trajectory manager.
This parameter is called “Operation” in the table and we distinguish between an
adjust command for a coordinate at position 10 in the buffer and coordinate 99 in
the buffer. The last parameter is termed “Coordinate” and refers to the structure of
the actual coordinate that should be added to the trajectory. The variables N1 and
N2 used in table B.1 are random positive real values between 200 and 1000. The
values with dagger symbols denote values outside the assumed operational profile.
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Size of buffer Operation Coordinate
0 Insert (N1,N2,1.57)
15 Move All (-N1,N2,0.0)
99 Adjust (10) (N1, -N2, 3.15)†
100 Adjust (99) (0,0,0.0)†

Table B.1: Equivalence partitioning of TrajectoryMgr

Test case Size of buffer Operation Coordinate
1 0 Insert (N,N,1.57)
2 0 Move All (N, -N, 3.15)
3 0 Adjust(10) (0,0,0.0)
4 0 Adjust (99) (-N,N,0.0)
5 15 Insert (0,0,0.0)
6 15 Move All (-N,N,0.0)
7 15 Adjust(10) (N,N,1.57)
8 15 Adjust(99) (N, -N, 3.15)
9 99 Insert (N, -N, 3.15)
10 99 Move All (N,N,1.57)
11 99 Adjust(10) (-N,N,0.0)
12 99 Adjust(99) (0,0,0.0)
13 100 Insert (-N,N,0.0)
14 100 Move All (0,0,0.0)
15 100 Adjust(10) (N, -N, 3.15)
16 100 Adjust(99) (N,N,1.57)

Table B.2: Pair-wise combination of test parameters
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Test Case Execution pattern
1 10,8 +T 4,9 -T 4,4 +S 13,7 -S 3,4
2 6,6 +T 4,6 -T 3 +S 50,1 -S 3,6
3 6,7 +T 4,7 -T 3,2 +S 1,9 -S 3,4
4 6,5 +T 4,7 -T 3,6 +S 1,9 -S 3,3
5 5,5 +T 4,3 -T 3 +S 11,8 -S 3,2
6 5,7 +T 4,7 -T 3 +S 10,3 -S 3,1
7 5,6 +T 4,4 -T 3 +S 5,1 -S 3
8 5,4 +T 4,2 -T 3 +S 1,9 -S 3
9 5,6 +T 4,2 -T 2,9 +S 9 -S 3
10 10,5 +T 5,5 -T 4,5 +S 399,9 -S 3,5
11 5,3 +T 4,3 -T 2,9 +S 5,1 -S 3
12 5,7 +T 5,3 -T 2,8 +S 1,9 -S 3,2
13 5,3 +T 4,3 -T 3,1 +S 9,1 -S 3,1
14 5,9 +T 4,3 -T 2,9 +S 346,7 -S 3,2
15 5,2 +T 4,4 -T 3 +S 5,2 -S 3
16 5,5 +T 4,3 -T 2,9 +S 1,9 -S 3

Table B.3: Max execution times measured for TrajectoryMgr

Each value for a parameter in table B.1 should be pair-wise combined with each
value of the other parameters. Table B.2 lists an example test suite that provides
pair-wise coverage of these parameter values. Table B.3 table list the worst case
execution times recorded for each segment when executing the task with input data
satisfying the test case descriptions in table B.2. In the execution pattern table, +X
means that the task locks resource X, -X means that the task unlocks resource X.

Refadjuster testing

The behavior of this task depends on the contents of the trajectory buffer. The
parameters in table B.4 have been identified to influence the execution pattern of
this task. Here, Q1 and Q2 denote any coordinate in the first and second quadrant of
the operational plane. The constant MAXD is the parameter deciding the maximum
allowed distance between two Viapoints in the trajectory.
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Size of buffer Distance From quadrant To quadrant
15 < MAXD Q1 Q1
90 > MAXD Q2 Q2

Table B.4: Equivalence partitioning of RefAdjuster Task

Test case Buffer size Distance From quadrant To quadrant
1 15 < MAXD Q2 Q2
2 15 > MAXD Q1 Q1
3 90 < MAXD Q1 Q1
4 15 > MAXD Q1 Q2
5 15 < MAXD Q2 Q1
6 90 > MAXD Q2 Q2

