
AUTOMATING BYPASS TESTING
FOR WEB APPLICATIONS

by

Vasileios Papadimitriou
A Thesis

Submitted to the
Graduate Faculty

of
George Mason University

in Partial Fulfillment of the
Requirements for the Degree

of
Master of Science

Software Engineering

Committee:

Jeff Offutt, Thesis Director

Paul Ammann

Ye Wu

Hassan Gomaa, Chairman, Department
of Software Engineering

Lloyd J. Griffiths, Dean, Volgenau School
of Information Technology & Engineering

Date: Summer Semester 2006
George Mason University
Fairfax, VA

Automating Bypass Testing for Web Applications

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science at George Mason University

By

Vasileios Papadimitriou
Bachelor of Science

George Mason University, 2004

Director: Jeff Offutt, Professor
Department of Software Engineering

Summer Semester 2006
George Mason University

Fairfax, VA

ii

Copyright c© 2006 by Vasileios Papadimitriou
All Rights Reserved

iii

Dedication

I dedicate this thesis to my wife Mimi and my son Konstantinos for their patience

and support.

iv

Acknowledgments

First, I would like to express my appreciation for the valuable advice and support

from Dr. Offutt, who has been an outstanding advisor and professor throughout the

course of this thesis and the MSSWE program.

For serving in my committee, I would like to thank Dr. Paul Ammann and Dr. Ye Wu.

Next, I would like to thank Human Resources Research Organization and specially

Dr. Beverly Dugan, Dr. Carolyn Harris, and Dr. Cathy Stawarski for providing me

with an excellent employment environment that promotes research and professional

development, which had a great impact in the completion of this project.

I thank Wuzhi Xu, who’s input in the early stages played a significant role in the

foundation of this project.

Finally, I would like to acknowledge the valuable feedback that was provided by

Christodoulos Christodoulou, Emmanuel Spyridakis, and Lima Beauvais.

v

Table of Contents

Page

Abstract . 0

1 Introduction . 1

2 Types of Client Input Validation . 4

2.1 HTML Validation . 4

2.1.1 Length Constraints . 5

2.1.2 Value Constraints . 5

2.1.3 Transfer Mode Constraints . 6

2.1.4 Field Element Constraints . 6

2.1.5 Target URL Constraints . 7

2.2 Scripting Validation . 7

2.2.1 Data Type Constraints . 8

2.2.2 Data Format Constraints . 9

2.2.3 Data Value Constraints . 9

2.2.4 Inter-Value Constraints . 10

2.2.5 Invalid Characters Constraints 10

3 Rules for Defining Test Cases . 11

3.1 HTML Rules for Violating Input Constraints 12

3.1.1 Length Constraints Violation 13

3.1.2 Value Constraints Violation 13

3.1.3 Transfer Mode Violation . 16

3.1.4 Field Element Constraints Violation 16

3.1.5 Target URL Violation . 19

3.2 Scripting Rules for Violating Input Constraints 20

3.2.1 An Approach to Automate Scripting Rules 20

3.2.2 Current Support for Scripting Rules 21

4 Automating Bypass . 23

4.1 Interface Parsing . 23

vi

4.2 Interface Analysis . 25

4.3 Test Inputs . 27

4.4 Test Case Generation . 29

5 Empirical Evaluation . 36

5.1 Experiment Design . 36

5.1.1 Hypothesis . 37

5.1.2 Independent Variables . 37

5.1.3 Dependent Variables . 38

5.2 Subjects . 40

5.3 Results . 41

5.3.1 ATutor Learning Content Management System 41

5.3.2 Joomla Content Management System 44

5.3.3 PhpMyAdmin, Web Based MySQL Client 47

5.3.4 Brainbench.com Online Assessment Products 49

5.3.5 Myspace.com Online Community Portal 51

5.3.6 NYtimes.com Online New . 53

5.3.7 Mutex.gmu.edu Libraries Database Gateway 54

5.3.8 Yahoo.com, Global Internet Service 56

5.3.9 Barnesandnoble.com, Online Store 59

5.3.10 Amazon.com, Online Store . 62

5.3.11 Bankofamerica.com, Online Banking 64

5.3.12 Comcast.net, Communications Provider 67

5.3.13 Ecost.com, Online Store . 68

5.3.14 Google.com, Search Engine . 69

5.3.15 Pageflakes.com, Community Personalized Portal 71

5.3.16 Wellsfargolife.com, Life Insurance 71

5.3.17 Result Summary . 72

5.4 Confounding Variables . 79

5.4.1 Effects of AutoBypass Implementation 79

5.4.2 Sample Web Applications Selected 81

5.4.3 Test Values Input . 82

5.4.4 Result Evaluation . 83

6 Conclusions . 85

vii

6.1 Future Work . 86

References . 88

viii

List of Tables

Table Page

5.1 Experiment Subjects . 42

5.2 Result Legend . 43

5.3 Results for ATutor . 44

5.4 Results for Joomla CMS, Poll Administration module 45

5.5 Results for Joomla CMS, Online User Information module 47

5.6 Results for PhpMyAdmin, Current Database Control 48

5.7 Results for PhpMyAdmin, Set Theme Module 48

5.8 Results for PhpMyAdmin, SQL Form 49

5.9 Results for PhpMyAdmin, Data Base Statistics 49

5.10 Results for Brainbench.com, Information Request Form 50

5.11 Results for Brainbench.com, New User Registration 52

5.12 Results for Myspace.com, Event Search 52

5.13 Results for Myspace.com, Music Search 53

5.14 Results for NYtimes.com, Market Watch 55

5.15 Results for mutex.gmu.edu, University Libraries Database Gateway . 55

5.16 Results for Yahoo.com, mail: notepad 56

5.17 Results for Yahoo.com, compose message 57

5.18 Results for Yahoo.com, Desktop Search Reminder 58

5.19 Results for Yahoo.com, Weather and Traffic Search 58

5.20 Results for Barnesandnoble.com, Shopping Cart 59

5.21 Results for Barnesandnoble.com, Book Search 61

5.22 Results for Amazon.com, Item Dispatcher 62

5.23 Results for Amazon.com, Handle Buy 63

5.24 Bankofamerica.com, ATM & Branch Locator by infonow.net 65

5.25 Bankofamerica.com, Web Site Search 67

5.26 Comcast.net, Service Availability . 68

ix

5.27 Ecost.com, Shopping Cart . 69

5.28 Ecost.com, Shopping Cart . 69

5.29 Google.com, Froogle - Shopping Search Engine 70

5.30 Google.com, Language Tools . 70

5.31 Pageflakes.com, User Registration 71

5.32 Wellsfargolife.com, Insurance Quote 72

5.33 Result Summary . 73

5.34 Types of Invalid Responses . 74

5.35 Result Summary by Violation Rules 78

5.36 Level of Effort . 80

x

List of Figures

Figure Page

4.1 AutoBypass Architecture . 24

4.2 AutoBypass - Main Page . 25

4.3 AutoBypass - Form and URL selection for testing 26

4.4 AutoBypass - Test Input . 30

4.5 AutoBypass - Test Results . 32

4.6 AutoBypass - Example Test Response 34

4.7 AutoBypass - Example Mutant Form 35

5.1 Exposure at Joomla CMS, Online User Information Module 46

5.2 Fault/Failure at Barnesandnoble.com, Book Search component . . . 62

5.3 Exposure at Bankofamerica.com, ATM & Branch Locator 66

5.4 Result Summary Graphs . 75

5.5 Responses by Violation Rule . 78

Abstract

AUTOMATING BYPASS TESTING FOR WEB APPLICATIONS

Vasileios Papadimitriou

George Mason University, 2006

Thesis Director: Jeff Offutt

By introducing new quality standards, the World Wide Web has a great impact

on how software is being developed and deployed. Web software is mainly accessed

through browsers and dynamically created user interfaces. HTML source and scripts

are available to the user and can be modified and resubmitted due to the stateless

nature of HTTP; thus, arbitrary requests from clients are permitted and web appli-

cations become vulnerable to input manipulation. Previous work on bypass testing is

extended to develop an automated approach. An open source testing tool, HttpUnit,

is used to build a prototype application, AutoBypass, which parses HMTL pages,

identifies forms and their fields, and automatically creates bypass test cases that vi-

olate the user interface’s constraints. AutoBypass performs testing on the external

system level, eliminating the need for accessing the application source or server. The

bypass method’s effectiveness is empirically evaluated with web applications devel-

oped by professionals. The results show that applications generated numerous faults

when bypass test cases were submitted. It is concluded that bypass testing can

improve the quality of web applications by revealing potential vulnerabilities while

providing an efficient method to reduce the development cost.

Chapter 1: Introduction

The World Wide Web has a great impact on how software is being developed and

deployed. Web applications introduced new priorities for developers, driving the

industry to value reliability, usability, and security instead of “time to market” which

is more typical in the case of traditional software [13]. This shift on the criteria of

software quality poses a new need in developing new methods to design, implement,

and test software that is characterized by a distributed environment, implemented on

a diverse collection of hardware and software platforms, and often requires interaction

of heterogeneous components. Web applications are extremely loosely coupled and

heavily user interactive in a dynamic manner, which is very different than the pre-

established flow of control in traditional systems. User interfaces are dynamically

created and the flow of control depends on the inputs provided to the system.

Interestingly, Xu et al. found in the 2003-2004 Common Vulnerability and Expo-

sure (CVE) report that approximately 40% of the security problems originate from

implementation errors that allow attackers to inject malicious code into carefully

crafted inputs [19]. Due to the unique methods used to deliver graphical user inter-

faces and accept requests, web applications are extremely vulnerable to input manip-

ulation attacks that compromise security. In addition, web applications are exposed

to a variety of potential input sets that can reduce the reliability of the application.

Web software is mainly accessed through web browsers using HTML that allow

the user to input data and submit requests. Input validation can be performed both

1

2

on the client and the server. In the past, client side validation was often used in order

to reduce overhead network traffic between the client and server. In recent years, we

see a trend to check input on the server as software components have more resources

to perform input validation [14]. As a result, we find web applications using a hybrid

of the two techniques to validate user input. In addition, client side technologies

provide a rich environment for response to user events, improving the usability of the

interfaces. For that reason, it is almost certain that client side validation will be used

extensively, despite the need for more robust server side modules.

Client side input validation is performed by imposing constraints defined in the

HTML language and the scripts supported by the browsers. On the other hand,

server side modules are able to use a variety of programming languages and resources

to identify invalid input requests.

Many features are available to the interface designers to control the way that

users interact with the interface. By combining several HTML language features and

scripting, interfaces can react to user’s events and prohibit the form submission, if

some requirements are not met, or provide feedback for the user. However, HTML

code and scripts are available to the user once they have been accessed and can

be modified and resubmitted to the server [14]. Due to the stateless nature of the

Hyper Text Transfer Protocol (HTTP), server software cannot completely control user

interactions; thus arbitrary requests from clients are permitted. HTML interfaces can

be modified and/or circumvented, allowing the submission of unconstrained input to

server software.

Several research papers have addressed this issue and identified ways that users

can bypass the interfaces and provide input directly to the server. In fact, an active

3

area of research is SQL injection techniques, which essentially take advantage of the

ability to bypass user interfaces.

This thesis, extends Offutt et al.’s work on bypass testing of web application, which

defined a method for creating test cases for web applications that evade constraints set

by the user interface [14]. The theoretical background has been revised and extended

in order to support the use of an automated approach in the test case generation. A

unit testing tool, HttpUnit [7], is extended to build a prototype software application

that parses HMTL forms, identifies fields, create test cases that violate constraints

set by the interface designer, and finally performs testing. This document includes

analysis of types of client side input validation in chapter 2, definitions of the rules

and pseudo-algorithms that are used to automatically generate test cases in chapter 3,

the design of AutoBypass application in chapter 4, the experiment design and results

and in chapter 5, and finally the conclusions in chapter 6.

Chapter 2: Types of Client Input Validation

Client side input validation is primarily performed by using HTML form controls,

their attributes, and scripts that can access the Document Object Model (DOM)

and evaluate the inputs or check for required fields before a form submission. A

previous attempt [14] to categorize validation constraints categorized the two types

of client side validation as syntactic and semantic. In this study the author revised

and reorganized the individual items, which are labeled as HTML validation and

scripting validation. Several aspects of the previous categorization are revised in order

to provide a more abstract notion of the validation types and a better foundation for

an automation tool.

2.1 HTML Validation

Types of input validation that are performed using the HTML syntax on forms are

listed in this section. HTML has syntactic rules that define input controls that

implicitly validate the user input. Although web browsers define different rendering

capabilities for HMTL pages and forms, the HTML 4.1 language specification [16] is

used to identify specific features that are applicable to this research. The following

types of input validation are defined:

1. Length Constraints

2. Value Constraints

4

5

3. Transfer Mode Constraints

4. Field Element Constraints

5. Target URL Constraints

2.1.1 Length Constraints

The most common type of input constraint imposed by the HTML syntax is the

maxlength attribute for text or password input controls. This attribute limits the

number of characters of the string entered by the user in the input field.

2.1.2 Value Constraints

The HTML language specifies input controls that apply limitations on the set of

values available to the user. Parameter name and values pairs contained in a form

can be submitted either explicitly or implicitly. For instance, the number of selections

of a drop down list or check boxes is limited by the predefined set of values applied by

the application designer; these controls explicitly constrain the set of values available

to the user. On the other hand, hidden fields include predefined values without the

user’s knowledge and implicitly dictate the values available to the form. The types

of controls that define value constrains are:

• Hidden controls (input element)

• Menu controls (select, option group, and option elements)

• Boolean controls (input elements of type checkbox or radio button)

6

• Read-Only controls (textarea elements or text controls with the readonly

attribute set)

Radio buttons allow mutually exclusive selection, while checkboxes can allow multiple

selections. Similarly, the select element allows single or multiple selections.

2.1.3 Transfer Mode Constraints

The form element specification includes the method attribute that defines the Hyper

Text Transfer Protocol (HTTP) method used to submit the form. There are several

request methods defined on HTTP, but this study only uses the two most common,

GET and POST. Note that in the HTML 4.1 specification, the method attribute is

not required but forms that do not define a submit method will be submitted using

the GET by default. Forms that use the GET method are transmitted in ASCII as

parameters appended to the URL as a form data set separated by a question mark (?).

