
TESTING CALCULATION ENGINES USING INPUT SPACE PARTITIONING AND
AUTOMATION

by

Chandra M. Alluri
A Thesis

Submitted to the
Graduate Faculty

of
George Mason University

in Partial fulfillment of
The Requirements for the Degree

of
Master of Science

Software Engineering
Committee:

__ Dr. Jeff Offutt, Thesis Director

__ Dr. Paul Ammann, Committee

Member

__ Dr. Richard Carver, Committee

Member

__ Dr. Hassan Gomaa, Department

Chair

__ Dr. Lloyd J. Griffiths, Dean,

The Volgenau School of Information
Technology and Engineering

Date:____________________________________ Summer Semester 2008
 George Mason University
 Fairfax, VA

Testing Calculation Engines Using Input Space Partitioning and Automation

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Sciences at George Mason University

By

Chandra M. Alluri
Bachelor of Technology

Nagarjuna University, 1996

Director: Dr. Jeff Offutt, Professor
Department of Computer Science

Summer Semester 2008
George Mason University

Fairfax, VA

Copyright 2008 Chandra M. Alluri
All Rights Reserved

 ii

DEDICATION

To Cherry and Vinnu

 iii

ACKNOWLEDGEMENTS

It is a pleasure to thank the many people who made this thesis possible.

It is difficult to overstate my gratitude to my thesis director, Dr. Jeff Offutt, who

has a unique way of imparting knowledge. His inspiration, and his great efforts to explain
things clearly and simply, helped make this thesis more interesting to me. Throughout my
thesis-writing period, he provided encouragement, sound advice, good teaching, and lots
of good ideas. I would have been lost without him. I would like to thank Dr. Paul
Ammann and Dr. Richard Carver for serving on the thesis committee.

I would like to thank the managers in my current and previous jobs: Directors at
Freddie Mac (David Hobart, John Kurisky, John Murray, Patricia Mcghee, Prasad
Pinnamaneni, Sunny Kil, Tisa Dais, and Trang Sabel); Directors at RelQ (Dr. V. A.
Shastri, Prabhakar Valivati, Dr. Prakash Muthalik, and Srikanth Srinivasaih); Directors at
Softalia (Shah Rudraraju, and Sai Ramaraju) and Directors at Cell Exchange (Y. Ramesh
Reddy, R. Srinivas Reddy, and Sundar Sankaran).

I would like to thank Gretchen Richards, Lynne Pieri-finn, and Nancy Bolin for

reviewing and proofreading the thesis. I am indebted to my colleagues and friends for
providing a stimulating and fun environment in which to learn and grow. I am especially
grateful to Anji Reddy, Atul Mishra, Anil Gogineni, Atul Bhai Patel, Goapal Reddivari,
Hareesh Gavini, Hari Vuppala, Hassan Khan, Jamal Husain, Kishore Dangeti, Nitin Raju,
Raji Nallabola, Sarita Kinnigoli, Shanti Nadella, Sharath Medak, Sreenivas Redrouthu,
Srinivas Kasani, Sudheer Marreddy, Sudheera Pendli, Veera Surapaneni, Venkat Paritala,
Vinod Bhupathiraju, Vishwa Ragi, William Singh, and Yadesh Tokala for their
cooperation with the case studies, support, camaraderie, entertainment, and the caring
they provided.

My sincere thanks to Cheryl Cutting, who sponsored the development of Fusion
Test Modeler tool and allowed me to experiment testing the calculation engines with
different techniques before starting this thesis.

My sincere thanks to Freddie Mac’s legal advisor, Ankur Shah, who helped in

filing the provisional patent for the Fusion Test Modeler tool.

My special thanks to Mary Ann Breunig for her support, guidance, mentorship,
and encouragement through out the course.

 iv

TABLE OF CONTENTS

Page

List of Tables ... ix
List of Figures .. xi
Abstract ... xii

1 Introduction ..1

2 Characteristics of the Calculation Engines ..4

2.1 Controllability Factors of Testability .. 5
2.2 Observability Factors of Testability .. 5
2.3 Specification Formats for Calculation Engines... 5

2.3.1 Precision, Truncation, and Rounding ..6
2.4 Design or Implementation Characteristics .. 7

2.4.1 Pricing Grids..7
2.4.2 Data Flow ..8
2.4.3 Conditional Events ...8
2.4.4 Calculation Algorithms ..8
2.4.5 Architecture..9
2.4.6 Important Attributes ...9
2.4.7 Intermediate Values ...9
2.4.8 Business Cycles ..10

3 Test Approach ..11

3.1 Step #1: Applying the Technique.. 16
3.1.1 Input Space Partitioning (ISP)...16
3.1.2 Requirements Modeling ...21
3.1.3 Overview of the Process...26
3.1.4 Modeling Technique...27
3.1.5 Requirements and Specifications ...29
3.1.6 Rationale Behind This Modeling Design..33
3.1.7 Coverage Criterion ..35

3.2 Step #2: Generating Test Requirements .. 37
3.3 Step #3: Generating Test Data... 38
3.4 Step #4: Simulating Calculation Engine and Inputting the Test Data................. 38
3.5 Step #5: Collecting Expected Results ... 39
3.6 Step #6: Input Test Data to the System-Under-Test.. 40

 v

3.7 Step #7: Collecting Actual Results.. 41
3.8 Step #8: Comparing Actual and Expected Results Using a Comparator 42

4 Case Study #1: Contract Pricing ..43

4.1 Step #1: Input Space Partitioning.. 44
4.1.1 Base Choice Coverage ...49
4.1.2 Multiple Base Choice Coverage...50
4.1.3 Pair-Wise Coverage...52

4.2 Step # 1: Modeling Technique .. 53
4.3 Step #2: Generating Test Requirements .. 55
4.4 Step #3: Generating Test Data... 55
4.5 Step #4: Building the Simulator and Inputting Test Data 55
4.6 Step #5: Input Test Data Into System-Under-Test .. 55
4.7 Steps # 6, 7, and 8: Collecting Expected Results, Actual Results, and Comparing

the Results ... 56

5 Case Study #2: Loan Pricing..57

5.1 Step #1: Input Space Partitioning.. 59
5.1.1 Base Choice Coverage ...60
5.1.2 Multiple Base Choice Coverage...61
5.1.3 Pair-Wise Coverage...64

5.2 Step #1: Modeling Technique ... 66
5.3 Other Steps in the Process ... 67

6 Case Study # 3: Amortization ..68

6.1 Step #1: Input Space Partitioning.. 69
6.1.1 Testable Functions ...70
6.1.2 Base Choice Coverage ...79
6.1.3 Multiple Base Choice Coverage...79
6.1.4 Pair-Wise Coverage...80

6.2 Step # 1 Modeling Technique ... 80
6.3 Step # 2: Generating Test Requirements ... 80
6.4 Step # 3: Generating Test Data.. 80
6.5 Steps # 4 and 5: Building the Simulator and Inputting Test Data and Collecting

Expected Results ... 81
6.6 Steps # 6 and 7: Inputting Test Data Into System-Under-Test and Collecting

Actual Results.. 81
6.7 Step # 8: Comparing Actual and Expected Results... 82

7 Case Study # 4..83

7.1 Input Space Partitioning .. 83

 vi

7.1.1 Testable Functions ...84
7.1.2 Base Choice Coverage ...91
7.1.3 Multiple Base Choice Coverage...92
7.1.4 Pair-Wise Coverage...92