Table B.5: Pair-wise combination of test parameters for RefAdjuster

Test Case Execution pattern
1 5,8 +S 3,8 -S 3,4 +R 2 -R 3,3
2 14,7 +S 6,7 -S 4,8 +R 1,9 -R 4
3 6,3 +S 3,5 -S 3,6 +R 1,9 -R 3,4
4 5,8 +S 3,5 -S 3,2 +R 1,9 -R 3,1
5 5,6 +S 3,4 -S 3,7 +R 1,9 -R 3,1
6 6 +S 3,6 -S 3,2 +R 1,9 -R 3,2

Table B.6: Max execution times measured for RefAdjuster
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Burst of 6 sensor reads Latest sensor read
1 change> DELTAF inside valid range

3 cons. changes> DELTAF outside valid range
no changes> DELTAF

Table B.7: Equivalence partitioning of ForceHandler Task

Burst of 6 sensor reads Latest sensor read
no changes> DELTAF inside valid range
1 change> DELTAF inside valid range

3 cons. changes> DELTAF inside valid range
no changes> DELTAF outside valid range
1 change> DELTAF outside valid range

3 cons. changes> DELTAF outside valid range

Table B.8: Pairwise test-data used for ForceHandler Task

ForceHandler testing

This task locks different resources depending on the relation between input values.
This needs some special consideration during testing of timeliness, since the worst
case behavior for each of the possible task execution patterns needs to be measured.
From a unit testing perspective, the behavior of this task depends on the last sensor
values read. Also, the sizes of the sensor values read may affect the execution
pattern of the task. Table B.7 contains the equivalence partitioning used for testing
this task. Table B.8 lists the test data that fulfill pair-wise coverage of these classes.

Since the execution patterns for this task are different depending on the input
data, two different worst-case execution behavior tables can be extracted. These
are listed in tables B.9 and B.10.

Controller tasks testing

The controller tasks have relatively simple control flows, but the robot arm be-
havior depend on the correctness and timeliness of the calculations performed by
these tasks. The behavior of a controller task depends on the active setpoints and
the current angle of the robot arm joints. The behavior also depends on the state
variables calculated by the controller in the previous activation step. Since the
Flexcon application can be executed in closed loop with a simulated robot arm in
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Test Case Execution pattern
1 7 +Q 5,4 +T 4,1 -T 2,7 -Q 3,1
2 6,4 +Q 5,6 +T 4,3 -T 2,6 -Q 3
3 6,4 +Q 5,5 +T 4,2 -T 2,6 -Q 3
4 6,5 +Q 5,6 +T 4,2 -T 2,5 -Q 3
5 6,6 +Q 5,4 +T 4,3 -T 2,7 -Q 2,9
6 6,6 +Q 5,5 +T 4,3 -T 2,7 -Q 2,9

Table B.9: Max execution times measured for ForceHandler, execution pattern A

Test Case Execution pattern
1 2,9 +Q 2,9 -Q 3,4
2 - - - - -
3 - - - - -
4 3 +Q 2,9 -Q 3,3
5 - - - - -
6 2,8 +Q 2,8 -Q 3,4

Table B.10: Max execution times measured for ForceHandler, execution pattern B

Matlab/simulink this was used for deriving sequences of low-level input data for
the higher level commands. Table B.11 shows the parameters varied to produce
such sequences of task input data. The combinations needed to obtain pair-wise
coverage across these categories are shown in table B.12 and the results from mea-
surements are revealed in tables B.13, B.14 and B.15.

Watchdog testing

In the Watchdog task, there are dependencies from the execution order of the sys-
tem back to the behavior of the task. This kind of dependencies must be specially
considered during testing of timeliness.