GET request parameters and their values are clearly visible to the user in the URL,

and they impose a maximum limit on the data transmitted of 1024 bytes. POST

requests are constructed as HTTP messages to the action URL, can have specified

data encoding and are not limited in size. Users can bypass the HTTP method that

is imposed by the interface simply by changing the HTML attributes of the form.

2.1.4 Field Element Constraints

Interfaces in web applications provide a defined set of controls including inputs, but-

tons, and menus. The set of controls submitted to the server application is predefined

by the application designer and classifies the set of controls in a form as input con-

straints. Values are explicitly assigned in controls that render on HTML pages and

7

implicitly in non-rendered fields such as hidden controls. The HTML specification

does not require all controls in a form to be successful (transmitted to the server).

Instead, during form submission, all the successful controls are organized in a package

and sent by the user agent (typically a web browser). On the other hand, web ap-

plications can implicitly constrain the user from supplying inputs in specific controls

on the forms. This type of input constraint is also related to the scripting validation

types.

2.1.5 Target URL Constraints

The most common mechanism to traverse through multiple web pages are links (an-

chor <a> tag). All links in HTML pages generate GET requests to the web servers;

therefore, anchors allow URL rewriting by appending parameter-value pairs to the

URL. Similarly to the GET requests, links with parameters can be modified by the

user by simply altering the HTML code or modifying the address of the target URL.

Through a predefined set of links, applications can constrain the user to navigate to

a fixed set of URLs [14].

2.2 Scripting Validation

HTML pages may contain scripts to respond to user events and validate data input

prior to form submission [14]. There are multiple scripting languages available, such

as JavaScript, TCL Script, and VBScript, to perform similar actions, but the use

of JavaScript is dominant and was used in this study. The main advantage of using

scripts in HTML pages is the full access to the Browser Object Model (BOM) and the

Document Object Model (DOM). Specifically, access to the DOM allows programmers

8

to control and respond to following events: onload, onunload, onclick, ondblclick, on-

mousedown, onmouseup, onmouseover, onmousemove, onmouseout, onfocus, onblur,

onkeypress, onkeydown, onkeyup, onsubmit, onreset, onselect, and onchange [16].

By associating actions with form elements, application designers can respond to

user inputs, prohibit form submission due to input restrictions, add/remove elements

from the forms, change the form’s action etc. Similarly to the HTML validations,

a set of validation types are defined, which are enforced via scripting. Scripts can

perform all the types of validations that are implicitly done by the HTML syntax,

yet scripting provides ways to enforce application specific requirements and apply

semantic restrictions. Via scripting, a web interface can perform all the validation

checks described for HTML constraints; however, validation with semantic scope that

is available with use of a scripting language cannot be replaced by the interface itself.

Several types of scripting validations:

1. Data Type Constraints

2. Data Format Constraints

3. Data Value Constraints

4. Inter-Value Constraints

5. Invalid Characters Constraints

2.2.1 Data Type Constraints

A major use of scripting validation is to examine input values that relate to specific

data types in the server application. By definition, all values in form controls are

9

transmitted as sequence of characters; therefore, validation is required to ensure that

the server side software component receives appropriate values. For instance, a field

that accepts inputs for age should only accept integers. A scripting function can

verify that requirement by checking the input control before submission and ask the

user to correct mistakes.

2.2.2 Data Format Constraints

Often, applications require input for values that need to conform to a specific format.

For instance, in the US, a zip code is a string of five digits and a phone number is

typically comprised of the area code and the local number (10 digits). Other types

of values that are often checked are the format of money, personal identification

numbers, email address, URLs etc. Using client side scripts to validate these types of

inputs in the interface applies constraints that can be circumvented by a user; all the

user needs to do is save the HTML, modify to delete scripts and resubmit the invalid

data.

2.2.3 Data Value Constraints

Data value constraints are used in web applications to provide input validation in

fields that have semantic restrictions. As an example, a field that denotes the age of

an individual should not only prohibit non-integer values (as a data type constraint),

but also limit the value of the integer to an appropriate range (e.g. 0 - 150).

10

2.2.4 Inter-Value Constraints

A very useful function of scripting in web interfaces is to constrain relationships

among several input controls in a form [14]. For example, when payment information

is required on a form, a choice of a credit card payment should require the input

of credit card type, account number, and expiration date. Omission of any of these

values makes the transaction impossible to complete; therefore, scripts are used to

verify that all required fields are completed and valid prior to form submission.

2.2.5 Invalid Characters Constraints

Security measures require input validation that will prohibit malicious string injec-

tions in to web applications. Inputs are frequently checked on the client to determine

whether they contain obvious invalid strings that can cause security infiltrations on

the server. Inputs with invalid characters can not only affect the security of the ap-

plication, including SQL statements, but also the robustness of the web applications.

Several types of invalid characters, such as XML tags (<, >) and directory separators

(../) can cause server applications to become unavailable. Wheeler provides a list of

common invalid characters that affect software [17].

Chapter 3: Rules for Defining Test Cases

Having identified the types of the client side constraints that are imposed by web

interfaces but can be bypassed by the end user, this chapter defines a set of rules that

are used to generate invalid inputs. The generated test cases are used to test web

applications with inputs that are validated on the client side either explicitly by the

application or implicitly by the interface. Following the structure of the validation

types defined in the previous chapter, the author aims to structure a set of rules and

algorithms implemented on the automated test generation tool.

A challenging issue for automatic test case generation is how to provide new test

values for fields and parameters that violate the applicable constraints. Theoreti-

cally, there are an infinite number of possible new values and parameters that can be

submitted. Yet, for appropriate testing, values that exist within the domain of the

application are preferred. Assume a value constraint applied through a drop down

list that allows the user to select his/her favorite color; the existing list could be blue,

yellow, and green. An effective test would be to add the value of red since it is part of

the input domain and it is more likely to affect the application. However, the problem

is knowing alternative values that are in the domain.

The author refers to this condition as the “Semantic Domain Problem” (SDP).

The SDP can be approached in many different ways. Random values can be used to

test the application; however, this approach is inefficient as it can lead to an infinite

number of alternative values, which are unlikely to be part of the application domain.

11

12

Therefore, this approach is not used in this research. Alternatively, automatically

generated domain related values can be used. By examining the initial values of the

input set, one can potentially generate related values that belong in the same domain.

For example, in a drop down list that allows course selection (e.g. SWE763), a pattern

can be observed and be used to generate new values. In this case, the pattern is 3

characters followed by 3 digits. An interesting approach is one similar to Google

sets (http://labs.google.com/sets), where with an input of a few terms, one can

generate a set (small or large) of values with in the same domain. For instance,

the input of values red, blue, green produces: Blue, Red, Green, Yellow, Black,

White, Magenta, Cyan, Gray, Browser, Orange, Purple, Brown, and Transparent.

This approach is very promising, yet the author leaves its implementation for the

future. Another solution is to gather parameter and values from one application by

parsing multiple pages that would provide input with parameters used. Finally, tester

supplied values can be used to test web applications. This approach is feasible for this

study, and also appropriate for selecting new values that can be intelligently chosen

by human users that are familiar with the application domain. Nevertheless, this

reduces the automation of this process.

3.1 HTML Rules for Violating Input Constraints

Parsing HTML code allows detection of constraints that are mainly enforced by the

web interface. The following subsections define a set of rules that are used to generate

test cases with regards to the HTML client validation.

13

3.1.1 Length Constraints Violation

This type of validation is the most trivial to detect and bypass. For each text or

password input in a form with an attribute maxlength = L, the test case generated

(TC) is length = L+1. On the other hand, automatically selecting an effective value

that will violate the length constraint is not trivial. As described in the beginning of

chapter 3, the SDP applies, and a human tester is required to provide test inputs.

In the automated test generation tool, the form controls of the subject are scanned

to find maxlength attributes. Disabled controls are excluded in this process since

they are not successful controls upon a form submission. Then, the input domain

is searched for values assigned to the same parameter that would violate the input

length. If none are found, the search continues to values that are assigned to other

parameters in the application input domain and violate the length constraints. If

still no value satisfies the test case requirements, a random string is generated and

replaces the default value of the control.

3.1.2 Value Constraints Violation

There are several ways that test cases can be generated by the value constraints

on an HTML form. In general, this type of constraint is violated by submitting a

value outside the predefined set of values (modified value) [14]. Modified values are

generated by either adding new values (as described in the beginning of chapter 3)

or by value omission, which is applied to obtain values outside the predefined set.

For all input, selection, and button elements specified in the HMTL language, the

value attribute is of type CDATA [16], which is a sequence of characters (or string).

The preset values can be violated by replacing the existing values with an empty

14

string. Value omission applies to hidden, read-only, selection menus, radio buttons,

and checkboxes controls and can be accomplished for each control as follows:

• For each Hidden Control in a form, the original value is replaced with a mod-

ified value. Use of hidden controls is very sensitive, as many applications use

hidden fields to identify the user or otherwise transmit values between server

side software components [14].

• For each Read-Only Control, the readonly attribute is omitted and its value is

set to a modified value.

For selection menus, radio buttons, and checkboxes, we define an abstract way

to produce test cases. By specification, form submission includes name-value pairs

and disregards the rendering scope of the controls themselves; thus, regardless of the

type of input, only the parameter name and value(s) will be transmitted to the server

application. An efficient testing method for the preset values in this set of controls

requires an abstract model that will distinguish them into single-value and multi-

value controls. Single-value controls include selection menus that prohibit multiple

selections, radio button groups and checkboxes that do not belong in a group. Multi-

value controls include checkboxes that are grouped by using the same identifier, and

selection menus that allow multiple selections. Check boxes that share the same

name identifier will allow multiple selections, and thus behave similarly to the multi-

value selection menus. With this abstract concept in mind, two more rules for test

generation are identified:

• For each Single-Value Control, the original value is replaced with a modified

value.

15

• For each Multi-Value Control, a combination of a valid value and a modified

one is tested. The control is submitted with pairs of valid and modified values,

but producing all the combinations of the possible valid-invalid sets is avoided

due to the potential for generating an enormous number of test cases, which is

likely to produce similar results.

There are some special types of input types that are related to value violation

rules. These are disabled, image maps, and file upload controls. Disabled fields also

have preset values by the interface; yet disabled controls are not successful during

form submission (i.e. not transmitted to the server). Disabled fields can be enabled

on the client side by manually modifying the HTML code; yet, this is addressed in

the Field Element Constraints Violation rules. Therefore, disabled fields are out of

the scope of this rule.

Next, image maps are primarily used for navigation [16]. Moreover, prior to

the availability of advanced technologies for animated graphical elements (such as

Macromedia Flash), image maps were also used to provide visual effects rather than

to send critical data to web applications. According to the HTML specification,

images can be used in several ways with the same outcome. The input element can

be of type image providing the functionality of a button. The use of image buttons

will result to the submission of the form data appended with the control’s name and

its x and y pixel coordinates relatively to the image location. Alternatively, an anchor

combined with map element can be used to specify areas of an image that will function

as different references. Maps can be defined as client side or server side. Client side

maps use predefined references specified in each area and become equivalent to an

link. For server side maps the browser will generate a GET request to the server by

16

appending the coordinates of the mouse location as parameters.

Lastly, input controls of type file upload are used to upload files from the browser

to the server. The specification defined for file upload at RFC1867 [11] requires

the HTML form ENCTYPE set to multipart/form-data, which is used by most web

technologies. It is unlikely that manipulations of this input control will produce major

faults to the applications, because of the fact that file uploads are not very common,

and second because file uploads require specific processing by the applications, which

will force developers to eliminate invalid requests. However, in theory one can violate

the constraint by providing corrupted files, files with different extension than those

required, try to upload malicious code, or simply replace the value of the parameter

with a string.

3.1.3 Transfer Mode Violation

Violation of the transfer mode constraint is accomplished by alternating the method

of HTTP transfer. The forms that define a GET method will be replaced with POST

and vice versa.

3.1.4 Field Element Constraints Violation

The rules for violating field element constraints are very similar to the rules for

value constraints. With the bypass method, field element constraints are violated by

submitting forms that include a set of controls that are different from the predefined

selection. For example, an HTML form that consists of a user name, test input and

a password input has a defined set of two inputs. To violate this constraint, one can

remove or add a new field. Specifically, modified sets of controls are created first by

17

control omission, then by control addition, and finally by control type alteration. An

exception to this rule and the implementation of the automation tool are the image

maps and file upload controls for the same reasons discussed in section 3.1.2.

Control Omission

To achieve modified control sets by control omission, form controls are eliminated

sequentially. Theoretically, for a form with n controls, a large number of test cases

can be generated as the sum of the all possible combinations for a set of predefined

controls, as shown in equation 3.1. For instance, for a form with 3 controls, first one at

a time is omitted, then two at a time and finally an empty form is submitted. That is,

3+3+1 = 7 modified forms can be used. Instead, only one form control is eliminated

sequentially in order to avoid a large number of test cases that are expected to have

similar effect.

|TC| = (n
1) + (n

2) + (n
3) + ... + (n

n−1) + (n
n) (3.1)

Control Addition

Next, test cases are generated by form control addition. For effective testing, the

added fields must exist in the current application, and perhaps used in other forms.

In the case of random control addition, the server-side software will most likely ignore

them. Adding new controls is affected by the Semantic Domain Problem; therefore,

controls are primarily added by a human tester that can identify possible new controls

that belong to the application domain. Apart from the user input, the automated

tool will implicitly use disabled controls and other buttons defined in the form that

18

are not used for submission. Such controls may or may not be available.

Control Type Alteration

Field value constraints are also violated by virtually converting the type of the field

elements. Since all successful controls in a form are transmitted as name-value pairs

to the server, alternating a control type will have no effect. For instance, the data

set will not change if a radio button is altered to a checkbox (as long as the input

name remains the same). Taken this fact under consideration, instead of changing

the HTML input types of the controls (e.g. from radio to select), only controls that

accept single values are modified to accept multiple values and vise versa.

It is assumed that omitting a selection from a multi-value control will not signif-

icantly affect the application, since most applications use such controls for optional

additional selections by users. On the other hand, adding values to originally single-

valued parameters is expected to influence the tested application since the application

will expect to receive only one parameter. Therefore, the automated tool implements

this rule by adding a value to every single-valued parameter, which alters its type to

a multi-value parameter.