7.2 Modeling Technique.. 92
7.3 Application of the Framework .. 93

7.3.1 Step # 1: Identify the Functionality to Be Tested – Define Scope ..93
7.3.2 Step # 2: Identify the Testable Functions ...93
7.3.3 Step # 3: Identify the Entities and Attributes - Partitions ..93
7.3.4 Step # 4: Identify Distinct Values – Blocks ..93
7.3.5 Step # 5: Apply Base Choice Criteria to Filter the Invalid Values ..94
7.3.6 Steps # 6, 7, 8, and 9: Eliminate Invalid Values and Combinations94
7.3.7 Step #10: Ensure the Functional Coverage With RTM..95
7.3.8 Steps # 11 and 12: Prefix the Test Cases and Provide Real Values.......................................95
7.3.9 Step #13: Build the Calculation Simulator...95
7.3.10 Step #14: Collect the Actual Results ..95
7.3.11 Step # 15: Compare the Actual and Expected Results ...96

8 Results ..97

8.1 Case Study #1: Contract Pricing ... 98
8.1.1 Requirements Coverage ...99
8.1.2 Code Coverage...99
8.1.3 Observations ..101

8.2 Case Study #2: Loan Pricing ... 103
8.2.1 Requirements Coverage ...103
8.2.2 Code Coverage...103
8.2.3 Observations ..104

8.3 Case Study #3.. 105
8.3.1 Requirements Coverage ...105
8.3.2 Code Coverage...105
8.3.3 Observations ..106

8.4 Case Study #4.. 107
8.4.1 Requirements Coverage ...107
8.4.2 Code Coverage...107
8.4.3 Observations ..108

9 Advantage and Disadvantages .. 110

9.1 Pros and Cons of Modeling ... 110
9.1.1 Advantages of Modeling...110
9.1.2 Disadvantages of Modeling..111

9.2 Pros and Cons of ISP... 113
9.2.1 Advantages of ISP ..113
9.2.2 Disadvantages of ISP ...117

10 Conclusions and Recommendations ... 118

10.1 Conclusion... 118

 vii

10.2 Recommendations ... 120
10.3 Further Work ... 123

10.3.1 Automatic Generation of Test Data for ISP tests ...123
10.3.2 Filter the Conflicting Combinations Automatically ...124
10.3.3 Build the Tool With a User Interface ...124
10.3.4 Auto Detection of the Requirements Coverage and Building Traceability124
10.3.5 Testable Functions as an Estimation Technique..125

Appendix A..125
Appendix B ..150
Appendix C ..154
REFERENCES ..155

 viii

LIST OF TABLES

Table Page
Table 1: Contract Partitions and Blocks .. 45
Table 2: Contract Pricing Partitions and Blocks ... 48
Table 3: Contract Pricing Base Test #1.. 49
Table 4: Contract Pricing Base Test #2.. 49
Table 5: Contract Pricing Base Choice Tests... 50
Table 6: Contract Pricing Multiple Base Choice Tests .. 51
Table 7: Contract Pricing Pair-Wise Tests... 53
Table 8: Contract Pricing Test Inputs From Modeling .. 54
Table 9: Loan Pricing Partitions and Blocks ... 58
Table 10: Loan Pricing Base Test #1.. 59
Table 11: Loan Pricing Base Test #2.. 59
Table 12: Loan Pricing Base Choice Tests... 60
Table 13: Loan Pricing Multiple Base Choice Tests .. 62
Table 14: Loan Pricing Pair-Wise Tests... 65
Table 15: Partitions and Blocks for TF # 1 .. 71
Table 16: Partitions and Blocks for TF # 2 .. 71
Table 17: Partitions and Blocks for TF # 3 .. 72
Table 18: Partitions and Blocks for TF # 4 .. 72
Table 19: Partitions and Blocks for TF # 5 .. 72
Table 20: Partitions and Blocks for TF # 6 .. 73
Table 21: Partitions and Blocks for TF # 7 .. 74
Table 22: Partitions and Blocks for TF # 8 .. 74
Table 23: Partitions and Blocks for TF # 9 .. 75
Table 24: Partitions and Blocks for TF # 10 .. 75
Table 25: Partitions and Blocks for TF # 11 .. 76
Table 26: Partitions and Blocks for TF # 12 .. 76
Table 27: Partitions and Blocks for TF # 13 .. 77
Table 28: Partitions and Blocks for TF # 14 .. 77
Table 29: Partitions and Blocks for TF # 15 .. 78
Table 30: Partitions and Blocks for TF # 16 .. 78
Table 31: SEY IRR - TF # 1 – Partitions and Blocks.. 84
Table 32: SEY IRR - TF #1 Base Choice Tests ... 85
Table 33: SEY IRR - TF #2 Partitions and Blocks.. 86
Table 34: SEY IRR - TF #2 Base Choice Tests ... 86
Table 35: SEY IRR - TF # 3 Partitions and Blocks... 87

 ix

Table 36: SEY IRR - TF # 3 Base Choice Tests .. 87
Table 37: SEY IRR - TF # 4 Partitions and Blocks... 88
Table 38: SEY IRR - TF #4 Base Choice Tests ... 88
Table 39: SEY IRR Partitions and Blocks for Loops .. 89
Table 40: SEY IRR - TF # 5 Partitions and Blocks... 90
Table 41: SEY IRR - TF #6 Partitions and Blocks.. 90
Table 42: SEY IRR - TF # 7 Partitions and Blocks... 91
Table 43: Partitions and Blocks for loops .. 92
Table 44: Case Study #1 - Statement Coverage Results ... 100
Table 45: Case Study #2 - Statement Coverage Results ... 104
Table 46: Case Study #3 - Statement Coverage Results ... 106
Table 47: Case Study # 4 - Statement Coverage Results .. 108

 x

LIST OF FIGURES

Figure Page
Figure 1. Process to test calculation engines. ... 16
Figure 2. Input Space Partitioning (ISP) process to test calculation engines. 17
Figure 3. Tree example... 26
Figure 4. Modeling process to test calculation engines.. 27
Figure 5. Modeling example #1 using Fusion Test Modeler.. 30
Figure 6. Modeling example #2 using Fusion Test Modeler.. 32
Figure 7. Sample outputs from Fusion Test Modeler... 33

 xi

ABSTRACT

TESTING CALCULATION ENGINES USING INPUT SPACE PARTITIONING AND
AUTOMATION

Chandra M. Alluri, M. S.

George Mason University, 2008

Thesis Director: Dr. Jeff Offutt

This thesis proposes a solution to test calculation engines in financial services

applications such as banking, mortgage, insurance, and trading. Calculation engines form

the heart of financial applications, as the results are very sensitive to the business and can

cause severe damage if wrong. But controllability and observability of these calculations

are low. In order to test these calculations, more robust and sophisticated methods are

required. In this thesis, input space partitioning, along with automation, were applied with

the help of tools. Case studies were conducted to validate the effectiveness of this

approach. Finally, a framework is recommended to test the calculation engines.

1 Introduction

Financial services like banking, mortgage, and insurance consist of several

subsystems that involve complex calculations. Pricing loans, amortizing loans, asset

valuations, accounting rules, interest calculations, pension calculations, and generating

the insurance quotes are some of the familiar calculations involved in these applications.

Calculations embedded into these systems for different business objectives differ in their

calculation algorithms. In a particular application, multiple calculations may need to be

performed by different calculators to achieve the business’s objective. These calculators

together can be termed the calculation engine. In most cases, several calculations need to

be performed in sequence or in parallel to get the final output. The logic for these

calculations will be designed to reside in the business layer of an architecture, which

makes them more complex to test.

Financial models are another form of calculation engine. Financial modeling is

the process by which an organization/firm constructs a financial representation of some,

or all, of its financial aspects. The model is built by performing calculations, and then

recommendations are made for the model. The model may also summarize particular

events for the user and provide direction regarding possible actions or alternatives.

 1

 Financial models can be constructed in many ways, either by computer software

or with a pen and paper. What is most important, however, is not the kind of

technology used, but the underlying logic that encompasses the model. A model, for

example, can summarize investment management returns, such as the Sortino ratio, or it

may help estimate market direction, such as the Fed model.