Setpoint size setpoint position difference
valid size same quadrant large

invalid size other quadrant small

Table B.11: Equivalence partitioning for Controller tasks
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Setpoint size setpoint position difference
valid size same quadrant large

invalid size same quadrant small
invalid size other quadrant large
valid size other quadrant small

Table B.12: Pairwise test-data used for controller tasks

Test Case Execution pattern
1 11,5 +Q 8 +R 12,3 -R 6,7 -Q 3,5
2 8,5 +Q 6,2 +R 10,2 -R 6,4 -Q 3
3 8,5 +Q 5,7 +R 10,6 -R 6,6 -Q 3,2
4 8,6 +Q 5,5 +R 10,5 -R 6,3 -Q 3

Table B.13: Max execution times measured for Controller 1

Test Case Execution pattern
1 12,2 +Q 12,4 +R 13,1 -R 14,6 -Q 11,9
2 11,4 +Q 12,4 +R 13,9 -R 13,8 -Q 3,1
3 11,2 +Q 12,6 +R 14,4 -R 13,7 -Q 3
4 11,5 +Q 6,5 +R 13,8 -R 13 -Q 3

Table B.14: Max execution times measured for Controller 2

Test Case Execution pattern
1 9,5 +Q 7,8 +R 10,6 -R 7,6 -Q 3,3
2 6,8 +Q 5,3 +R 8,1 -R 5,2 -Q 2,9
3 9,6 +Q 7,7 +R 10,2 -R 7,7 -Q 3,4
4 7,1 +Q 5,7 +R 7,9 -R 5,8 -Q 3

Table B.15: Max execution times measured for Controller 3

Task Execution pattern
WatchDog 7,5 +Q 4,5 -Q 3,9 +T 4,1 -T 3,1

Table B.16: Max execution times measured for Watchdog



162 Demonstrator Tasks Testing

In particular, the task’s execution behavior (control flow) depends on the rela-
tion between a set of shared time stamps and the current time. That means that the
execution time depend on the actual order and timing of other tasks. These vari-
ables cannot be controlled when all tasks are run concurrently without introducing
probe effects. Optimally, this kind of relation between execution order and exe-
cution time should be included in the model used for test case generation. In the
mutation-based testing framework, this addition can be implemented by a special-
ized execution segment as described in section 10.1.2. Since the impact is small
and the dependencies are limited to a single task for this application, we do not
model these dependencies in this case study.

For the measurements, the shared time stamps were set so that the program path
with the intuitively longest execution time would occur when the task was run in
singularity (see table B.16).



Appendix C

Case-Study Test Execution
Results

This appendix contains figures that visualize the results from the experiment de-
scribed in section 9.4.2. In particular, figure C.1 shows the average number of test
cases that resulted in timeliness failures when five different test suites fulfilling
the (∆ = 20) execution time testing criteria were run on 7 software variants with
seeded timeliness errors. Each test suite contained 7 test cases, therefore this is the
maximum number of effective test cases (max of the z-axis). In figure C.2 and fig-
ure C.3 the most and least effective test suite for each software variant are plotted
in the same way.

For comparison, five test suites with 10 randomly generated test cases were run
on each of the seven software variants. In the same way, the average number of
effective test cases are plotted in figure C.4. The result from the most effective
random test suites for each version is plotted in figure C.6 and the least effective
random test suites are plotted in figure C.5.
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Figure C.1: Average number of failures detected in seeded variants using mutation
testing
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Figure C.2: Least number of failures detected in seeded variants using mutation
testing
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Figure C.3: Most number of failures detected in seeded variants using mutation
testing
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Figure C.4: Average number of failures detected in seeded variants using random
testing
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Figure C.5: Least number of failures detected in seeded variants using random
testing
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Figure C.6: Most number of failures detected in seeded variants using random
testing



Appendix D

Mutation Operators Overview

This appendix contains a classification (see figure D.1) of the mutation operators
defined in chapter 6 as well as an overview of how related mutation operators can
be implemented using the guidelines in section 10.1.2.
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Entity/Relation Mutation operators

Task

xi

Task

xj

Resource

rm

Exec.

time

Critical

section

Input

constraints

Add Remove Manipulate Defined Extension

X X Add task

X X Remove task

X X start Add exec. 

segment

X X end +execution time, 

+execution time
X X X System specific

X X X System specific

X X Offset +pattern offset, -
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X X Interarrival-

time
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Figure D.1: Classification of defined mutation operators and related extensions
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