The main focus for testing the application will be values from the human tester;

thus, the first candidate values are those in the input domain. If no input is provided,

the default values of other controls in the form expecting that values that already

exist in the application are more likely to affect the output. Yet, in a form with k

controls we can create k-1 test cases for each and k(k-1) in total; i.e. for each control

we would have to add one default value from every other control. That would result

in a large number of test cases that are likely to have the same effect. For that reason

19

the automation tool limits the additional values to the inputs by the tester and an

additional one found in a default value of an other control in the form.

3.1.5 Target URL Violation

Target URL inputs typically exist in forms using GET methods and requests embed-

ded in links with parameters. By altering the parameters and their values, testers can

create test cases that will interact with the state of the server as unexpected requests

are received. For each anchor that contains name-value pairs, combinations of modi-

fied parameter sets can be created. Modified parameter sets can be generated either

by dropping parameters (equivalent to omitting fields or values) or using alternative

URL paths. Alternative URLs must exist in the web application, probably pointing

to different components in the same application domain, in order to be effective. Ad-

dressing this requirement programmatically will introduce SDP since a large number

of random inputs can be generated that will possibly have no effect. Instead, this

version of the testing tool uses name-value pairs supplied by a human tester.

In addition, in a given HTML interface of an application there may be several

URL links that reference and send parameters to different application modules or

even different applications all together. By testing all possible URLs that carry

parameters, a great number of test cases will be created. Just to illustrate that

point, the bestbuy.com index page contains 187 URLs, and amazon.com contains

347. Moreover, the test set will address modules from the application that are not

in the current focus of the user, or may even belong to a different application all

together.

To address this issue, the automated tool was implemented to form groups of

20

URLs found according to the application (identified by the URL domain) and ap-

plication component (identified by the URL path). The java.net.URL class is used

to reconstruct and evaluate the application and component references, in addition

to the validity of the URL format. During that process, links that include no pa-

rameters are isolated together with links that use scripts, those that include relative

paths that are not correctly resolved (e.g. ../../somerelativepath.html), and finally

those that produce exceptions for unexpected situations. The user may select from

the remaining groups that may include one or more URLs for each application and

component to generate URL violations.

3.2 Scripting Rules for Violating Input Constraints

This implementation of the testing tool does not include an automated mechanism

for the violation of constraints that are enforced via scripting in web application

interfaces. Yet, on the theoretical component of this study, a possible approach for

automating scripting violation is defined and presented below. In addition, current

functionality of the testing tool that can be manually be used to address some of the

scripting violations is also discussed.

3.2.1 An Approach to Automate Scripting Rules

To approach the detection of scripting validation, scripts running on web interfaces

must be parsed. Indeed, an automated detection of the semantic validation via script-

ing is non-trivial. The initial strategy to generate test cases that aim to violate con-

straints for all types of scripting constraints types (Data Type, Data Format, Data

Value, and Invalid Character). Upon parsing the scripts, scanning to detect error

21

states (e.g. alert statements in functions that are triggered upon form submission)

can identify input restrictions. The tool may then detect the conditions under which

the error states occur and create test cases that include values that violate the inter-

face’s validation.

Another strategy refers to inter-value constraints that occur when a form element

is changed. A user action may trigger the change of other fields and their values in

the form. For example, assume a web site about cars; a form may include a drop

down list for users to select a make and a drop down list to select a model of a vehicle.

The selection on the car make list may affect the values displayed on the model list

dynamically. Often a JavaScript manipulates the form fields on the client side and

the inter-value constrains are enforced. An approach for automating the violation of

such cases would be the detection of scripts that alter values on fields upon events

(e.g. onchange) and comparting values of other fields. A sophisticated mechanism

is required to model the relationships of values in various fields and then create test

cases that will violate them.

Finally, a very common example to enforce scripting validation is checking for the

required fields in a form. To ensure that all required fields have inputs by the user,

scripting functions check the form contents prior to form submission. The approach

to violate them is to first identify all required fields dynamically, then create a control

set that has no values, and finally submit values that violate other constraints.

3.2.2 Current Support for Scripting Rules

The automation tool is designed to behave similarly to a browser that does not support

scripts. In such cases, applications are by default exposed to invalid inputs as scripts

22

that perform the validations are not enabled. Using application domain knowledge,

a tester can manually select test values that violate the scripting constraints in the

interface and essentially achieve the same results as an automated scripted constraint

detection and input violation.

The tester is expected to be familiar with the interface and the constraints en-

forced. During the process of creating the test cases the tester has the ability to

address these issues and invalidate the requests. For instance, assume that an input

field exist to enter the user’s age. Typically, a script function is used to validate and

warn the user if the data entered is invalid type or out of range; e.g. ’-1 ’, or ’230 ’, or

’someText ’. In that case the human tester can simply test these values by providing

additional parameters in the tool’s interface and be part of the HTML field value

constraints.

An additional feature was provided in the user interface of the tool that allows

the tester to efficiently violate input with invalid characters. For each input control,

the user can select a category of invalid characters, including empty string, commas,

directory paths, ampersands, strings starting with forward slash, strings starting with

a period, control characters, characters with high bit set, and XML tag characters.

These sets of invalid characters are then used to generate test cases. Actually, special

characters created problems in the testing tool. In earlier versions of the testing tool,

when invalid characters were selected, the generated test cases were corrupted and

problems occurred with the display and scripts used for the tool’s interface. For that

reason, the tester’s selections of invalid characters had to be encoded with tokens and

decoded again, just before the test case generation mechanism assigned them to the

parameters of the test cases.

Chapter 4: Automating Bypass

Test case generation, as defined in the previous chapter, is performed by an automated

tool, AutoBypass. The tool is an extension and modification of HttpUnit, an open

source package. HttpUnit is written in Java and emulates web browser behavior by

allowing Java programs to manipulate HTML elements, submit requests and receive

responses that can be parsed and examined [7]. A new approach was followed to

modify HttpUnit and adapt it to the functionality required to perform automated

test case generation based on bypass methods. By itself, HttpUnit simulates the

behavior of a web browser, yet it requires manual creation of test classes that will

test specific forms, fields and URLs that are known in advance. In the case of Bypass

testing, a dynamic approach to parse HTML pages needed to be designed, since that

form information is not available until the interface is parsed and analysed. Figure

4.1 shows the interactions of the user and the various components of AutoBypass.

The functionality of the tool is defined in the following sections.

4.1 Interface Parsing

As a first step, a tester provides a URL for the application to be tested. This initial

screen is shown in figure 4.2. Upon submission, the tool parses the input and checks

whether it is a valid URL. The document corresponding to that URL is received and

analyzed. All anchors, forms, and script elements are obtained and made available to

the application.

23

24

Sequence Event

1 The tester provides a URL for the application to be tested

2 All anchors, forms, and script elements are obtained and made available to

the application

3 The request is forwarded to a component that presents the forms and the

URLs found

4 The tester is presented with a list of forms and URLs available to select for

testing

5A No authentication is required (proceed to seq. 6)

5B The tester chooses to test password protected components

5B1 The tester provides the authentication information for tested application

5B2 Submit login name and password to the application. A session is

established by the WebConversation object and the subject

application (Return to Seq. 4)

6 The tester provides test input

7 Bypass rules are applied to create test cases

8 Submit invalid requests to the application

9 Test responses are stored to file

10 Result summary presented to the tester

1

Index.jsp

Get Forms

JSP

3

2

Choose Form

Provide Input

Servlet

4

Decision

Login

Required

5A(N)

5B(Y) Form Login

Authentication

5B2

5B3

Tester

5B1

6

Form Analysis

7

Java Class

TestGenerator 8

Result File

Stored

Results

10

9

Figure 4.1: AutoBypass Architecture

25

Figure 4.2: AutoBypass - Main Page

4.2 Interface Analysis

Given a valid URL for the subject application, the request is forwarded to a compo-

nent that presents the forms and the URLs found. Figure 4.3 shows a sample output

for this stage. The tester is presented with a list of forms available and required

to select the form that test cases will be generated for this set. In addition, URL

references (links) are identified and processed in order to perform optional test case

generation as described in chapter 3.

At this point, the application also detects whether the forms that were found in-

clude login fields. That is decided by parsing the field names (e.g. login, user name

etc.) and also by detecting password controls. If the tester selects to test password

protected components, he or she may choose to provide authentication information.

The authentication process takes place through submitting login name and password

26

Figure 4.3: AutoBypass - Form and URL selection for testing

27

to the application. A session is established by the HttpUnit.WebConversation object

and the subject application. Yet, protected areas present a different set of input

forms to the users. For that reason, AutoBypass forwards the request back to step

two, where the new output of the tested application is analyzed. The tester is then

presented with a new set of forms and URL groups that can be analyzed. In ad-

dition, a new field is available to give the option for testing a different area of the

web application that that was not accessible prior to authentication but now can be

reached.

4.3 Test Inputs

The selected form is analyzed and all controls are identified. The interface shown

in figure 4.4 is generated based on the subject’s form fields, and allows the tester to

provide test inputs. As discussed in chapter 3, the set of parameter-value(s) pairs

that will be transmitted to the server for the generated test cases should be all valid

with the exception of the modified parameter in each test case. For that reason, the

tester shall provide a complete set of valid parameters (a set that would result in a

known valid response conforming to the constraints of the HTML interface), and a

set of invalid parameters that will be used in the invalidated requests.

For every control, the default values from the HTML specification are loaded au-

tomatically if available, and can be changed. The default values will constitute the

valid set for this parameter. The user will then have the opportunity to specify ad-

ditional values that violate the interface constraints. For instance, given an interface

with an input control having a maxlength string constraint, the tester can specify a

string larger than would normally be allowed. The tester can enter additional values

28

separated by commas, which will define the pool of new options for use in the bypass

testing automation. Invalid inputs can also be specified by selecting invalid characters

(empty string, control characters, etc).

Some variations for the tester input values occur for the disabled controls and

buttons. Disabled controls would not be successful and thus their default values would

not be transmitted to the server. For that reason, the default values of disabled items,

if available, are automatically transferred to the test value set for this parameter.

Buttons in HTML forms create another challenge for the automation of bypass testing.

A form may have more than one button that can be used to submit the request and

can carry different values that will affect the processing in the server. Thus, it is

unrealistic to use all buttons and their values in the default parameter-value pairs.

The tester chooses which main button will be used as the standard in the test set.

If no button is specified, the application will arbitrarily pick one. The remaining

buttons will be used as part of the input domain for other violation rules (e.g. control

addition).

Finally, a field for additional parameter-value pairs is provided. Using this text

box, the tester can specify additional input parameters and values. A specific format

is required to allow multiple parameters that may have zero or more values (e.g. sim-

ulating a select control with multiple selection). The format required is a parameter

name followed by a colon ’:’ and its value set. Value set may include zero or more

values separated by the dollar sign ($). Parameter name-value pairs are separated by

semi-colons. For example:

name1:value1;name2:value2a$value2b;name3:;

29

4.4 Test Case Generation

When the collection of the control elements and their test values are constructed,

bypass rules are applied to create test cases, generate invalid requests and finally

submit them to the application. A java class, TestGenerator (TG), was implemented

to generate and run the test cases. Every new test set will generate a new instance

of TG given a set of parameters that would specify the test case generation, such as

the WebResponse and WebConversation, which are objects that contain the subject

forms and links from its initial response and current HTTP session, a Map with the

default values for each control, a Map with the input domain that includes the test

values provided by the user, a Map with the buttons to be used for submission and

other operational parameters.

The map representation of the parameter value pairs is initially a concept bor-

rowed from the Java servlet API [2], which provides the function getParameterMap to

retrieve the request’s parameter mappings. This function returns a Map containing

parameter names as keys corresponding to parameter values. In this API, the keys

are represented by a String and the values by String Array. Note that for each pa-

rameter in a HTTP request, there may be more than one value (e.g. drop down fields

that allow multiple selections) that are stored in the value array. In the AutoBypass

implementation, a Set data structure was used to represent the parameter’s values,

instead of the string array to allow a flexible environment for value addition and

omission, as well as to create a homogenous approach for all the test data collected

(default values, invalid parameters, URL parameters, etc.).

30

Figure 4.4: AutoBypass - Test Input

31

As each of the bypass constraint violation rules is applied, a Map of parameter-

value pairs is generated. A member function is implemented to accept the mappings

that represent the invalid request. This function creates a simplified HTML form

equivalent to the test case specification, stores it in a local HTML file and then

requests a WebResponse object using the HttpUnit API.

The generated HTML represent an invalid mutated version of the valid parameter-

value set. The WebForm is then retrieved in the response and added in the a global

Vector that stores all the test cases waiting to be submitted. Upon completion of

the test case generation, TG uses the runTests method, which iterates through the

vector that contains the mutant forms and submits them to the subject application

using the pre-established session. For each test case, the test response is stored in

a file along with the test case information (including a public URL for the mutated

form and response and the form control related to this test case with its original and

modified values).

The tester is presented with the final screen of the application that includes the

test result summary. An example is shown in figure 4.5. The tester can review a table

of all the tests generated and use links to the subject’s responses to review each test

case’s result. Together with the the result table, the tester can also access logs that

will provide further information, including the test generation log, the input domain

map, the default value map, the additional controls specified, the invalid characters

selected for each control, and the buttons used.

A major issue with the automation of web application testing is still the review

of the application responses. Indeed, the bypass methodology produces a variety of

mutated requests that are not expected to result in the some predefined application

32

Figure 4.5: AutoBypass - Test Results

33

output. The usual approach used in unit testing frameworks is to compare the results

with a predefined output set given a predefined input set. This is not the case with

the automation of bypass, since that invalid requests may produce different responses.

Therefore, the review of the results must be performed by a human that will have to

account for the mutations created and whether the response of the application was

appropriate. In this process, the two generated HTML documents for each test case

(mutant form and the subject’s response) are of special importance for the review

and for that reason, they are both stored to a local disk with web access permissions

to allow later access for evaluation by the tester.

The result files follow a specific structure with four parts as shown in the example

on figure 4.6. The first part, on top, includes the URL of the subject application in

which the form tested was found, in addition to a link to the mutant form that was

used to produce this response. The second part includes the test case description with

the rule information, the test case number, the related control, the original value(s),

and the modified value(s). The rule used to generate this test case may include

additional information. For instance, in a length constraint violation, the control’s

maxlength is reported.