It is essential to test financial models thoroughly as they are business sensitive

and may cause enormous side effects to the business if wrong. Currently test

requirements at the system and integration testing level are derived from black box

testing techniques such as equivalence partitioning, boundary value analysis, and error

guessing—and these are not always effective as the test requirements should be tested in

relation with each other. Effective test methods need to be employed to overcome the

calculations’ low observability and controllability. A comprehensive solution that

addresses the variables’ transformation and interdependency in calculators is presented in

this thesis.

System testing and user acceptance testing are crucial to testing, as the

calculations need to be tested in conjunction with the system’s other functionalities.

There are numerous approaches available to perform system testing, but most falls short

of offering comprehensive solution for testing calculation engines.

In this thesis, characteristics of calculation engines are analyzed and then different

techniques are applied to offer a robust and comprehensive solution for testing

calculation engines.

 2

The thesis statement for this research is that calculation engines in financial services

applications can be tested effectively and efficiently using input space partitioning and

with automation. This research evaluates the thesis statement with a case study approach

by using automation to apply input space partitioning to several actual calculation

engines of Freddie Mac.

 3

2 Characteristics of the Calculation Engines

In the applications that have calculation engines, calculation logic is implemented

in the business layer. All calculations are performed on the server side; the client side of

the application is abstracted from the processing. Therefore the user does not observe any

processing behind the graphical user interface (GUI). For example, a user supplies inputs

for an insurance quote and the application generates the insurance quote by performing

various calculations on the server. Then the user enters different characteristics of the

borrower and the application generates the interest rate by applying different rules on the

server. The application takes different inputs from taxpayers and generates the tax owed

by performing several calculations on the server.

By virtue of the implementation, calculation engines feature some of the

characteristics of component-based applications. This makes testing calculation engines

more complex and challenging.

Testability is used to describe how adequately a particular set of tests will cover

the product. Software testability is simply how easily software or a computing program

can be tested. Bach (2003) determined a set of characteristics to measure the testability of

software, including controllability and observability.

 4

2.1 Controllability Factors of Testability

 All possible outputs can be generated through some combination of inputs.

 All code is executable through some combination of inputs.

 Software and hardware states and variables can be controlled directly by the

test engineer.

 Input and output formats are consistent and structured.

 Tests can be conveniently specified, automated, and reproduced.

2.2 Observability Factors of Testability

 Distinct outputs are generated for each input.

 System states and variables are visible or queriable during execution.

 Past system states and variables are queriable or visible (e.g., transaction

logs).

 All factors affecting the output are visible.

 Incorrect output is easily identified.

 Internal errors are automatically detected through self-testing mechanisms.

 Internal errors are automatically reported.

Due to the factor that calculations occur on server, factors that determine the testability of

the software with respect to controllability and observability are obscured in calculation

engines, which challenge the test engineers.

2.3 Specification Formats for Calculation Engines

When studying different applications that have calculation engines, I found

requirements are specified in various forms and in combinations of the following:

 5

requirements in plain English, use cases, mathematical expressions, logical expressions,

business rules, procedural design, and mathematical formulae.

Businesses are sensitive to the defects in calculation engines. They not only lead

to interruptions in the business’s continuity, but also can lead corporations to legal battles

and liabilities. These incidents create headlines in newspapers, causing severe damage to

the subject corporations’ reputations. Therefore, strict IT controls are put into place

around these applications, and they are subjected to regular auditing. The following

subsections define some of the commonalities in calculation engine specifications and

design.

2.3.1 Precision, Truncation, and Rounding

Incorrect handling of specifications with respect to precision, truncation, and

rounding leads to distorted values. In many applications it is desirable to maintain

constant word size through the basic arithmetic operations of add, subtract, multiply, and

divide. Of these operations, multiplication is the biggest concern as multiplying two n-bit

data items yields a 2n-bit product. Forming the full product and rounding it to the desired

precision is mathematically attractive, but the complexity is high. Forming a portion of

the bit product reduces the complexity, but incurs potentially large errors. Truncation

limits should be defined in the specifications.

The other component of the format specification is the precision specification,

which specifies a nonnegative decimal integer, preceded by a period (.), which specifies

the number of characters to be printed, the number of decimal places, and the number of

significant digits. Unlike the width specification, the precision specification can cause

 6

either truncation of the output value or rounding of a floating-point value. For example, if

precision is specified as 0 and the value to be converted is 0, the result is no output.

Rounding the values is another key specification. Intermediate rounding applies

when data items are retrieved for inclusion in an arithmetic operation or arithmetic

expression, and during the execution of arithmetic operators to produce an intermediate

result. When the intermediate value can be represented exactly in the appropriate

intermediate format, the exact value is used. Final rounding applies to forming the final

result of the expression or statement, at the completion of evaluating the statement or

expression, immediately before the result is placed in the destination.

Price values or any other values should be stored with all the decimal places,

however big the values are. Therefore, when a database is designed, this factor should be

considered. Although a database stores all the decimal places, the business’s rules may

ask to use only up to certain number of decimal places in calculations. Tests should be

carefully designed to evaluate precision, truncation, and rounding of the calculated

values.

2.4 Design or Implementation Characteristics

2.4.1 Pricing Grids

Values such as interest rates, S&P index, NYMEX index, etc., change constantly

during a business day depending on various market factors. The calculations use some of

these values in their computations. These values are updated constantly into tables which

are called pricing grids. Calculation systems have interfaces to these grids and pull the

 7

current values when required. While designing the tests, this factor can be abstracted or

discounted, as this need not be tested every time.

2.4.2 Data Flow

Attributes for calculations may be received from external systems (upstream). The

systems under test process the calculations and may send the data to external

(downstream) systems that consume the outcome. For example, Asset valuation

calculations receive inputs from Sourcing systems and pass the data to the Subledger and

General Ledger downstream systems, where accounting calculations (principles) are

applied and the final result will be reflected in financial reports at the end of the period.

These chains of systems use mainframe systems to batch processes. Yet the requirements

may not clearly specify the source of the data for calculations. Understanding the

technical specifications helps to determine better tests. This is essential—especially in

determining the preconditions, and later to “prefix the test data.”

2.4.3 Conditional Events

Understanding the events and conditions that determine the flow in the

calculations helps derive effective tests. For example, the Interest Rate type (Fixed,

ARM, or Balloon) determines which path to follow. Based on these inputs, calculations

take different paths.

2.4.4 Calculation Algorithms

Algorithms for amortization, pricing, insurance quotations, asset valuations, and

accounting principles are standard. For example, amortization methods could be based on

the diminishing balance or flat rate over a preset duration. Knowing these algorithms

 8

greatly helps in determining the expected outputs. For example, MS-Excel has standard

amortization functions, which can be used as a calculation simulator instead of building

simulator programs.

2.4.5 Architecture

In almost all the applications, most of these calculations are implemented either as

a batch process or an online transaction that occurs in the business layer. Understanding

the architecture helps isolate the testable requirements from non-testable requirements.

2.4.6 Important Attributes

Even though the entities that participate in the calculations have many attributes,

only a few attributes will be involved in the calculations. For example, the loan pricing

calculation has 2 entities, Loan and Master Commitment, which have 140 and 35

attributes respectively that participate in the calculations but only 7 attributes are

involved in the calculations. Identifying the influential attributes is important in building

effective tests. This simplifies the task of testing by understanding the constraints among

these attributes. The acceptable values for each attribute and their constraints are defined

in the form of business rules. When tests are built, test inputs need to be prefixed with the

remaining attributes to make a test case executable.

2.4.7 Intermediate Values

Calculation engines are formed from calculators that input/output the values to

one another. In many cases, debugging the incorrect output is a tedious process as it

involves checking all the intermediate values in the flow. The same set of inputs may

yield different outputs when the calculations are performed at different time periods. The

 9

reasons could be: (a) input values are interpreted differently, (b) interest values could be

changed in different time periods, (c) intermediate values could have changed, (d)

business rules would have changed in the due course, etc. The systems do not store the

intermediate values, but intermediate values are essential in diagnosing problems.

2.4.8 Business Cycles

Applications that involve these calculations need to be tested for different

business cycles such as daily, monthly, quarterly, and annually. Therefore, the same tests

may need to be executed for different business cycles. Understanding this aspect of the

requirements and system helps in planning the data. Data cloning mechanisms can be

implemented to reuse the same data for different periods.

 10

3 Test Approach

A robust test approach that determines the input from the client side of the

software and affects different paths of calculations on the component or server software

is required. To offer comprehensive testing, problem analysis needs to be performed

systematically, which forms the core of this approach. Although many such techniques

exist, they fall short of being comprehensive. In this thesis, problem analysis is conducted

using both requirements modeling and input space partitioning. In Chapter 2 and

specifically in Section 2.4 of this thesis, design and implementation characteristics of the

calculation engines were discussed. Modeling some of these characteristics simplifies the

process of generating the test requirements. On the other hand, when the testable

functions are identified, input space partitioning with appropriate coverage criterion

consistently provides the test requirements.

Pressman (2005) states that any engineered product can be tested in one of two

ways. Knowing the specified function that a product has been designed to perform, tests

can be conducted that demonstrate each function is fully operational while at the same

time searching for errors in each function. Or, knowing the internal workings of the

product, tests can be conducted to ensure that “all gears mesh,” that is, internal operations

are performed according to specifications and all internal components have been

adequately exercised. The first approach is called black box testing, and the second, white

 11

box testing. Black box testing alludes to tests that are conducted at the software interface.

Although they are designed to uncover errors, black box tests are used to demonstrate

that software functions are operational: that input is properly accepted and output is

correctly produced. White box testing of software requires looking at the source code.

Logical paths of the software are tested by test cases that exercise specific sets of

conditions and/or loops.

The attributes of both black box and white box testing can be combined to provide

an approach that validates the software interface and selectively ensures the software’s

internal workings are correct. This thesis applies requirements modeling and input space

partitioning (ISP) by choosing appropriate coverage criteria.

In general, calculations reside in the business layer behind the client and are

invoked by inputs from the client. Inputs largely determine which calculations to trigger

and what paths in the calculations will be parsed. In this context, the problem directly

correlates to the controllability and observability problem.

Ammann and Offutt (2008) define software observability and controllability as

follows.

• Software Observability: How easy it is to observe the behavior of a program

in terms of its outputs, effects on the environment, and other hardware and

software components.

• Software Controllability: How easy it is to provide a program with the needed

inputs in terms of values, operations, and behaviors.

 12

Ammann and Offutt illustrated the ideas of observability and controllability in the context

of embedded software. Embedded software often does not produce output for human

consumption, but affects the behavior of some piece of hardware. Thus, observability will

be quite low. Likewise, software for which all inputs are the values entered from a

keyboard is easy to control. But an embedded program that gets its inputs from hardware

sensors is more difficult to control and some inputs may be difficult, dangerous, or

impossible to supply. Many observability and controllability problems can be addressed

with simulation, by extra software built to “bypass” the hardware or software components

that interfere with testing. Other applications that sometimes have low observability and

controllability include component-based software, distributed software, and web

applications.

The calculation engines draw the similarities of the applications that have low

controllability and observability, making it difficult to derive the appropriate inputs.

Depending on the software, the level of testing, and the source of the tests, the tester may

need to supply other inputs to the software to affect controllability or observability. Two

common practical problems associated with software testing are how to provide the right

values to the software, and observing details of the software’s behavior. Offutt and

Amman (2008) used these two ideas to refine the definition of a test case as follows.

• Prefix Values: Any inputs necessary to put the software into the appropriate

state to receive the test case values.

• Postfix Values: Any inputs that need to be sent to the software after the test

case values are sent.

 13

Two types of postfix values exist.

• Verification Values: Values necessary to see the results of the test case.

• Exit Commands: Values needed to terminate the program or otherwise return

it to a stable state.

A test case is the combination of all these components (test case values, expected

results, prefix values, and postfix values). When it is clear from context, however, we

will follow tradition and use the term “test case” in place of “test case values.”

• Test Case: A test case is comprised of the test case values, expected results,

prefix values, and postfix values necessary for a complete execution and

valuation of the software under test.

• Test Set: A test set is simply a set of test cases.

Test analysts can automate as many test activities as possible. A crucial way to

automate testing is to prepare the test inputs as executable tests for the software. This

may be done using Unix shell scripts, input files, or through the use of a tool that can

control the software or software component being tested. Ideally, the execution should be

complete in the sense of running the software with the test case values, getting the results,

comparing the results with the expected results, and preparing a clear report for the test

analyst.

• Executable Test Script: A test case that is prepared in a form to be executed

automatically on the test software and produce a report.

Throughout this thesis, these terms defined in the Ammann and Offutt (2008)

textbook will be used for consistency.

 14

The proposed solution is intended to apply testing at the system and integration

levels, but can also be extended to the unit and user acceptance testing levels. Calculation

engines are tested using two different methods: input space partitioning and a modeling

technique. This was a project decision, made by the test manager. If the project was

designed as a research project, it may have been done differently. But the goal was to test

the software and evaluate the testing in a case study fashion.

Processes to apply and test calculation engines using these two techniques are

shown in Figure 2 and Figure 4. Each process shown in the figures has 9 steps. Steps 2 to

9 are common in both the techniques and are detailed in sections 3.2 to 3.8.

Figure 1 shows the overall process to test calculation engines. This is a 9-step

process in which the first step is to apply the technique. In this thesis, modeling and ISP

are applied to derive the test requirements.

 15

Figure 1. Process to test calculation engines.

3.1 Step #1: Applying the Technique

3.1.1 Input Space Partitioning (ISP)

Ammann and Offutt (2008) categorized black box testing in terms of input space

partitioning and discussed different criteria to cover the input space. The process to test

the calculation engines using ISP is shown in Figure 2.

 16

Figure 2. Input Space Partitioning (ISP) process to test calculation engines.

In chapter 4 of Ammann and Offutt’s 2008 textbook Introduction to Software

Testing, an input space is divided into different partitions and each partition consists of

different blocks.

In a fundamental way, all testing is about choosing elements from the input space

of the software being tested. This criterion can be viewed as defining ways to divide the

space according to test requirements. The input domain is defined in terms of possible

values that the input parameters can have. The input domain is then partitioned into

regions that are assumed to contain equally useful values from a testing perspective.

 17

Consider a partition q over some domain D. The partition q defines the set of equivalence

classes, which are called blocks that are pairwise disjoint, that is: Bq

Bqbjbijibjbi ∈≠∅=∩ ,;,

and together the blocks cover the domain D, that is:

U
Bqb

Db
∈

=

3.1.1.1 The Category Partition Method

The category partition method provides a process framework in which to partition

the input space. It consists of 6 manual steps to identify input space partitions and convert

them to test cases.

1. Identify functionalities that are called testable functions and can be tested

separately.

2. For each testable function, identify the explicit and implicit variables that can

affect its behavior.

3. For each testable function, identify characteristics or categories that, in the

judgment of the test engineer, are important factors to consider in testing the

function. This is the most creative step in this method and also varies

depending on the expertise of the test engineer.

4. Choose a partition, or set of blocks, for each characteristic. Each block

represents a set of values on which the test engineer expects the software to

behave identically. Well-designed characteristics often lead to straightforward

partitions.