Note that in special cases, original and modified values may not be applicable;

such examples include the control omission rules that will not have a modified value

since they are omitted all together, and the control addition which will not have an

original value. The third part consists of the mutant form control list along with their

values as submitted. The last part of the result output is a capture of the HTML

response from the subject application. It is important to note that other supporting

elements, such as that images and external script files, are not saved with the result.

34

Testing: http://google.com
Mutant URL: The Mutant URL

RULE : [Transfer Mode]

Test No: [3]

Related Field/Attribute: [FORM METHOD]

Original Value: [GET]

New Value: [POST]

FORM name: [f] acttion: [http://www.google.com/search] method: [POST]

name :[btnG] value: [Google Search]

name :[hl] value: [en]

name :[q] value: [some search]

Google Error

Not Implemented

The server is unable to process your request.

Figure 4.6: AutoBypass - Example Test Response

35

theForm.getBaseURL(): http://www.google.com/
theForm.getAction() :/search

btnG:

hl:

q:

Submit This Mutant

Google Search

en

some search

Figure 4.7: AutoBypass - Example Mutant Form

That may produce some display limitations that should not affect on the evaluation

of the results.

The mutant forms provide the ability to verify the result by accessing the subject

with a common browser. During the development of the automated test tool, it was

very important to have access to a copy of the mutant forms and verify the automated

responses. Thus, an HTML version of the mutated form is included in the test case’s

result package. For instance, the mutant form for the response discussed above can

be accessed with a browser and resubmitted manually. Figure 4.7 shows the HTML

version of the mutant form.

Initially, a generic HTML submit button was introduced that had a name and

a value that were transmitted along with the mutated request. For that reason, a

scripted submission is provided to avoid the addition of parameters out of the test

case scope.

Chapter 5: Empirical Evaluation

A goal of this project is to use the theory of bypass testing to implement an automated

tool that can generate test cases and provide developers with an efficient way to use

the bypass method to produce better applications. This chapter presents results

from applying this tool to a mix of commercial, open source, and proprietary web

applications.

5.1 Experiment Design

The nature of web applications makes testing very complex and tedious. In general,

one can follow two approaches to test web applications using the bypass method,

a generic approach and a specific approach. The generic approach is to test the

application with all possible fields and all possible values for all the rules defined

previously in this paper. For example, assuming a text field t with a constraint for

maxlength=“n”, test cases are generated for the value of t with length=0,1,...,n,n+1.

On the other hand, the specific approach is to test a field only with values produced

by the rules defined above. For the example above, the text field t would be tested

with a value of length=0, and with a value of length=n+1. This experiment used the

specific approach, which generates fewer test cases. In fact, the foundation of bypass

testing is to test values that are restricted by the client side interface; we assume that

developers perform some basic testing with values that satisfy these requirements.

36

37

5.1.1 Hypothesis

Taking into consideration that modern web applications should be designed and built

with reliability, usability, and security in mind, it is assumed that the applications

used as subjects have been tested by their designers. The testing method of the

subject developers are not often well known and quite possibly may not be well

defined. However, the fact that the subject applications are in the production phase

suggests that extensive testing was performed by the developers. In addition, the

subjects are applications that have been used by large number of users.

In order to validate the effectiveness of bypass testing, one can suggest that this

new method will reveal additional faults on the subject applications. However, due

to the diverse set of subjects used in this experiment and also the fact that testing

was performed in few components of each subject, the author can not statistically

generalize this proposition [6, 10,12,18]. Instead a null hypothesis is formed:

H0: Bypass testing of web applications will not expose more faults than

standard testing

5.1.2 Independent Variables

There is one independent variable in this experiment, which is the method of testing

web applications. Two values are used in this study:

1. Bypass method of testing web applications.

2. Industry standard testing method conducted by the developing organization.

38

5.1.3 Dependent Variables

This experiment is designed to study potential faults, failures, and security vulner-

abilities in web applications. Therefore, the dependent variables for this study are

the types of the server responses given a request submission. The main concept of

the original experiment by Offutt et al. [14] will be followed and server responses

will be categorized into three areas, valid responses (V), faults and failures (F),

and exposure (E). Valid responses are when invalid inputs are adequately processed

by the server. Faults and failures include invalid inputs that cause abnormal server

behavior. Typically, the server’s automatic error handling mechanisms will catch the

errors. Finally, exposure occurs when invalid input is not recognized by the server

and abnormal software behavior is exposed to the users.

An important aspect of the responses evaluation is appropriateness vs. expectancy.

That is, upon the submission of an invalid request, the servers response cannot be

evaluated according to the result expected, since an expected response is not defined

for invalid input; as least for the end user. Thus the results for invalid requests cannot

be compared with some expected response. Instead, the responses are evaluated by

examining the appropriateness of the handling action for the invalid input by the

application.

Preliminary results showed a variety of responses that comply with the definition

of the valid response. Specifically, there are test cases that produce a specific error

message by the application in regards to the invalid parameter. An example is when

the server would respond with a message like “The zip code you entered is invalid”

or “We can not process your request” or “Your browser sent an invalid request”.

Some other test cases produced generic messages upon receiving invalid requests. For

39

instance, messages such as “Server is unavailable, try later” or “Server Error” are

returned. Note that this type of server error message is displayed in the context of

the application interface, so it is assumed that handling took place at the application

level. This type of message may be less helpful than the others, but this research did

not evaluate usability. Next, there are cases where applications treat invalid requests

by apparently ignoring them and processing the request, which results in output that

corresponds to a valid response. Finally, some test cases produce responses that ignore

the invalid request and do not process the input. For instance, a request is submitted

and the server’s response is the originating web page. Therefore, a breakdown of

these cases is provided as subsets of the valid response definition:

• (V1) Valid response in which the server acknowledges the invalid request and

provides an explicit message regarding the violation

• (V2) Valid response in which the server produces a generic error message

• (V3) Valid response in which the server apparently ignores the invalid request

and produces an appropriate response

• (V4) Valid response in which the server apparently ignores the request com-

pletely

In the author’s view, the responses in V3 (provided that no error occurs in the

application’s database or the user’s session) or V1 are the desired behavior of an

application in general. On the other hand, for the responses that produce generic

messages (V2), one can claim that a fault was caught somewhere, but not 100%

adequate handling took place. This is bases in usability factors, which are hard to

40

quantify; therefore, such responses are considered valid based on the fact that we

can only see the result of the test in the HTML response. Yet, errors may become

exposed if the back end of the application would be available.

Since there is no access to the server, source code or media (e.g. database or files),

one cannot determine whether the invalid inputs cause an invalid state on the server

but the response to the user is as expected or it appears appropriate. Evaluation of

the validity of a response can take place only by external inspection of the output.

By classifying the valid responses in the above sub-categories one can better evaluate

the error handling mechanisms.

5.2 Subjects

This section provides details about the subjects,the test cases generated, the responses

from the servers, and finally some confounding variables that may have affected the

results.

Several criteria were used to create a pool of subject applications for this ex-

periment. The subjects in this experiment are selected based on complexity of the

application, and the ability to perform bypass testing. The complexity criterion is

estimated by examining the components that interact through the HTTP requests.

One characteristic of bypass testing is that no access to the application’s source code

is required; therefore, the complexity of a subject is determined only by external in-

spection. The ability to perform bypass testing is determined by the compatibility of

the web interface of each application. For example, AutoBypass currently supports

parsing HTML pages with some limitations on the support of JavaScript. Thus, web

interfaces that use extensive scripting to do things such as substantially modify the

41

DOM or different technologies, such as Macromedia Flash, cannot currently be tested.

Test data were collected from various publicly available applications. The sample

included open source applications as well as proprietary commercial web applications.

All of the commercial application have a large user base, yet some are significantly

larger than others. This particular mix of applications is composed of a variety of

web applications and their responses to bypass testing. Table 5.1 lists the 16 subject

applications and their 30 components.

5.3 Results

The results are presented in this section one subject application per subsection (5.3.1-

5.3.16), with a summary in subsection 5.3.17. Result tables include the number of

test cases created for each subject together with the type of response as described in

the dependent variables of the experiment. Note that the legend provided in table

5.2 for the types of server responses is used for all the results presented.

5.3.1 ATutor Learning Content Management System

The first subject of the study is ATutor, an Open Source Web-based Learning Content

Management System (LCMS) [3]. ATutor is a product of the Adaptive Technology

Resource Centre of the University of Toronto. ATutor is written in PHP and includes a

large nubmer of components. The component tested in this experiment is the ATalker

module, which is a Web-based text-to-speech utility. From the 367 test cases, 67.9%

resulted in valid responses, 0% in faults and failures, and 32.2% in exposure. Results

for this module are presented in table 5.3.

The majority of the test cases that caused exposure were generated using the value

42

Table 5.1: Experiment Subjects

buSeludoMnoitacilppA ject ID Subsection

1.3.5A10Sreklataac.rotuta

A20S)lop(2xedni

index2(users) S02B

A30Sniam

B30SemehTtes

C30SmroFlqs

dbStatsForm S03D

submitRequestInfo S04A

B40Sresuwen

fuseaction (events) S05A

fuseaction (music) S05B

nytimes.com
us-markets

(marketwatch.nytimes.com)
S06A 5.3.6

7.3.5A70Snigolude.umg.xetum

mail, notepad S08A

Mail, Compose S08B

r (desktop search reminder) S08C

w (weather search) S08D

xt_manage_cart S09A

booksearch/results S09B

item-dispatch S10A

handle-buy-box S10B

ATM locator

(bofa.via.infonow.net)
S11A

B11Shcraes etis

comcast.com Localize.ashx S12A 5.3.12

S13A

shopping_cart S13B

A41Selgoorf

language Tools S14B

pageflakes.com PageFlakesRegistration S15A 5.3.15

61.3.5A61Sstlusermoc.efilografsllew

ecost.com

google.com

5.3.9

5.3.10

5.3.11

5.3.13

5.3.14

barnesandnoble.com

www.amazon.com

bankofamerica.com

yahoo.com

5.3.5

5.3.8

myspace.com

phpMyAdmin

demo.joomla.org

brainbench.com

5.3.2

5.3.3

5.3.4

43

Table 5.2: Result Legend

Symbol Response Type

V Valid Responses (includes V1,V2,V3,V4)

V1
Valid response in which the server acknowledges the invalid request

and provides an explicit message regarding the violation

V2
Valid response in which the server produces a generic

error message

V3
Valid response in which the server apparently ignores the invalid

request and produces an appropriate response

V4
Valid response in which the server apparently ignores the request

completely

F Faults and Failures

E Exposure

T Total

violation rules. Most of these test cases caused the application to reference a file that

does not exist. As a result an HTTP error 404 was presented in the main body of

the interface, while the navigation, the header, and footer of the interface printed

correctly. Other invalid requests created a corrupted output from the application. In

this case the output is a sound file which is produced by the text-to-speech utility

according to the input parameters specified in the web interface. Typically, other

parameters (e.g. language setting) with invalid values were used to produce the speech

file instead the “textIn” which specifies the text to become speech.

Finally, from the results of this module, one can see that more than 90% of the

test cases were generated using the value violation rules. Note that as described in the

previous chapters, AutoBypass does not implement the script constraint violations.

The tester can inspect the HTML interface and detect fields that use scripting to

detect invalid inputs and also types of controls that have predefined values. In such

cases test values can be used by selecting one or more typical invalid strings provided

in the AutoBypass interface. In this experiment, invalid characters are used as inputs

44

Table 5.3: Results for ATutor

V V1 V2 V3 V4 F E

Value Violation and

Invalid Characters
224 2 0 194 28 0 110 334

Transfer Mode 1 0 0 0 1 0 0 1

Field Element Violation 24 1 0 22 1 0 8 32

Total 249 3 0 216 30 0 118 367

% 67.85% 0.82% 0.00% 58.86% 8.17% 0.00% 32.15%

latoTesnopseR revreSepyT noitaloiV

to controls that do not normally allow modifications (e.g. hidden, radio, and checkbox

controls) and thus, they are included to the value violation test cases. In this case,

both the value and the field element violation rules produce similar ratios of exposures

(0.33 and 0.25 respectively).

5.3.2 Joomla Content Management System

Joomla is a Content Management System (CMS) that is used by thousands of users

to create and administer online portals [4]. A demo server is available for trials of

the application, which was used to perform the tests on password protected pages.

In Joomla, all modules of the system are accessed through a common interface. By

passing parameters in GET requests, the application renders different component

management interfaces through the same form and uses JavaScript to hide parts of

the interface, depending on the module administered.

Poll Administration Module

First, the poll administration module was tested by generating 426 test cases. In

these tests, invalid inputs replace the poll’s default information (e.g. the question’s

45

Table 5.4: Results for Joomla CMS, Poll Administration module

V V1 V2 V3 V4 F E

Value Violation and

Invalid Characters
218 0 0 5 213 0 104 322

Transfer Mode 2 0 0 0 2 0 0 2

Field Element Violation 82 0 0 1 81 0 4 86

Target URL Violation 16 0 0 0 16 0 0 16

Total 318 0 0 6 312 0 108 426

% 74.65% 0.00% 0.00% 1.41% 73.24% 0.00% 25.35%

latoTesnopseR revreSepyT noitaloiV

content, display parameters, user access, availability etc.). The majority of the tests

resulted in valid responses (74.65%), and the other (25.35%) produced exposure of the

application. The errors found in this module are mainly caused by parameters that

are used to control the page’s navigation as the application allows arbitrary inputs to

be passed as part of the navigation menus. The remaining invalid responses exposed

a creation of a new poll, despite the fact that the submission was indented for the

update of an existing poll. In particular, by modifying the parameter ’id’, which

apparently corresponds to the id of the poll, the application is creating a new poll

without checking if this action was legitimately requested or if the id value is within

the appropriate range.

With respect to the rules used to generated test cases, 33% of value violations

caused exposures, and only 9.3% of the field element violations caused exposures.

Transfer mode and target URL violations produced only valid responses. Finally, in

99% of the responses that are classified as valid, it appears that the server ignores

the invalid input and does not process the request (V4) since the original page was

re-printed. Results for this module are presented in table 5.4.

46

Add New Content Content Items Manager

Static Content Manager Frontpage Manager

Section Manager Category Manager

Media Manager Trash Manager Menu Manager

Language Manager User Manager

Global Configuration

Control Panel

Joomla! is Free Software released under the GNU/GPL License.
Joomla! 1.0.9 SVN Nightly Build [Sunshine] **-Mar-2006 **:** UTC

Check for latest Version

Components Popular Latest Items Menu Stats

Currently Logged in Users

<< Start < Previous Next > End >>

Display # 10 610 Results 251 - 28 of 28

Logged

Figure 5.1: Exposure at Joomla CMS, Online User Information Module

Online User Information Module

The online user information is displayed on the main page of the CMS administrator

and provides access to all users that are currently logged on. A super administrator

may force a log out for a user or change the user’s account settings. The tests

generated resulted in 68.6% valid responses and 31.4% exposure of application errors.

By modifying hidden parameters, the test requests cause an invalid argument to be

passed in a control loop, causing errors on the display. In this particular installation

version of the demo, script errors are output to the response and thus detectable.

If the error output was disabled, this exposure could not be identified. Some other

invalid requests exposed the wrong number of current users. For instance, figure 5.1

shows the application output “display: results 251-28 of 28” while no users are listed.

Results for this module are presented in table 5.5.

47

Table 5.5: Results for Joomla CMS, Online User Information module

V V1 V2 V3 V4 F E

Value Violation and

Invalid Characters
52 0 0 52 0 0 27 79

Transfer Mode 1 0 0 1 0 0 0 1

Field Element Violation 6 0 0 6 0 0 0 6

Total 59 0 0 59 0 0 27 86

% 68.60% 0.00% 0.00% 68.60% 0.00% 0.00% 31.40%

latoTesnopseR revreSepyT noitaloiV

5.3.3 PhpMyAdmin, Web Based MySQL Client

The phpMyAdmin web application allows users to administer MySQL [5] databases.

According to the project statistics, there have been approximately eight million down-

loads from the launch of the project until the middle of December in 2005. PhpMyAd-

min is tested using a demo server that is available by the developers.

Current Database Control

The first element of phpMyAdmin that was tested is the form that sets the current

database. In this first test set, all responses are valid. Yet, it is noticeable that the

majority of the test cases (82%) result in a valid response. In these cases the server

apparently ignored invalid inputs and did not process the request. The remaining 18%

are caught by the application and explicitly acknowledged. Results for this module

are presented in table 5.6.

Theme Control

Next, the form that sets the theme of the HTML interface was tested. In this set,

faults in the validations are exposed in almost 15% of the invalid requests. In fact,

48

Table 5.6: Results for PhpMyAdmin, Current Database Control

V V1 V2 V3 V4 F E

Value Violation and

Invalid Characters
45 10 0 0 35 0 0 45

Transfer Mode 1 0 0 0 1 0 0 1

Field Element Violation 8 0 0 0 8 0 0 8

Total 54 10 0 0 44 0 0 54

% 100.00% 18.52% 0.00% 0.00% 81.48% 0.00% 0.00%

latoTesnopseR revreSepyT noitaloiV

Table 5.7: Results for PhpMyAdmin, Set Theme Module

V V1 V2 V3 V4 F E

Value Violation and

Invalid Characters
76 0 0 0 76 0 15 91

Transfer Mode 1 0 0 0 1 0 0 1

Field Element Violation 10 1 0 0 9 0 0 10

Total 87 1 0 0 86 0 15 102

% 85.29% 0.98% 0.00% 0.00% 84.31% 0.00% 14.71%

latoTesnopseR revreSepyT noitaloiV

the application allows a call to a non-existing style sheet through a form that consists

of hidden controls selection menus. The demo installation allows the error messages

to print to the output, giving the author the ability to identify the exposure. For this

component, all faults are exposed by the value violation rules with a rate of 15 errors

on 91 test cases (16.5%). Results for this module are presented in table 5.7.

SQL Query Form

The SQL query input form resulted in no failure or exposure. All test cases pro-

duces valid responses as the invalid requests are either ignored (98.5%) or explicitly

acknowledged (1.5%). Results for this module are presented in table 5.8.

49

Table 5.8: Results for PhpMyAdmin, SQL Form

V V1 V2 V3 V4 F E

Value Violation and

Invalid Characters
96 2 0 0 94 0 0 96

Transfer Mode 1 0 0 0 1 0 0 1

Field Element Violation 36 0 0 0 36 0 0 36

Total 133 2 0 0 131 0 0 133

% 100.00% 1.50% 0.00% 0.00% 98.50% 0.00% 0.00%

latoTesnopseR revreSepyT noitaloiV

Table 5.9: Results for PhpMyAdmin, Data Base Statistics

V V1 V2 V3 V4 F E

Value Violation and

Invalid Characters
108 0 0 108 0 0 0 108

Transfer Mode 1 0 0 1 0 0 0 1

Field Element Violation 17 0 0 16 1 0 0 17

Total 126 0 0 125 1 0 0 126

% 100.00% 0.00% 0.00% 99.21% 0.79% 0.00% 0.00%

latoTesnopseR revreSepyT noitaloiV

SQL Database Statistics Form

The form used to produce status reports for the databases was parsed to generated

test cases. This module also returned valid responses. Results for this module are

presented in table 5.9.

5.3.4 Brainbench.com Online Assessment Products

The first commercial application tested in this experiment is brainbench.com. An

online assessment provider with impressive clientele and achievements in the industry,

brainbench.com is a portal with a significant number of users.

50

Table 5.10: Results for Brainbench.com, Information Request Form

V V1 V2 V3 V4 F E

Length Violation 0 0 0 0 0 9 0 9

Value Violation and

Invalid Characters
0 0 0 0 0 103 0 103

Transfer Mode 0 0 0 0 0 1 0 1

Field Element Violation 0 0 0 0 0 37 1 38

Total 0 0 0 0 0 150 1 151

% 0.00% 0.00% 0.00% 0.00% 0.00% 99.34% 0.66%

latoTesnopseR revreSepyT noitaloiV

Business Information Request Form

The application is heavily dependent on the client side validation for business in-

formation request module. In all but one test case, the server software exception

mechanism was activated. The other test case exposed failure when an invalid set of

values was submitted. Results for this module are presented in table 5.10.

New User Registration

The registration module produced an interesting variety of responses. To business

requirements, the validity of the user information is crucial for this application. All

certifications and assessment ratings for the users will be assigned to the account

created in this form. The test set generated for this component included 281 invalid

requests. In fact, the AutoBypass automated submission mechanism did not produce

correct results since all test cases use the same login ID, and the application directly

identifies this request as trying to use the login ID of an existing account. Instead,

manual submission of mutants allowed the tester to modify the request to produce a

correct test. For this set, the email value was altered manually in each mutated form.

51

Even though the application handles the majority (80.8%) of the invalid request

with valid responses. From these, 28.11% identified most invalid inputs explicitly and

a message produced a warning about the input requirements and 52.7%apparently

ignored parameters that are most likely used for internal usage (i.e. not parameters

for the user account like name, password, etc.) and allowed the registration. The

remaining (19.2%) exposes various errors. The author is not in a position to examine

the effects of these tests since the server is not available. Errors typically include

cases where invalid new user requests are allowed, despite the invalid inputs on key

parameters for the user registration (e.g. empty password confirmation, address,

state, etc.).

Interestingly, some invalid parameter values had unexpected effects on the mes-

sages produced by the application. For instance, the violation of the maxlength of

the address parameters caused a warning for an existing account. After limiting the

length of the address value, the account creation is allowed with the same login ID;

therefore, these cases are classified as errors. The field element and value violation

rules produced a similar percentage of fault exposures (17.4% and 18.3% respectively)

and half of the test cases generated by length violation rules produced exposure errors.

Results for this module are presented in table 5.11.

5.3.5 Myspace.com Online Community Portal

Myspace.com is a popular portal for a young audience that was initially focused in

music events. This portal is now one of the most popular community portals for users

to create accounts that are used to share photos and journals and also communicate

with other members.

52

Table 5.11: Results for Brainbench.com, New User Registration

V V1 V2 V3 V4 F E

Length Violation 5 5 0 0 0 0 5 10

Value Violation and

Invalid Characters
183 59 0 124 0 0 41 224

Transfer Mode 1 0 0 1 0 0 0 1

Field Element Violation 38 15 0 23 0 0 8 46

Total 227 79 0 148 0 0 54 281

% 80.78% 28.11% 0.00% 52.67% 0.00% 0.00% 19.22%

latoTesnopseR revreSepyT noitaloiV

Table 5.12: Results for Myspace.com, Event Search

V V1 V2 V3 V4 F E

Length Violation 2 0 0 2 0 0 0 2

Value Violation and

Invalid Characters
54 0 0 54 0 0 0 54

Transfer Mode 1 0 0 1 0 0 0 1

Field Element Violation 20 0 0 20 0 0 0 20

Total 77 0 0 77 0 0 0 77

% 100.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00%

latoTesnopseR revreSepyT noitaloiV

Event Search

The first test set for this application was generated around the event search form.

None of the test cases produced faults or exposure. All of the invalid requests are

apparently ignored by the application, which produces typical responses (i.e. provide

results for the search requested). The results for this module are presented in table

5.12.

53

Table 5.13: Results for Myspace.com, Music Search

V V1 V2 V3 V4 F E

Value Violation and

Invalid Characters
49 0 26 23 0 0 2 51

Transfer Mode 1 0 0 1 0 0 0 1

Field Element Violation 10 0 1 9 0 0 0 10

Total 60 0 27 33 0 0 2 62

% 96.77% 0.00% 43.55% 53.23% 0.00% 0.00% 3.23%

latoTesnopseR revreSepyT noitaloiV

Music Search

Next, the interface that is used to search a different section of the content was tested.

Most of these test cases produced valid responses (96.8%); yet, a large percentage

(43.6%) of the generated requests caused the application to produce generic mes-

sages. In particular, the error message displayed was “Sorry! an unexpected error

has occurred”. This is considered a valid response since the application acknowledges

some form of invalid input and prevents an exposure or crash. However, we cannot

be sure whether invalid inputs affected the database or other server-side component

of the application. 3.23% of the test cases generated produced exposure, all of which

were produced by value violation rules. By modifying the value of the “page” param-

eter, the results returned were incorrectly identified by the page numbering. Results

for this module are presented in table 5.13.

5.3.6 NYtimes.com Online New

The next subject is the New York Times online edition. The interface used for

test generation was in the business section (marketwatch.nytimes.com), which was

built using the Active Server Pages (ASP) technology. This component provides an

54

overview of the stock markets and allows users to search for specific trade symbols.

The invalid requests resulted in 55.4% valid responses, 1.42% faults and failures, and

43.18% exposures.

Most valid responses appear to ignore the invalid request parameters and produce

an appropriate response. In a few cases (1.1%), a generic message was received. Upon

invalidating the parameter “guid”, the application responded with a generic message

(“story not available”) in the body of the page. Faults and failures were caused by

1.4% of the test cases; the application did not respond at all. The author cannot be

sure of the reason of such reaction, but the use of advertising mechanisms is suspected.

In either case, the application does not respond with any acknowledgement.

Finally, 43.2% of the invalid requests exposed faults. All of the test cases that

resulted in exposure were generated using the value violation rules. By altering values

in hidden input controls, the application referenced images that do not exist in place

of the graphs for each market (i.e. an empty image is rendered). A second type of

error is the violation of specific parameters, namely “screen” and “exchange”, resulted

in the omission of the last part of the output. Initially, it appeared that an HTML

tag was not output correctly but part of the output was replaced by the ASP error

report. Results for this module are presented in table 5.14.

5.3.7 Mutex.gmu.edu Libraries Database Gateway

The George Mason University Libraries Database Gateway application is used to

authenticate students for access to the university’s subscriptions to online periodi-

cals and journals. The Mutex application is the proxy gateway for accessing these

resources. The interface that is used by students to input their ID is very simple,

55

Table 5.14: Results for NYtimes.com, Market Watch

V V1 V2 V3 V4 F E

Value Violation and

Invalid Characters
40 0 0 39 1 2 147 189

Transfer Mode 1 0 0 1 0 0 0 1

Field Element Violation 9 0 0 9 0 0 5 14

Target URL Violation 145 0 4 0 141 3 0 148

Total 195 0 4 49 142 5 152 352

% 55.40% 0.00% 1.14% 13.92% 40.34% 1.42% 43.18%

latoTesnopseR revreSepyT noitaloiV

Table 5.15: Results for mutex.gmu.edu, University Libraries Database Gateway

V V1 V2 V3 V4 F E

Value Violation and

Invalid Characters
28 28 0 0 0 0 54 82

Transfer Mode 1 1 0 0 0 0 0 1

Field Element Violation 1 1 0 0 0 0 7 8

Total 30 30 0 0 0 0 61 91

% 32.97% 32.97% 0.00% 0.00% 0.00% 0.00% 67.03%

latoTesnopseR revreSepyT noitaloiV

only one text input control is rendered. However, the HTML source code contains a

numbers of hidden fields that carry information used by the application to determine

the target journal to be accessed. A test set was generated by modifying these pa-

rameters, resulting in 33% valid responses. All of the valid responses are explicitly

acknowledged by the application with the message: “That number was not recog-

nized. Try again below”. The remaining 67% of the test cases generated responses

that exposed errors handled by the application’s server. The request was redirected

to nonexisting pages, causing the server to sent an “Error 404–Not Found” to the

browser. Results for this module are presented in table 5.15.

56

Table 5.16: Results for Yahoo.com, mail: notepad

V V1 V2 V3 V4 F E

Value Violation and

Invalid Characters
65 0 0 0 65 0 0 65

Transfer Mode 1 0 0 0 1 0 0 1

Field Element Violation 32 0 0 0 32 0 0 32

Total 98 0 0 0 98 0 0 98

% 100.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0%

TotalesnopseR revreSepyT noitaloiV

5.3.8 Yahoo.com, Global Internet Service

Yahoo.com allows users to access an array of services (search, personalized pages,

email, news and many others) through the web. Yahoo is selected in this experiment’s

sample to represent some of the applications with the largest volume of transactions

in the market. User authentication was required to test some components. The

AutoBypass’ authentication mechanism was used for that purpose, and the author’s

personal account was provided for login.