 18

5. Choose a test criterion and generate the test requirements. Each partition

contributes exactly one block to a given test requirement.

6. Refine each test requirement into a test case by choosing appropriate values

for the explicit and implicit variables.

3.1.1.2 Coverage Criterion for Input Space Partitioning

Amman and Offutt (2008) discussed the All Combinations, Each Choice, Pair-

Wise, t-Wise, Base Choice, and Multiple Base Choices coverage criteria for the input

space partitioning. Pair-Wise, Base Choice, and Multiple Base Choices coverage criteria

were used to derive the test cases for this thesis’s case studies.

3.1.1.2.1 Pair-Wise (PW)

A value from each block for each partition must be combined with a value from

every block for each other partition. For example, if there are three partitions with blocks

[A, B], [1, 2, 3], and [x, y], then PW will need tests to cover the following combinations:

(A, 1) (B, 1) (1, x)

(A, 2) (B, 2) (1, y)

(A, 3) (B, 3) (2, x)

(A, x) (B, x) (2, y)

(A, y) (B, y) (3, x)

(3, y)

PW allows the same test case to cover more than one unique pair of values. So the

above combinations can be combined in several ways, including:

(A, 1, x) (B, 1, y)

 19

(A, 2, x) (B, 2, y)

(A, 3, x) (B, 3, y)

(A, ~, y) (B, ~, x)

The tests with “~” mean that any block can be used. A test suite that satisfies PW will

pair each value with each other value.

3.1.1.2.2 Base Choice (BC)

A base choice block is chosen for each partition, and a base test is formed by

using the base choice for each partition. Subsequent tests are chosen by holding all but

one base choice constant and using each non-base choice in each other parameter.

We actually use domain knowledge to choose the base blocks. The base choice

criterion depends on a crucial piece of domain knowledge: Which block from each

partition determines the base choice test. This choice is called the “base choice.”

If there are three partitions with blocks [A, B], [1, 2, 3], and [x, y], suppose base choice

blocks are ‘A’, ‘1’ and ‘x.’ Then the base choice test is (A, 1, x), and the following tests

would need to be used:

(B, 1, x)

(A, 2, x)

(A, 3, x)

(A, 1, y)

A test suite that satisfies BC will have one base test, plus one test for each remaining

block for each partition.

 20

The base choice can be the simplest, the smallest, the first in some ordering, or the

most likely from an end-user point of view. Combining more than one invalid value is

usually not useful because the software often recognizes one value and then negative

effects of the others are masked. Which blocks are chosen for the base choices becomes a

crucial step in test design that can greatly impact the resulting test. It is important to

document the strategy that was used so that further testing can reevaluate that decision.

3.1.1.2.3 Multiple Base Choices (MBC)

At least one, and possibly more, base choice blocks are chosen for each partition,

and base tests are formed by using each base choice for each partition at least once.

Subsequent tests are chosen by holding all but one base choice constant for each base test

and using each non-base choice in each other parameter.

The MBC criterion sometimes results in duplicate tests, which should, of course,

be eliminated.

3.1.2 Requirements Modeling

Modeling the behavior of the software to analyze and derive the tests is known

and has been used for the past four decades. Beizer (1990), Myers, and many others

extensively discussed behavioral testing with the help of models such as control-flow

graphs, transaction-flow graphs, data flow graphs, and finite state machines.

Engineering disciplines use models to develop the products they intend to build.

Requirements models are used to discover and clarify the functional and data

requirements for software and business systems. Additionally, requirements models are

used as specifications for the system’s designers, builders, and testers.

 21

Beizer (1990) states that analysis is the engineering process by which a design

evolves to fulfill the requirements. It may be wholly intuitive or formal. Intuitive

analysis, while often effective, cannot be communicated to others easily and,

consequently, some kind of formal, often mathematical, analysis is needed—even if only

retroactively.

Pressman (2005) states that one important step in black box or behavioral testing

is to understand the objects that are modeled in the software and the relationships that

connect those objects. Once this has been accomplished, the next step is to define a series

of tests that verify the statement “All objects have the expected relationship to one

another.” Stated in another way, software testing begins by creating a graph of important

objects and their relationships and then devising a series of tests that will cover the graph

so that each object and relationship is exercised and errors are uncovered.

The idea of modeling different aspects of the system using different modeling

tools is gaining momentum at present. It is also very conventional that test engineers

build mental models as a part of the problem analysis. These models can further be used

to derive the test conditions. Therefore, one objective of modeling the requirements is to

generate the test requirements and then refine the test requirements into test cases by

choosing appropriate values for both the explicit and implicit variables.

Binder (2000) states that software testing requires the use of a model to guide the

efforts in test selection and test verification. Often, such models are implicit, existing

only in the head of a human tester, applying test inputs in an ad hoc fashion. The mental

models testers build encapsulate application behavior, allowing testers to understand the

 22

application’s capabilities and more effectively test its range of possible behaviors. When

these models are written down, they become sharable, reusable testing artifacts.

Simply put, a model of software describes behavior. Behavior can be described in

terms of input sequences accepted by the system, the actions, conditions, and output

logic, or the flow of data through the application’s modules and routines. In order for a

model to be useful for groups of testers and for multiple testing tasks, it needs to be taken

out of the mind of those who understand what the software is supposed to accomplish and

written down in an easily understandable form. It is also generally preferable that a model

be as formal as it is practical. With these properties, the model becomes a shareable,

reusable, precise description of the system under test.

There are many such models, and each describes different aspects of software

behavior. For example, control-flow, data-flow, and program dependency graphs express

how the implementation behaves by representing its source code structure. Decision

tables, transaction-flows, and state machines, on the other hand, are used to describe

external so-called black box behavior. The system testing community today tends to think

in terms of such black box models. Finite state machines, state charts, UML models,

grammars, decision tables, and decision trees are some of the popular models used to

represent the software behavior.

In general, test models are designed as part of problem analysis.

The criterion for model testability is an algorithm that can be devised and

programmed that will produce ready-to-run test cases with only the information in the

 23

model. The model should support both manual and auto test generation. Binder (2000)

describes that a testable model must meet the following requirements:

 The model should be a complete and accurate reflection of the kind of

implementation to be tested. The model must represent all features to be

exercised.

 The model should abstract the details that would make the cost of testing

prohibitive.

 The model should preserve the details that are essential for revealing faults

and demonstrating conformance.

 The model should represent all possible events so that we can generate these

events, typically as messages sent to the system under test.

 The model should represent all possible actions so that we can determine

whether a required action has been produced.

 The model should represent the state so that we have an executable means to

determine what state has been achieved.

Models also reveal controllability and observability by tracing different paths that

information can flow through in the system. In addition, models provide the visual

representations of the information flow, thus allowing the requirements engineers,

development engineers, and test engineers to have the same understanding of the

requirements.

When multiple projects related to the calculation engines in financial services are

studied, requirements specifications follow a certain pattern when modeled in the form of

 24

a graph; if appropriate graph coverage criterion is applied, paths in a graph produce

different test requirements.

There are several techniques available to model the requirements and then to

generate the test requirements from the models. I developed the tool called the Fusion

Test Modeler (FTM) to facilitate modeling the requirements related to calculation

engines. This tool helped test analysts in requirements modeling and then in tracing back

the test cases to the requirements.

The requirements of the calculation engines are captured in the form of sequences

of events, sequences of actions, business rules, use cases, plain text in English, logical

expressions, and mathematical expressions. For example, pricing a loan or a contract

occurs when some events occur, such as creation of the loan, change in time period,

change in the interest rates, and/or change in fee rates. Amortization calculations depend

on the time period of the loan and characteristics of the loan such as ARM or fixed. Asset

valuation triggers a different set of calculations based on the Asset type, e.g. whole loans,

swaps, or bonds.