Notepad

The first component tested was notepad, which is one of the many features provided

in the overall web email application. The interface used to test this module was the

Edit Note form. All of the 98 generated tests produced valid responses that appear to

ignore the violated parameters and processed the requests with no evidence of errors.

Results for this module are presented in table 5.16.

57

Table 5.17: Results for Yahoo.com, compose message

V V1 V2 V3 V4 F E

Value Violation and

Invalid Characters
314 0 0 0 314 0 0 314

Transfer Mode 1 0 0 0 1 0 0 1

Field Element Violation 155 0 0 0 155 0 0 155

Total 470 0 0 0 470 0 0 470

% 100.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0%

TotalesnopseR revreSepyT noitaloiV

Message Composer

Composing email messages is one of the most common actions of yahoo’s email users.

The interface constructed for this function was used to generate the next test set.

All generated test cases resulted in valid responses, consistent with the results of the

previous component of this application. Results for this module are presented in table

5.17.

Yahoo Toolbar Reminder

The entry point of the Yahoo web site is often used to advertise new services. De-

pending on the history of a user, a notification of the browser search extension is

displayed on top of the web page. The user may click on a check box to disable

the appearance of this notification in future visits. Surprisingly, 99% of the 37 test

cases for this small form resulted in a faults and failures. The application returned an

empty screen that includes a string of character that was not rendered on the browser.

The only test cases that produced a valid response were generated by the transfer

mode violation. By changing the form method from GET to POST, the application

returned the message that this method is not allowed. The results for this module

58

Table 5.18: Results for Yahoo.com, Desktop Search Reminder

V V1 V2 V3 V4 F E

Value Violation and Invalid

Characters
0 0 0 0 0 31 0 31

Transfer Mode 1 1 0 0 0 0 0 1

Field Element Violation 0 0 0 0 0 5 0 5

Total 1 1 0 0 0 36 0 37

% 2.70% 2.70% 0.00% 0.00% 0.00% 97.30% 0.00%

latoTesnopseR revreSepyT noitaloiV

Table 5.19: Results for Yahoo.com, Weather and Traffic Search

V V1 V2 V3 V4 F E

Value Violation and

Invalid Characters
54 0 0 54 0 0 0 54

Transfer Mode 1 0 0 1 0 0 0 1

Field Element Violation 4 0 0 4 0 0 0 4

Total 59 0 0 59 0 0 0 59

% 100.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0%

Violation Type Server Response Total

are presented in table 5.18.

Weather and Traffic Search

The last component tested in this application was the weather and traffic search

tools, which are also part of the main yahoo page. Using a location name or zip code,

one can find details about the weather and traffic conditions. All invalid requests

generated for this component’s interface produce appropriate results. Results for this

module are presented in table 5.19.

59

Table 5.20: Results for Barnesandnoble.com, Shopping Cart

V V1 V2 V3 V4 F E

Value Violation and

Invalid Characters
123 0 1 122 0 0 2 125

Transfer Mode 1 0 0 1 0 0 0 1

Field Element Violation 10 0 1 9 0 0 0 10

Target URL Violation 40 0 5 35 0 0 0 40

Total 174 0 7 167 0 0 2 176

% 98.86% 0.00% 3.98% 94.89% 0.00% 0.00% 1.14%

latoTesnopseR revreSepyT noitaloiV

5.3.9 Barnesandnoble.com, Online Store

Continuing with commercial applications with a high volume of transactions, the

barnsandnoble.com online store was tested. With a long retail history, the book

store chain expanded their online operations to other retail markets such as music

and video. Only public sections of the web application were tested; no authentication

was required to access these pages. Two components from this subject are tested and

the results follow.

Shopping Cart

A critical function of online stores is the shopping cart component. As each product

detail is displayed on the application’s interface, the “add to shopping cart” form

allows a user to add the current item to the collection that he or she wants to purchase.

Specifically in the video collection, AutoBypass generated 176 test cases from which

98.9% resulted in valid responses and 1.1% in exposure of errors. Results for this

module are presented in table 5.20.

Valid responses mainly consisted of output that suggests that the application does

60

not take into account the invalid parameters; the output was valid responses. Yet

some of the valid responses resulted in generic error messages. Two specific messages,

are:

Message A:

We are sorry... Our system is temporarily unavailable due to routine

maintenance. We apologize for any inconvenience during this outage and

expect our systems to return shortly. Thank you for your patience.

Message B:

Sorry, we cannot process your request at this time.

We may be experiencing technical difficulties, or you may need to adjust

your browser settings. If you continue to have problems, please click here

to send a message to customer service.

By examining the output captured by AutoBypass, test cases that generated mes-

sage B were initially classified as invalid responses. During the test, the application

responded with an empty text file with the phrase:“The parameter is incorrect”. How-

ever, as the results were manually verified using a regular browser, the application

produced an appropriate page (i.e. message B within the regular header and footer of

the application’s interface). In fact, web applications may produce different responses

for different clients; e.g. a desktop browser vs. a browser in a hand-held device. It is

assumed that Autobypass was not recognized as one of the typical web browsers and

a simplistic error message was generated.

On the other hand, the small percentage of test cases that cause exposures are

due to invalid inputs that violate the cart display function. Even through an error

61

Table 5.21: Results for Barnesandnoble.com, Book Search

V V1 V2 V3 V4 F E

Value Violation and

Invalid Characters
132 13 0 119 0 3 0 135

Transfer Mode 1 1 0 0 0 0 0 1

Field Element Violation 6 0 0 6 0 0 0 6

Total 139 14 0 125 0 3 0 142

% 97.89% 9.86% 0.00% 88.03% 0.00% 2.11% 0.00%

latoTesnopseR revreSepyT noitaloiV

message was received explaining that the item could not be added to the shopping

cart, the page also displays an empty cart with the title “You just added this item

to your Cart”. In addition, the cart display uses JavaScipt, which due to the lack of

references in the card prints undefined values (e.g. NaN). Further, all other sections

of the pages (such as wish list, suggested items, and special offers) were empty.

Book Search

The second component tested from this subject was the book search tool. Users

may perform a quick search for a book listing using this interface. The results of

the tests generated using this form were primarily valid responses (97.89%), while

the remaining ones (2.11%) produced faults and failures. The majority of the invalid

requests (88%) generated valid responses that appear to ignore the invalid inputs

and process the request with no apparent error. A smaller fraction of the test cases

(9.9%) produced valid responses with explicit messages regarding the invalid requests.

Finally, three failures are detected when the hidden input control named “TXT” is

violated with a string that starts with a percent sign. An example of such a failure

is depicted in figure 5.2. Results for this module are presented in table 5.21.

62

<A CLASS="promo"

HREF="http://www.barnesandnoble.com/help/ff_noscript.asp?z=y">

0 Items 0 Items

BROWSE BOOKS WHAT'S NEW BESTSELLERS COMING SOON RECOMMENDED AUDIOBOOKS BOOK CLUBS LIBROS SALE ANNEX

Keyword 6Keyword

Sudoku Puzzles 3-Pack Only $9.99.

Microsoft VBScript runtime error '800a000d'

Type mismatch: 'cint'

/include/visualcart_prodid.asp, line 230

Figure 5.2: Fault/Failure at Barnesandnoble.com, Book Search component

Table 5.22: Results for Amazon.com, Item Dispatcher

V V1 V2 V3 V4 F E

Value Violation and

Invalid Characters
52 0 0 0 52 0 0 52

Transfer Mode 1 0 0 0 1 0 0 1

Field Element Violation 10 0 0 0 10 0 0 10

Total 63 0 0 0 63 0 0 63

% 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00%

latoTesnopseR revreSepyT noitaloiV

5.3.10 Amazon.com, Online Store

Amazon in one of the largest online stores in the market and a leader in web tech-

nologies. Two interfaces found at the amazon.com site were tested and the results are

the following:

Item dispatcher

First, the item dispatcher component is the mechanism to control the shopping cart

of a user. All test cases produced 100% valid responses. Results for this module are

presented in table 5.22.

63

Table 5.23: Results for Amazon.com, Handle Buy

V V1 V2 V3 V4 F E

Value Violation and

Invalid Characters
1 0 0 1 0 0 0 1

Transfer Mode 1 0 0 1 0 0 0 1

Field Element Violation 31 0 0 31 0 0 0 31

Total 33 0 0 33 0 0 0 33

% 100% 0.00% 0.00% 100% 0.00% 0.00% 0.00%

latoTesnopseR revreSepyT noitaloiV

Handle Buy (Shopping Cart)

The second component that was tested, handle buy, also produced 100% valid re-

sponses. Essentially, this component is the equivalent of a shopping cart controller

typically found in online stores. One interesting outcome from this test was the in-

correct resolution of the relative paths for the URL of the form submission for the

handle buy component. The complex URLs used by this application caused AutoBy-

pass to append the relative path of the form action to the document’s URL including

the parameters. That resulted in forms that submited requests to a URL of a form:

domain/path1/path2/. All results captured by AutoBypass received an empty page

as a response, which originally classified the responses as invalid. One could possi-

bly argue that this is still an incorrect behavior of the application as it should have

warned the user that the path is invalid. However, the confirmation of the responses

using the mutant forms and manually correcting the URL of the form action produced

appropriate responses. Results for this module are presented in table 5.23.

64

5.3.11 Bankofamerica.com, Online Banking

One of the first to introduce online banking, Bank of America has developed a remark-

able portal. Even though AutoBypass provides the ability to test password protected

pages and potentially can be used to assess the correctness of online banking features,

only public components of the applications that provide information were tested to as-

sess the robustness of these applications. During previous use of AutoBypass in small

applications, severe corruption of data was detected. For that reason, the author did

not test modules that deal with bank transactions. Such tests would require care-

ful preparation and possibly cooperation with the institutions to avoid unexpected

results (such as financial losses) that may be caused by this experiment.

ATM & Branch Locator

The Automated Teller Machine (ATM) and Branch locator tools are part of the main

page in the subject’s portal. Behind the simple appearance of the interface used to

access this feature, one can identify an array of hidden input controls that are used

to perform the call to the application. By examining the interface’s HTML source, it

is also revealed that the form action URL points to a separate domain. Specifically,

bofa.via.infonow.net hosts the application that returns the results of this action.

By submitting a request, infonow.net acts as an extension of the Bank of America’s

portal, presenting results of the search using the bank’s identity. This is not apparent

to a user unless she or he carefully reads the URL on a browser. For that reason, the

results are listed as part of this subject.

The application correctly handled 66% of the test cases, providing valid responses

and explicitly acknowledging the invalid input in 4% of the tests. Invalid parameters

65

Table 5.24: Bankofamerica.com, ATM & Branch Locator by infonow.net

V V1 V2 V3 V4 F E

Length Violation 1 1 0 0 0 0 0 1

Value Violation and

Invalid Characters
66 3 0 63 0 17 25 108

Transfer Mode 1 0 0 1 0 0 0 1

Field Element Violation 17 1 0 16 0 1 0 18

Total 85 5 0 80 0 18 25 128

% 66.41% 3.91% 0.00% 62.50% 0.00% 14.06% 19.53%

latoTesnopseR revreSepyT noitaloiV

are apparently ignored 62% of the times and produce appropriate responses in which

invalid requests are ignored and default locations are presented. Specifically, locations

in California (headquarters of the bank) are shown. The application server handled

exceptions generated by invalid inputs in 14% of the test cases. For instance, the error

: “[ServletException in:/jsp/layouts/ApplicationTemplate.jsp] Error - Tag Insert : No

value found for attribute metaText.” is returned from one of these cases. Finally,

the remaining 20% of the test cases exposed errors. Typically the invalid requests

caused the application to produce responses referring to the default locations (CA)

while the originating request included a zip code for Virginia. In addition, the links

provided for driving directions are incorrect. An example is shown in figure 5.3. The

value violation rules produced the majority of the invalid responses (99.9%) and only

one test generated invalid responses using field element violation rules. Results for

this module are presented in table 5.24.

Site Search

The second module is the site search tool in the main portal page. The requests

are handled by the same application (not as in the previous component). All of the

66

ATM Location Results

Below is a chart based on the information you provided.

Start a new search

Get help using the locator

ATMs near 22304

 secivreS lanoitiddA ecnatsiD sserddA tluseR

1

Washington-12th

4077 W Washington Blvd

Los Angeles, CA 90018

Driving Directions

Services and Hours

2

Martin Luther King

4103 S Western Ave

Los Angeles, CA 90062

Driving Directions

Services and Hours

3
Martin Luther King
4103 S Western Ave

Los Angeles, CA 90062

Driving Directions
Services and Hours

Figure 5.3: Exposure at Bankofamerica.com, ATM & Branch Locator

67

Table 5.25: Bankofamerica.com, Web Site Search

V V1 V2 V3 V4 F E

Length Violation 1 0 0 0 1 0 0 1

Transfer Mode 1 0 0 0 1 0 0 1

Field Element Violation 4 0 0 0 4 0 0 4

Target URL Violation 204 0 2 142 60 0 0 204

Total 210 0 2 142 66 0 0 210

% 100% 0.00% 0.95% 67.62% 31.43% 0.00% 0.00%

latoTesnopseR revreSepyT noitaloiV

invalid requests produce appropriate responses. For the majority (68%) of the test

cases, the application ignored the invalid requests. The server ignored the request for

31% of the cases and responded with the original interface. Finally, two tests (1%)

produce generic messages (e.g. “The Bank of America page you are trying to reach:

http://www.bankofamerica.com/stateerror is not available”). Results for this module

are presented in table 5.25.

5.3.12 Comcast.net, Communications Provider

A typical functionality in web sites for communications providers is the service avail-

ably indicators. Users interested in a particular service can verify the availability for

a location. The interface provided in comcast.net was used to generate 105 test

cases, all of which produced valid responses. Yet, only 15% explicitly acknowledge

the invalid parameters, 82% produce generic messages (e.g. “We apologize. The area

of Comcast.com you’re attempting to access is temporarily unavailable”), and 3%

ignore the invalid request. Results for this module are presented in table 5.26.