In some cases, specifications for the calculations are defined in the form of

pseudo-code and procedural design, especially for financial models, which are bought as

third-party tools and are integrated into the Freddie Mac systems. In other cases, complex

calculations are embedded in the sequence of steps in use cases mentioning when to

trigger the calculations.

The modeling design chosen in this thesis is a Tree. Requirements can be

analyzed in the form of models. These models can be further extended and then could be

 25

decomposed to trace different paths in the models. These decomposed paths simplify the

complex or obscure behavior of the calculation engines. Each path in the models can be

refined to a unique test case mapping to the test requirement.

Graph in 1G Figure 3 is an example of Tree.

Figure 3. Tree example.

In general, for any graph-based coverage criterion, the idea is to identify the test

requirements in terms of various structures in the graph.

A typical test requirement is met by visiting a particular node or edge or by

touring a particular path. T = {a, b, d}, {a, b, e}, {a, c, f}, {a, c, g} are the four test

requirements that cover the graph in 1G Figure 3.

3.1.3 Overview of the Process

Figure 4 shows the high level process to test the calculation engines using the

modeling technique. The first and second steps are crucial in this process to model the

 26

requirements. The Fusion Test Modeler facilitates in modeling the requirements. The

second step in this process is to derive the test scenarios from the model. FTM

automatically generates these test scenarios. Steps 4, 5, and 8 are automated with the help

of other tools.

Figure 4. Modeling process to test calculation engines.

3.1.4 Modeling Technique

The technique defined here is the definitive procedure to be followed in modeling

the requirements to accomplish the goal of deriving the test requirements. These steps

 27

follow Beizer’s (1990) advice of modeling and are extended to help modeling using

FTM.

1. Identify the testable functions. This is a manual step; guidelines will be

provided to define the testable function.

2. Examine the requirements and analyze them for operationally satisfactory

completeness and self-consistency.

3. Confirm that the specification correctly reflects the requirements, and correct

the specification if it does not.

4. Rewrite the specification as a sequence of short sentences. This can be done

using FTM.

5. Model the specifications using FTM. Modeling is explained in the subsections

with the examples.

6. Verify the model.

7. Select the test paths. This step is automated.

8. Sensitize the selected test paths. That is, select input values that would cause

the software to do the equivalent of traversing the selected paths.

9. Record the expected outcome for each test. Expected results can be specified

in FTM, which is one of the advantages of the tool.

10. Confirm the path. This step is automated. The prime path coverage criterion

is applied to traverse the model’s paths.

 28

3.1.5 Requirements and Specifications

Calculation engines are specified in a variety of formats. Requirements are

translated into functional specifications, which are more formal. In the case of calculation

engines, specifications can take the form of finite state machines, state-transition

diagrams, control flows, process models, data flows, etc. Financial models are sometimes

in the form of the source code; if systems are to be implemented to replicate the financial

models, then the source code becomes the specifications to test. For example, algorithms

defined in the VB language for financial models are to be tested for their implementation

in Java. They are also expressed in combination of all the above, such as logical

expression, use cases, program structures, sequence of events, and sequence of actions.

3.1.5.1 Logical Expressions

Logical expressions generally consist of predicates and clauses. Predicates require

special attention. Compound predicates can be broken down to equivalent sequences of

simple predicates or to disjunctive normal form. Logical expressions can be modeled in

the form of directed acyclic graphs. Clause coverage and predicate coverage criteria can

be used to test the logical expressions. If there are n clauses in the predicate, then

combinatorial coverage leads to truth-values. Applying appropriate predicate and

clause coverage criteria would result in

n2

1+n truth-values. Ammann and Offutt discussed

specification-based logic coverage with examples in chapter 3 of their book (2008).

Predicates in the programs can be taken from if statements, case/switch

statements, for loops, while loops, and do-until loops.

Logical expression can be modeled with the help of the tree shown in Figure 5.

 29

Figure 5. Modeling example #1 using Fusion Test Modeler.

3.1.5.2 Use Cases

UML use cases are being widely used to clarify and express software

requirements. They are meant to describe sequences of actions that software performs as

a result of inputs from the users; that is, they help express the workflow of a computer

application. Because use cases are developed early in software development, they can be

valuable in helping the tester start testing activities early.

Use cases are described textually, and can be expressed as graphs. These graphs

can be viewed as transaction flows. Activity diagrams can also be used to express

transaction flows. FTM can be used to model a variety of things, including state changes,

returning values, and computations.

 30

For use cases, complete path coverage is often feasible and sometimes reasonable.

It is also rare to find a complicated predicate that contains multiple clauses. This is

because the use case is usually expressed in terms that the users can understand.

Users try to deduce use case scenarios which are instances of, or complete paths

through, a use case. Each scenario should constitute some transaction by the users and is

often derived when the use cases are constructed. If the use case graph is finite, then it is

possible to list all possible scenarios. However, domain knowledge can be used to reduce

the number of scenarios that are useful or interesting from either a modeling or test case

perspective.

3.1.5.3 Loops

The loops themselves are not important for the purpose of modeling, but loop

control variables are important in the cases of both deterministic and non-deterministic

loops. This thesis applied boundary value techniques for the loop control variables.

Deriving these values will help in path sensitization of the processing to be tested within

the loops. This also applies to nested loops.

3.1.5.4 Other Common Elements in Specifications

Various program structures that are commonly seen in the specifications are if-

else structures, nested-if structures, decision tree structures, and case/switch structures.

Conditional expressions are composed of expressions combined with relational and/or

logical operators. A condition is an expression that can be evaluated to be true or false. A

sequence of events, also called preconditions to satisfy, as well as a sequence of actions,

 31

relations or constraints defined among different parameters, are some common

observations in the specifications.

All of these structures can be modeled with the help of a tree, as shown in Figure

6.

Figure 6. Modeling example #2 using Fusion Test Modeler.

Requirements modeled as shown in Figures 5 and 6 are transformed into tests as

shown in Figure 7. This process is explained and documented in detail with help of a case

study in Chapters 6 and 9.

 32

Figure 7. Sample outputs from Fusion Test Modeler.

3.1.6 Rationale Behind This Modeling Design

The test approach defined here is more appropriate to system testing and

acceptance testing, but can also be applied to unit testing. There are numerous testing

techniques available for black box testing that are insufficient to test calculation engines.

Because controllability and observability are very low for calculation engines,

reachability of a statement or condition can be achieved with the help of modeling.

At present, many commercially available tools expect testers to possess strong

logical, analytical, and critical thinking skills. Unfortunately, this is not always true.

Technology should adequately address the competence of a majority of its users. A

 33

number of modeling techniques and tools are also available on the market that take a

longer time to learn and apply, which is not practical. Also, these modeling techniques

are associated with notations and steps to follow. There is a lot of research in generating

test requirements from formal specifications; however, the outcome depends on the

degree of formalism in the specifications.

The trees, on the other hand, are simple structures that can be easily understood

and modeling can be done with ease. FTM is developed to meet the following seven

essential needs.

3.1.6.1 Requirements Traceability

The model’s traceability to the requirements is an essential element that not only

provides the coverage but also helps in impact analysis when requirements change.

Factory tools/modeling languages such as Visio and UML do not help build traceability

into the model. FTM provides traceability of the requirements from the test models.

3.1.6.2 Audit Requirements

Internal audits require testing processes to be transparent. Test cases should be

well documented, and changes should be applied in a controlled manner. FTM allows test

analysts to keep track of changes, and also captures information related to who executed

the tests and when they were executed. Models are saved in XML format and the XML

files can be put under configuration management.

3.1.6.3 Specification Formats

As discussed in Section 2.3, requirements are specified in different formats. FTM

allows modeling multiple kinds of specifications (with some exceptions).

 34

3.1.6.4 Easy to Learn

The modeling technique chosen is simple so that the business community, testers,

and analysts from non-engineering backgrounds can learn and model the requirements

with minimal training. They can also analyze the requirements with the help of models.

3.1.6.5 Preserving the Models

It is common for testers to build mental models and then destroy the models once

they understand the requirements. The FTM tool allows users to build rough drafts of the

test models and preserve them for future analysis. The tool helps the users evolve their

analysis into a model that captures the testable requirements. In later stages, it supports

the impact analysis. These models also help in transitioning the knowledge when new

team members arrive into the project.

3.1.6.6 Complementing the Existing Tools to Manage Testing

Freddie Mac has a set of tools that complements its software development

methodology. Any homegrown tools should be tightly integrated with the existing tools.

The FTM tool complements the TestManager tool, which is used to manage the test

assets.

3.1.7 Coverage Criterion

Directed graphs form the foundation for many coverage criteria. For example, the

most common graph abstraction for source code maps code is to a control flow graph. It

is important to understand that the graph is not the same as the artifact; indeed, artifacts

typically have several useful, but nonetheless quite different, graph abstractions. The

same abstraction that produces the graph from the artifact also maps test cases for the

 35

artifact to paths in the graph. Accordingly, a graph-based coverage criterion evaluates a

test set for an artifact in terms of how the paths corresponding to the test cases “cover”

the artifact’s graph abstraction.

The basic notion of a graph and necessary additional structures is given below.

A graph G formally is:

• a set N of nodes

• a set of initial nodes, where ⊆ N oN oN

• a set of final nodes, where ⊆ N fN fN

• a set E of edges, where E is a subset of N × N

The term “node” or “vertex” is often identified with a statement or a basic block. The

term “edge” or “arc” is often identified with a branch.

Test criteria require inputs that start at one node and end at another. This is only

possible if a path connects those nodes.

Ammann and Offutt (2008) presented different graph coverage criteria for the

structural graphs and data flow graphs. The Node coverage, Edge coverage, Edge-Pair

coverage, Prime Path coverage, Simple Round Trip coverage, Complete Round Trip

coverage, Complete Path coverage, and Specified Path coverage are applicable for the

structural graphs. The All-DU-Paths coverage, All-Uses coverage, and All-Defs coverage

are applicable for the data flow graphs.

The logical expressions, conditional expressions, and control structures such as if

statements, if-else statements, nested if-else statements, switch statements, and use cases

are modeled in the form of trees using the Fusion Test Modeler (FTM). The tree

 36

structures do not have loops. Traversing the tree from root to leaf leads to the prime path

coverage criterion. When there are no loops, the prime path coverage criterion is

equivalent to the all-paths coverage. Therefore, in this case, applying prime path

coverage criterion generates all the distinct paths in the model, which in turn are the test

cases.

3.1.7.1 Prime Path Coverage

A path from to is simple if no node appears more than once on the path,

with the exception that the first and last nodes may be identical.

in jn

A path from to is a prime path if it is a simple path and it does not appear as

a proper subpath of any other simple path.

in jn

Prime Path Coverage (PPC): TR contains each prime path in G.

3.2 Step #2: Generating Test Requirements

The test requirements for the calculation engines are generated from the models

that are built using FTM. Prime path coverage is applied to derive the test requirements.

This process of generating test requirements is automated, which means when

requirements are modeled using FTM, test requirements are automatically generated.

This process is explained in detail in this thesis’s case studies.

For ISP, test requirements for the testable functions are derived by applying Base

Choice (BC), Multiple Base Choice (MBC), and Pair-Wise (PW) coverage criteria.

Testable functions are identified and then their partitions and blocks are derived

following the guidelines in the category partition method framework. Guidelines are

provided to list the partitions and blocks in the spreadsheet. Java utilities are written to

 37

read and generate the base choice and multiple base choice test requirements from the

spreadsheet. Bach’s PERL program is used to read and generate the pairwise test

requirements from the spreadsheet.

This step is completely automated.

3.3 Step #3: Generating Test Data

In order to execute the test requirements derived from step #2, test data is

required. This test data is refined from the input space partitioning and modeling

technique.

As discussed in earlier sections, calculation engines usually do not receive inputs

directly from the GUI. Calculations will be triggered only after the inputs are validated at

the presentation layer, which means invalid inputs are unlikely to be input to the

calculation engines. In this process, test data will be associated with the test requirements

and prepared test cases will be executable.

When there are constraints among the attributes, then the test requirements may

contain attribute values such as “Less than,” “Greater than,” or something similar. Actual

values to these attributes are provided. This step currently involves manual intervention

and is explained in detail in the case studies.

3.4 Step #4: Simulating Calculation Engine and Inputting the Test Data

A simulator is used to generate the expected results. Simulators can be written in

any programming language the test analyst is comfortable with. Freddie Mac often uses

MS-Excel to write the functions using built-in functions of Excel. VB Macros also can be

used.

 38

In End User Computing (EUC) applications, most calculations should already be

in place, built with the help of VB Macros or Excel functions. When new information

system applications are built to replace these EUCs per Sarbanes Oxley (SOX)

requirements, system upgrades, or any other compliance requirements, existing programs

can be used as simulators.

Simulators provide challenges with respect to correctness. It is difficult to judge

whether the output of the simulator or the output of the system-under-testing is correct.

Differences in these two outcomes should be resolved with the knowledge of a

calculation engine specialist or a requirements analyst.

Simulators should be simple in nature compared to the implementation of the

same logic in system-under-testing. Test inputs derived in step #3 should be inputted to

the simulator. Inputs are generated in large numbers; therefore, automated programs can

be developed to read the inputs and input them to the simulator.

Pemmaraju (1998) states that if multiple calculations performed by different

calculators work in combination to produce the final output, it is beneficial to log the

outputs of each calculator. This will help in two ways. One is to understand the data

flows among these calculators. The second is to know the internal states of these values.

In addition, logging helps to debug the problem if the expected and actual results differ.

3.5 Step #5: Collecting Expected Results

Once the test data is derived and is associated with the test requirements, the test

case now becomes ready to execute. When these test cases are executed against the

simulator built in the previous step, the simulator produces the expected results.

 39

The automation process helps generate the tests and execute them in a reasonable

amount of time. Since the models are developed early in the life cycle and undergo

frequent changes, expected results tend to change. A mechanism needs to be established

to capture the expected results. In this thesis’s case studies, expected results are captured

in the spreadsheets under different columns for each test requirement and this placeholder

always remains the same.

In EUC applications in Freddie Mac, when systems are already in place these

expected results are already available in the reference spreadsheets. VB Macros in the

spreadsheets contain the same functionality as the system-under-test. This also comes

with a price, as the reference spreadsheet is just a current form of implementation of a

complex application and therefore could be as faulty as the new implementation of the

system-under-test. Nevertheless, the reference spreadsheet proved to be very useful for

automated verification of results, as it was possible to write scripts to read the

spreadsheet and obtain results from it. Moreover, the reference spreadsheet was the only

specification for the backend calculations in one case study.

3.6 Step #6: Input Test Data to the System-Under-Test

Once the test data is generated and is associated with the test requirements, test

cases are ready to execute against the system-under-test. This process of deriving the

inputs using the ISP method, and designing the test requirements from the test model,

may generate a large number of test cases—making them cumbersome and time

consuming to execute manually. Therefore, an automation tool must be considered to

feed the test data of the test cases to the system under development. In Rational

 40

TestManager this test data is stored in data pools. A data-driven testing technique is

applied to automatically enter the test data into the system by the tool. Logic validation is

not added to the automation scripts in order to maximize the processing time of the data

entry. Automation scripts are just simulated to enter the data and are scheduled on

different machines to enter data in parallel. When the test data is inputted to the system,

calculation-triggering events are identified and automation scripts are programmed to

trigger the calculations. Events to trigger the calculations are also incorporated into the

script, so that every time the event triggers, the calculation engine is activated and

performs calculations at the business layer, storing the results in the database.