68

Table 5.26: Comcast.net, Service Availability

V V1 V2 V3 V4 F E

Length Violation 3 0 3 0 0 0 0 3

Value Violation and

Invalid Characters
80 16 63 0 1 0 0 80

Transfer Mode 1 0 1 0 0 0 0 1

Field Element Violation 20 0 18 0 2 0 1 21

Total 104 16 85 0 3 0 1 105

% 99% 15.24% 80.95% 0.00% 2.86% 0.00% 0.95%

latoTesnopseR revreSepyT noitaloiV

5.3.13 Ecost.com, Online Store

Ecost is another online store. Two typical interfaces in online stores are the product

details and the shopping card controller with which users specify items to purchase.

Product Detail

Test cases generated for the product details component revealed inappropriate han-

dling in 73% of the cases. In particular, 41 cases produced failures and 5 exposed

application errors. The remaining 27% of the generated invalid requests were handled

appropriately. Overall, value violation rules were used to generate 55 requests; 81%

of these produced invalid responses. On the other hand, field element violation rules

generated 21 cases from which 28.5% resulted in failures and errors. Results for this

module are presented in tables 5.27.

Shopping Cart

The next component in this experiment is the shopping cart controller for ecost.com.

Most test cases (61%) resulted in valid responses and 39% produced invalid responses.

Specifically, faults were caught by the ASP runtime engine. Results for this module

69

Table 5.27: Ecost.com, Shopping Cart

V V1 V2 V3 V4 F E

Value Violation and

Invalid Characters
10 0 0 9 1 41 4 55

Transfer Mode 1 0 0 0 1 0 0 1

Field Element Violation 6 0 0 6 0 0 1 7

Total 17 0 0 15 2 41 5 63

% 26.98% 0.00% 0.00% 23.81% 3.17% 65.08% 7.94%

latoTesnopseR revreSepyT noitaloiV

Table 5.28: Ecost.com, Shopping Cart

V V1 V2 V3 V4 F E

Value Violation and

Invalid Characters
82 0 0 82 0 56 0 138

Transfer Mode 1 0 0 1 0 0 0 1

Field Element Violation 15 0 0 14 1 6 0 21

Total 98 0 0 97 1 62 0 160

% 61.25% 0.00% 0.00% 60.63% 0.63% 38.75% 0.00%

latoTesnopseR revreSepyT noitaloiV

are presented in table 5.28.

5.3.14 Google.com, Search Engine

Google is one of the giants in the web technologies and services. Google’s pages

are accessed by vast amounts of users throughout the globe. AutoBypass generated

148 test cases for the first component, the shopping search engine Froogle, one of

Google’s services. Next, the language tool feature was tested, which allows users to

search pages in specific languages. In both sets, 100% of responses are valid. Results

for these modules are presented in table 5.29 and table 5.30 respectively.

70

Table 5.29: Google.com, Froogle - Shopping Search Engine

V V1 V2 V3 V4 F E

Value Violation and

Invalid Characters
136 0 0 136 0 0 0 136

Transfer Mode 1 0 0 0 1 0 0 1

Field Element Violation 11 0 0 10 1 0 0 11

Total 148 0 0 146 2 0 0 148

% 100.00% 0.00% 0.00% 98.65% 1.35% 0.00% 0.00%

latoTesnopseR revreSepyT noitaloiV

Table 5.30: Google.com, Language Tools

V V1 V2 V3 V4 F E

Value Violation and

Invalid Characters
94 0 0 94 0 0 0 94

Transfer Mode 1 0 0 1 0 0 0 1

Field Element Violation 12 0 0 12 0 0 0 12

Total 107 0 0 107 0 0 0 107

% 100% 0.00% 0.00% 100% 0.00% 0.00% 0.00%

latoTesnopseR revreSepyT noitaloiV

71

Table 5.31: Pageflakes.com, User Registration

V V1 V2 V3 V4 F E

Value Violation and

Invalid Characters
130 69 0 0 61 48 0 178

Transfer Mode 1 1 0 0 0 0 0 1

Field Element Violation 19 18 0 0 1 3 0 22

Total 150 88 0 0 62 51 0 201

% 74.63% 43.78% 0.00% 0% 30.85% 25.37% 0.00%

latoTesnopseR revreSepyT noitaloiV

5.3.15 Pageflakes.com, Community Personalized Portal

Pageflakes is a new community portal that is built on a relatively new approach for

developing rich web interfaces, Asynchronous JavaScript and XML (AJAX) [1]. The

user registration component was selected to generate tests. The majority (75%) of

the test cases produced valid responses. Responses that explicitly acknowledged the

invalid input are 44% of the overall test cases. Responses that ignore the request were

31% of the overall test cases. However, 25% of the invalid requests produced faults

handled by the web server. Results for this module are presented in table 5.31.

5.3.16 Wellsfargolife.com, Life Insurance

The last subject in this experiment is the Wells Fargo Insurance portal. The form

used to generate life insurance quotes was tested. The invalid requests generated

by AutoBypass resulted in significant percentage of faults (70%) and the remaining

produced valid responses. Most of the test that produced invalid responses were

created using value violation rules. Results for this module are presented in table

5.32.

72

Table 5.32: Wellsfargolife.com, Insurance Quote

V V1 V2 V3 V4 F E

Length Violation 0 0 0 0 0 1 0 1

Value Violation and Invalid

Characters
69 0 13 54 2 210 0 279

Transfer Mode 1 0 0 1 0 0 0 1

Field Element Violation 22 0 6 16 0 1 0 23

Total 92 0 19 71 2 212 0 304

% 30.26% 0.00% 6.25% 23% 0.66% 69.74% 0.00%

latoTesnopseR revreSepyT noitaloiV

5.3.17 Result Summary

A summary of the results provides some information about the overall performance

of the automated tool and the bypass methodology for testing web applications. A

summary of the results for the experiment is in table 5.33. It can be seen from the

data that an impressive 24% of the test cases were inappropriately handled by the

web applications used in this experiment. Specifically 12% of the test cases generated

faults and failures and 12% exposure. Table 5.34 shows the various types of invalid

responses from the subjects.

Since that subjects are applications in production mode, the standard testing by

their developers is assumed to be finalized. Thus, Hypothesis H0 stated that bypass

testing will not expose more faults than standard testing. Tests on the amazon.com

(S10) and google.com (S14) applications produced zero invalid responses (faults or

exposures). Therefore, hypothesis H0 is verified for the above subject applications.

However, the hypothesis H0 is rejected for the remaining experiment samples and the

sample population in general.

Figure 5.4 graph B (Response Types), shows the response types for each subject.

73

Table 5.33: Result Summary

Subject

ID
V V1 V2 V3 V4 F E T

S01A 249 3 0 216 30 0 118 367

S02A 318 0 0 6 312 0 108 426

S02B 59 0 0 59 0 0 27 86

S03A 54 10 0 0 44 0 0 54

S03B 87 1 0 0 86 0 15 102

S03C 133 2 0 0 131 0 0 133

S03D 126 0 0 125 1 0 0 126

S04A 0 0 0 0 0 150 1 151

S04B 227 79 0 148 0 0 54 281

S05A 77 0 0 77 0 0 0 77

S05B 60 0 27 33 0 0 2 62

S06A 195
0 4 49 142 5 152 352

S07A 30 30 0 0 0 0 61 91

S08A 98 0 0 0 98 0 0 98

S08B 470 0 0 0 470 0 0 470

S08C 1 1 0 0 0 36 0 37

S08D 59 0 0 59 0 0 0 59

S09A 174 0 7 167 0 0 2 176

S09B 139 14 0 125 0 3 0 142

S10A 63 0 0 0 63 0 0 63

S10B 33 0 0 0 33 0 0 33

S11A 85
5 0 80 0 18 25 128

S11B 210 0 2 142 66 0 0 210

S12A 104 16 85 0 3 0 1 105

S13A 17 0 0 15 2 41 5 63

S13B 98 0 0 97 1 62 0 160

S14A 148 0 0 146 2 0 0 148

S14B 107 0 0 107 0 0 0 107

S15A 150 88 0 0 62 51 0 201

S16A 92 0 19 71 2 212 0 304

3663 249 144 1722 1548 578 571 4812

76.1% 5.2% 3.0% 35.8% 32.2% 12.0% 11.9%

V

V1

V2

V3

V4

F

E

T

Exposure

Total

Valid response with server producing generic error message

Valid response with server ignoring invalid request

Valid response with server ignoring and not processing request

Faults and Failures

%

Legend
Valid response (includes V1,V2,V3,V4)

S01 - ATutor

pageflakes.com

wellsfargolife.com

total tests

mutex.gmu.edu

yahoo.com

barnesandnoble.com

amazon.com

phpMyAdmin

brainbench.com

myspace.com

nytimes.com

Valid response with server producing explicit error message

Application

atutor.ca

demo.joomla.org

bankofamerica.com

comcast.com

S01 - ATutor

74

Table 5.34: Types of Invalid Responses

Application Types of Invalid Responses

Reference of non existing files within main frame of interface

Corrupted output (sound files)

Incorrect parameter reference for output

Invalid characters appeared in navigation bar

New polls created upon invalid parameters on existing polls

Current user display was incorrect

Invalid character caused errors caught by runtime engine

Invalid character caused errors caught by runtime engine

Invalid input (character set) reached database queries

Exceptions caught by web server (request info)

Request of information were submitted with bogus data

Invalid new user requests were allowed

Violation of specific parameters produced irrelevant errors

Myspace Page number on results was incorrect

Application referenced images that did not exist

Parts of the output where omitted

VB runtime errors

Mutex.gmu.edu Invalid requests were redirected to nonexistent pages

Yahoo Invalid request resulted to empty response (desktop search

reminder)

Incorrect output

VB runtime errors

Amazon NONE

Exceptions caught by web server (ATM search)

Incorrect results (ATM search)

Comcast Incorrect result

Ecost VB runtime errors

Google NONE

Pageflakes .NET runtime errors

Wellsfargolife VB runtime errors

NYtimes

Barnes & Nobles

Bank of America

Atutor

Joomla

phpMyAdmin

Brainbench

75

Graph A: Response Types

Graph B: Valid vs. Invalid Responses

T
e

s
t

C
a

s
e

s

Figure 5.4: Result Summary Graphs

76

Different numbers of test cases were generated for each subject. The main factor for

this variation is the combination of the rules applied to each interface and the user

input. The number of test cases is directly proportional to the numbers of input

controls parsed in each interface. Moreover, the tester’s input to the automation

tool also affect the number of test cases. Depending on the interface used to test

the application, the tester can provide multiple invalid inputs for each parameter or

add new parameters. The results are presented by the percent of their effectiveness

for each subject in figure 5.4 graph B (Valid vs. Invalid Responses). The types of

responses are grouped by valid and invalid responses. Invalid responses include the

fault, failures, and exposures.

Security Evaluation

This empirical evaluation of bypass testing was not specifically tailored to expose

security flaws in the subject applications, yet, it is important to note that in several

cases invalid input did pass to the back-end of applications without validation. After

careful study of this behavior, malicious users could potentially exploit invalid input

vulnerabilities and compromise the security of applications.

For instance, applications that use server side scripting technologies (e.g. ASP

or PHP) can be vulnerable when scripts are passed to the application in the form

of invalid inputs and execute on the server. One example of this behavior was the

invalid inputs on the Joomla application, which passed through to the output for

the interface’s navigation. In other cases, (e.g. phpMyAdmin) invalid input reached

the database queries with no validation. Finally, session related values, such as the

VIEWSTATE parameter of .NET applications, which is stored in hidden fields, are often

77

passed without validation. In such cases, the values out of range were usually caught

by the server with an exception handling mechanism, but theoretically one can access

the session of another user by manipulating the value of this parameter.

Effectiveness of Violation Rules

An interesting aspect of this study arises from the comparison of the effectiveness of

the different violation rules used to generate test cases. The overview of results listed

by violation rules is presented in table 5.35. Three quarters of the test cases (75.3%)

were generated by value violation rules. Field element violation rules produced 15% of

the test cases and 8.5% were generated by target URL violation rules. The remaining

1.2% were generated by length and transfer mode violations. There is a significant

difference among the number of test cases relative to the rules used to generate them.

Similarly to the variation among the numbers of test cases for each subject, the

amount and type of input controls found in each subject is directly proportional to

the number of test cases generated by each rule. For instance, only a few of the

interfaces use maxlength constraints; therefore, few test cases are generated by this

rule.

The results with respect to each violation rule is presented in figure 5.5. It is

shown that length violation rule produced invalid responses with the greatest rate

(55.5%), but only 0.6% of the test cases are generated using that rule. Next, the

value and the field element violations produce invalid responses with a rate of 28.8%

and 12.1% respectively. Finally, the least effective rules in this experiment are the

transfer mode and target URL rules.

78

Table 5.35: Result Summary by Violation Rules

Valid
Faults and

Failures
Exposure

Length Violation 12 10 5 27

Value Violation and Invalid Characters 2581 511 531 3623

Transfer Mode 30 1 0 31

Field Element Violation 635 53 35 723

Target URL Violation 405 3 0 408

Total 3663 578 571 4812

Response Type

TotalViolation Rule

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

L
e
n
g
th

V
io

la
ti
o
n

V
a
lu

e

V
io

la
ti
o
n
 a

n
d

In
v
a
lid

C
h
a

ra
c
te

rs

T
ra

n
s
fe

r

M
o
d

e

F
ie

ld
 E

le
m

e
n

t

V
io

la
ti
o
n

T
a

rg
e

t
U

R
L

V
io

la
ti
o
n

T
e
s
t

C
a
s
e
s

Valid Faults & Failures Exposure

Figure 5.5: Responses by Violation Rule

79

Testing Cost

One important aspect of bypass testing is the amount of time and effort put in to

performing the testing using the automated tool. Softaware quality has become a

major aspect of software evaluation [13] [15]. In fact, developers invest their assets

to perform adequate testing on their products to improve quality. Quality assurance

and testing efforts can account for more than 50% of the development cost [9] [8],

which can be translated to hundreds or even millions of dollars in some cases. The

level of effort put during the experiment is provided in table 5.36. It is shown that

bypass testing performed by an automated tool can expose faults in a fraction of time

and cost of standard testing techniques. In fact, the subject applications were tested

in a matter of hours and in some cases major faults were found. And this was after

the applications were tested and deployed.

5.4 Confounding Variables

There are several external factors that could have influenced these results. A major

component of this study is the automation tool, which introduces some confounding

variables. Other variables include the subjects selected, the tester’s inputs, and the

results evaluation. These issues are addressed in the following subsections.

5.4.1 Effects of AutoBypass Implementation

Prior to acquiring the test results that are listed in this paper, the author has per-

formed multiple test sessions to validate the test generation and submission by the

80

Table 5.36: Level of Effort

T
e

s
t
C

a
s
e

G
e

n
e

ra
ti
o

n

T
e

s
t
C

a
s
e

S
u

b
m

is
s
io

n
 *

*

C
re

a
ti
n

g
 I
n

p
u

t

P
a

ra
m

e
te

rs

R
e

v
ie

w
in

g

R
e

s
p

o
n

s
e

s

m
in

u
te

s

h
o

u
rs

atutor.ca S01A 1 41 5 184 231 3.8

S02A 1 5 10 426 442 7.4

S02B 1 2 10 43 56 0.9

S03A 1 2 10 27 40 0.7

S03B 1 3 15 51 70 1.2

S03C 1 5 15 67 88 1.5

S03D 1 7 5 63 76 1.3

S04A 1 2 5 76 84 1.4

S04B 1 8 10 281 300 5.0

S05A 1 3 5 77 86 1.4

S05B 1 1 5 31 38 0.6

nytimes.com S06A 1 5 10 176 192 3.2

mutex.gmu.edu S07A 1 1 2 46 50 0.8

S08A 1 1 10 49 61 1.0

S08B 1 15 15 235 266 4.4

S08C 1 1 1 19 22 0.4

S08D 1 2 2 30 35 0.6

S09A 1 2 5 88 96 1.6

S09B 1 2 5 71 79 1.3

S10A 1 3 5 32 41 0.7

S10B 1 1 5 17 24 0.4

S11A 1 8 5 64 78 1.3

S11B 1 5 10 105 121 2.0

comcast.com S12A 1 2 5 53 61 1.0

S13A 1 1 5 32 39 0.6

S13B 1 6 10 80 97 1.6

S14A 1 1 10 74 86 1.4

S14B 1 2 10 54 67 1.1

pageflakes.com S15A 1 5 10 101 117 1.9

wellsfargolife.com S16A 1 3 10 152 166 2.8

30 145 230 2798 3203 53.4

1 5 8 96 110 1.8

* Time in Minutes

**

Total

Total Time

Time it took the tool to sumbit the test cases over HTTP

and capture responses

Average

amazon.com

bankofamerica.com

ecost.com

google.com

Tester Time *
Tool Processing

Time *

Application

S
u

b
je

c
t

ID
demo.joomla.org

phpMyAdmin

myspace.com

barnesandnoble.com

yahoo.com

brainbench.com

81

tool. A sample web application was created to test the AutoBypass tool, which rep-

resents the subject application, and used to analyze all the inputs provided by the

tool. It is certain that the test cases generated by the tool and reported on the out-

put file matched the requests that were actually sent to servers. Thus, the request

submissions by AutoBypass is unlikely to have affected the results.

5.4.2 Sample Web Applications Selected

Another factor that may have influenced the experiment results is the limitation on

the tool to examine interfaces that use extensive Javascript or technologies other than

HTML. Some subjects were excluded from this study for these reasons (e.g. cnn.com,

ebay.com, and some tools by google.com). In some others, various methods where

used to parse an interface that was creating problems with the parser, such as saving

the target interface to a file and modified the HTML source to create a simple interface

that can be parsed by AutoBypass. This issue has the effect of limiting the subjects

that could be selected as well as adding to the cost.

The parsing mechanism of AutoBypass uses the HTML form attribute name to

separate and identify different forms in a web pages. Some applications, e.g. ATutor,

do not always use this attribute for the form elements; therefore, form parsing was

done by copping the HTML file to a local disk and modifying it by giving a name

to the form. In such cases, AutoBypass is parsing the local file while it still submits

the invalid requests to the remote server as described by the form action attribute.

Indeed, this had an effect on the complexity on the testing of certain subject. Yet,

the fact that the tester in this experiment had no access on the source code or the

documentation of the applications is a disadvantage for the amount of time and effort

82

required for testing. It is expected that testers with knowledge of the application

domain and control over the source code can eliminate such obstacles and produce

test cases more efficiently.

For the joomla CMS test set, a variable that controls the authentication mech-

anism, caused the application to log the user off (in this case AutoBypass). The

remaining responses did not represent the actual test cases. These were examined by

authenticating a session on a browser and then submitting the mutated forms man-

ually. This issue caused AutoBypass to log off the subject application and the rest

of the tests were submitted manually. A similar case was brainbench.com, in which

every submission must have a different email address. Otherwise, the application

responded with a message that the email is already used to create an account (as

previous test cases submited the same values). These types of issues were addressed

by the ability to use the stored mutants for testing.

The author tried to avoid unexpected results from sensitive commercial appli-

cations (e.g. banking) Commercial applications were tested using components that

should not affect the business in case of a failure. These limitations on the subject

selection may have influenced the results.

5.4.3 Test Values Input

The tester, which is the author in this study, plays a major role in performing the tests.

The values selected to violated the constraints in the interfaces can greatly affect the

results. For this experiment, no domain knowledge was applied for producing specific

invalidated requests. Most of the values generated were complements of the default

values of the controls. For instance, if a hidden control had a numeric default value,

83

then an arbitrary character string was generated. The author believes that testers

that are familiar with the application (such as its designers and developers) can

generate more effective invalid input selections, which would have possibly exposed

more faults.

5.4.4 Result Evaluation

Detecting faults and failures in server responses is a challenging process. According to

the framework defined in the previous chapter and specifically the experiment design,

certain rules were used to evaluate the responses of subject applications. Indeed,

the appropriateness of responses to invalid input can be a subjective matter. The

author tried to classify results to the best of his knowledge. It might be useful to

have multiple reviewers to allow for a cross rater evaluation of the results.

Result evaluation, as mentioned before, is performed by inspecting the output of

the test requests. No access to the source code, storage, databases, or server logs, is

available to better evaluate the effects of the invalid inputs. For example, during the

development of the AutoBypass tool, a small web application that is used for student

records was tested. After approximately 50% of the test cases were submitted, the

Tomcat server produced an exception report, and no other response was received

thereafter. The invalid input had caused a major error on the XML parser, which

resulted in the deletion of all the data of the application. In addition, the tomcat

service exited abnormally due to the handling of this invalid input. These facts would

not be available if access to the application servers was granted.

An other level of result verification was the manual submission of mutated forms

using a browser. For results that suggested that faults or exposure may have been

84

due to AutoBypass, a browser was used to submit the HTML version of the mutated

forms that were stored for each test case. Two browsers were used for this purpose,

Internet Explorer version 6 and Firefox version 1. No differences were identified by

submitting mutated forms with these browsers.

Finally, since AutoBypass provides the ability to generate test cases and submit

them to the server, a relatively large number of results were collected. However,

counting responses that were submitted through similar or identical requests through

different testing sessions would have affected the results. For that reason, the author

compared the results against the violated parameters of different test sets and elimi-

nated duplicates, which significantly reduced the number of the results presented in

this paper.

Chapter 6: Conclusions

Upon completion of this experiment and collection of the data, it is found that the

hypothesis was rejected. Bypass testing can reveal errors in web applications beyond

what standard testing can find. It is clear that web applications can benefit by

adopting this method as a strategy to ensure higher quality products. Bypass testing

is based on limited test case generation that is very well targeted to expose application

faults. Therefore, with only limited resources, organizations can integrate bypass

testing with the standard testing strategies to accomplish higher test coverage for

applications.

The sample used in this study provides a small representation of professionally

developed web applications from which the author tries to draw some conclusions.

Yet, the goal of this study is not to prove that web applications are not well built.

Instead, the goal is to develop an efficient method of revealing vulnerabilities that

can be potentially used by malicious users to exploit web systems. Numerous cases

of incomplete input validation were found; due to the constraints set in the interface,

the values are taken for granted by the developers.

Not all of the subjects behave the same way and therefore the author cannot

generalize these results for all web applications. From the results it is shown that

advanced applications with millions of users such as google.com and amazon.com

revealed no errors. On the other hand, application with fewer users revealed a sig-

nificant number of errors (e.g. brainbench.com, mutex.gmu.edu, ecost.com, and

85

86

wellsfargolife.com). This variety demonstrates that development firms that de-

vote substantial resources in testing their application are not affected by the test cases

created using bypass and vice versa.

The automated approach of AutoBypass efficiently creates tests cases that re-

covered the invalid responses by the subjects. On the other hand, it is hard to

automatically evaluate the application responses. Since that the applications’ behav-

ior for invalid inputs is not specified, the response evaluation can not be performed

programmatically (e.g. by comparison of the output to the invalid input to a known

valid input). Instead, a human is required to evaluate the appropriateness of the

output given the invalid inputs.

Indeed, bypass testing can greatly improve the quality of web applications. Even

in a final product, potential vulnerabilities can be identified. Moreover, the author

strongly believes that bypass testing and the automated approach can be more effec-

tive when used early in the development of web applications by the developers, in a

controlled environment with access to the source code, knowledge of the application

domain, and system resources.

6.1 Future Work

In order to develop the AutoBypass tool further, improvements on the tool must

address the implementation of scripting rules, overcome the problems with parsing

interfaces, and the problems resolving complex relative URLs. Next, a mechanism

to allow testing on a sequence of events shall be developed. A major characteristic

of AutoBypass is performing tests in a single form at its initial state, without the

ability to test a sequence of events. Such approach can include the parsing of entire

87

web sites to identify possible paths for testing. That would also benefit the creation

of a large input domain form parameters found throughout an application.

Finally, the optimization of the number of test cases generated can be evalu-

ated. Given a set of valid inputs for a web applications, AutoBypass generated

test cases must be filtered to exclude valid ones, which will produce valid responses.

Extra parameters may be added for display, which will not affect the processing.

For instance, “http://google.com?”, “http://www.google.com/ig?hl=en”, and

“http://www.google.com/ig?” are all in the valid input domain of the application.

In future, when complete sites are parsed and valid input domains are generated,

AutoBypass should avoid creating such requests.

88

References

89

References

[1] AJAX, The official Asynchronous Javascript And XML special interest group
site. Online: http://ajax.org/, last access May 2006.

[2] API Specification, Java(TM) 2 Platform, Standard Edition, v 1.4.2. Online:
http://java.sun.com/j2se/1.4.2/docs/api/, last access April 2006.

[3] ATutor, an Open Source Web-based Learning Content Management System
(LCMS). Online: http://www.atutor.ca/, last access May 2006.

[4] The Joomla Project home. Online: http://www.joomla.org/, last access Decem-
ber 2005.

[5] The phpMyAdmin Project home. Online: http://www.phpmyadmin.net, last
access March 2006.

[6] Amalio Saiz de Bustamante and Aniello Amendola. Reliability Engineering.
Springer, July 1988.

[7] Russell Gold. HttpUnit home. HttpUnit, Online: http://httpunit.org/, last
access November 2005.

[8] Mary Jean Harrold. Testing: A roadmap. In International Conference on Soft-
ware Engineering, pages 61–72, Limerick, Ireland, June 2000.

[9] Thomas Hilburn and Massood Towhidnejad. Software quality across the cur-
riculum. Proceedings of the 15th Conference on Software Engineering Education
and Training, February 2002.

[10] James L. Johnson. Probability and Statistics for Computer Science. Wiley-IEEE,
July 2003.

[11] E. Nebel and L. Masinter. Form-based file upload in HTML.
Request For Comments 1867, Network Working Group, Online:
http://www.ietf.org/rfc/rfc1867.txt, last access April 2006., November 1995.

[12] Rae R Newton and Kjell Erik Rudestam. Your Statistical Consultant. Sage
Publications Inc, January 1999.

90

[13] Jeff Offutt. Quality attributes of web software applications. IEEE Software:
Special Issue on Software Engineering of Internet Software, 19(2):25–32, 2002.

[14] Jeff Offutt, Ye Wu, Xiaochen Du, and Hong Huang. Bypass testing of web
applications. In ISSRE ’04: Proceedings of the 15th International Symposium on
Software Reliability Engineering, pages 187–197, Washington, DC, USA, 2004.
IEEE Computer Society.

[15] Leon Osterweil, Lori Clarke, Richard DeMillo, Stuart Feldman, Bill McKeeman,
Edward F. Miller, and John Salasin. Strategic directions in software quality.
ACM Comput. Surv., 28(4):738–750, 1996.

[16] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML 4.01 Specification
- W3C Recommendation 24. World Wide Web Consortium (W3C), Online:
http://www.w3.org/TR/html401/, last access February 2006, December 1999.

[17] David A. Wheeler. Secure Programming for Linux and Unix HOWTO –
Creating Secure Software. World Wide Web Consortium (W3C), Online:
http://www.dwheeler.com/secure-programs/, last accessed November 2005, 3
edition, March 2003.

[18] James D. Wynne. Learning Statistics, A Common-Sence Approach. MacMillan
Publishing Co., Inc., New York, 1982.

[19] Wei Xu, Sandeep Bhatkar, and R. Sekar. A unified approach for prevent-
ing attacks exploiting a range of software vulnerabilities. Technical Report
SECLAB-05-05, Department of Computer Science, Stony Brook University, On-
line: http://seclab.cs.sunysb.edu/seclab1/pubs/papers/seclab-05-05.pdf, last ac-
cess February 2006, August 2005.

91

Curriculum Vitae

Mr. Papadimitriou has over six years’ experience as an information technology man-
ager and in developing software systems for web-based applications. He specializes
in GUI design and development, and his research interests include testing, usability,
web software engineering, and service-oriented architectures. He offers expertise in
advanced planning and coordination of complex projects, managing project financials,
assuring quality systems, and managing teams. His computers skills cover a variety
of platforms and technologies and a range of software tools for software development,
and graphics.

Mr. Papadimitriou is currently working towards a M.S. Degree in Software Engineer-
ing. He has earned a B.S. in Computer Science from George Mason University in
2004 and a certificate in applied arts and design from Vakalo School of Art & De-
sign (Athens, Greece) in 1996. His professional experience include multiple positions
as a project manager and software developer, are well as architectural and graphics
designer. Mr. Paparimitriou is a member of the IEEE Computer Society.