3.7 Step #7: Collecting Actual Results

All the actual results are stored in the database. It is essential for the test analysts

to understand the data model of the system so they can locate the actual results. In

general, the final state of the actual results generated by the calculation engines will be

stored in the database, and the internal states of the results may be logged into the

execution logs for debugging. It may be required to refer to the execution logs for the

internal states and values of the actual results in case of deviation from the expected

results. In one case study, where there are 9 calculators involved and each calculator

receives the inputs from one or more calculators, it was suggested to programmers to

generate the execution logs with the intermediate values of the calculation variables. This

helped in debugging the incorrect expected output. A Java utility was written to search all

the intermediate states of calculation variables for each and every instance of them. The

 41

program scanned 10 MB of the execution logs in less than 10 seconds and wrote the

expected intermediate outputs in a tabular format in an Excel spreadsheet.

3.8 Step #8: Comparing Actual and Expected Results Using a Comparator

Because the calculations performed by the backend often produced hundreds of

outputs, an automated comparison tool was developed to examine and compare the

backend results with those of the spreadsheet. Also, these results need to be compared

more frequently. The comparator compares the results, showing the differences in cases

of failures and showing success in cases of passes. Expected results are saved in the

Excel sheet and actual results may be obtained from the database or execution logs. The

comparator is built with the capability to compare the left-hand side and right-hand side

of the results in different forms: spreadsheet, spreadsheet; spreadsheet, database; and

spreadsheet, text file.

In some cases, actual results (intermediate) are obtained from the program

execution logs. These logs store values for intermediate results and final results are stored

in the database. The comparator searches for the desired text in the execution logs and

required fields in the database. The comparator tool discards unneeded text strings before

making comparisons of the output results. Actual and expected results may not always be

the same. As long as they are with in the tolerance limits, the result is deemed correct.

For example, a variation of at most one dollar in a million is acceptable if the variation is

caused due to drifts in floating point accuracy in Java or Microsoft Excel.

 42

4 Case Study #1: Contract Pricing

“Contract Pricing” is an important feature in the pricing subsystem of the selling

system. The system prices the contracts when contracts are created in the Loan Purchase

Contract (LPC) subsystem and reprices the contracts when contracts are modified or upon

a request from the user.

The contracts are of two types: cash contracts and swap contracts. This case study

represents swap contract pricing. The requirements for the pricing calculations of swap

contracts are specified in the form of use cases. This use case calculates the swap GFee,

Buyup max, Buydown max, and Total adjusted GFee for fixed rate, Guarantor, and

Multilender ARM swap contracts.

This thesis is focused on the approach to test the calculation engines; however,

this case study also shows how to isolate and test the testable functions related to

calculations in the system. Freddie Mac’s selling system consists of different subsystems:

LPC, NCM, TPA, Pooling, Pricing, and OIM. Each subsystem contains multiple features

and is designed to abstract their functionalities from the other. The “contract pricing”

feature in the pricing subsystem receives the inputs from the “import contracts” feature of

the LPC subsystem that facilitates importing the contracts. This feature is tested in two

stages. In the first stage, the import contracts feature is tested so that the system accepts

 43

only the valid contracts for pricing. In the second stage, contract attributes are isolated to

test the contract pricing feature of the system.

4.1 Step #1: Input Space Partitioning

The contract entity has 29 attributes. Therefore, the contract domain is divided

into 29 partitions. These partitions and their blocks are shown in Table 1.

 44

Table 1: Contract Partitions and Blocks

Partition Partition Name Partition Blocks

1 Execution Option {GU, ML, NULL_EO, *EO}
2 Rate Option {FI, AR, NULL_RO, *RO}
3 Master Commitment {9CHAR, 10CHAR, 8CHAR,NULL_MC, TBD}
4 Security Product {NUMBER, NULL_SP, *SP}
5 Security Amount {DOLLAR_ROUND, *DOLLAR_FRACTION,

*>100B, NULL_SA}
6 Contract Name {CHAR (26), CHAR (25), CHAR (1),

NULL_CONT}
7 Settlement Date {MMDDYYYY, *SD, NULL_SD}
8 Settlement Cycle Days {1,3,4,5, *6, *2, NULL_SCD}
9 Security Coupon {XX.XXX, XXX.XX, NULL_SC, 26.000}
10 Servicing Option {RE, CT, *SO, NULL_SO}
11 Designated Servicer Number {NULL_DS, DS, *DS}
12 Minimum Required Servicing

Spread
{XX.XXX, NULL_MRSS, XXX.XX}

13 Minimum Servicing Spread
Coupon

{XX.XXX, NULL_MSSC, XXX.XX}

14 Minimum Servicing Spread
Margin

{XX.XXX, NULL_MSSM, XXX.XX}

15 Minimum Servicing Spread
Lifetime Ceiling

{XX.XXX, NULL_MSSLC, XXX.XX}

16 Remittance Option {AR, SU, FT, GO, *RT, NULL_RT}
17 Super ARC Remittance Due day {0,1,2,14,15,16,NULL_SARD}
18 Required Spread GFee {NULL_RSG, *RSG, RSG}
19 BUBD Program Type {CL, NL, LL, *BUBD_PT, NULL}
20 BUBD Request Type {NULL_BUBD_RT, BO, BU, BD, NO,

*BUBD_RT}
21 Contract Level Buyup/Buydown {NULL_CL_BUBD, *CL_BUBD, BU, BD, NO}
22 BUBD Grid Type {NULL_BUBD_GT, *BUBD_GT, A, A-Minus,

Negotiated 1 Grid}
23 BU Max Amount {0, *BU_MAX_AMT, NULL_BU_MAX_AMT,

XXX.XXX}
24 BD Max Amount {0, *BD_MAX_AMT, NULL_BD_MAX_AMT,

XXX.XXX}
25 Pool Number {NULL_PNO, PNO, *PNO}
26 Index Look Back Period {NULL_ILP, *ILP, ILP}
27 Fee Type {FT, *FT, NULL_FT}
28 Fee Payment Method {Delivery Fee, GFee Add On, *FTM,

NULL_FTM}
29 Prepayment Penalty Indicator {Y, N}

 45

The system validates the properties for each attribute before creating a contract

and generates an error message if any invalid inputs or invalid combination of inputs are

passed to the system.

The blocks for each partition are derived based on the system specifications. The

standard conventions are followed in defining the abstract values for these blocks. For

example, for the first partition, Execution Option, the set of blocks are: {GU, ML,

NULL_EO, *EO}. GU and ML are valid values for this partition. Invalid values are

represented by *EO, which means the user can pass any satisfying value in the place of

*EO. NULL_EO is another invalid value per the specifications. When the values for

*EO, and NULL_EO are inputted, the system is expected to generate error messages

informative to the user. This feature is tested in two stages.

First Stage

In the first stage, each attribute of the contract is validated using the base choice

coverage criterion and constraints among the attributes are validated using the pair-wise

coverage criterion.

The base contract is chosen to create the base choice contracts using different

values of the blocks from each partition. A Java utility was written to create the base

choice contracts.

When each block of every partition needs to be validated, the base choice

coverage works well. Each base choice contract is targeted to validate one of the business

rules in case of valid values, or will be targeted to generate error or informative messages

in case of invalid values.

 46

Even though one test input or a base contract addresses more than one

requirement, independent tests are created to satisfy each requirement. This not only

helps in traceability of the requirements, but also helps minimize the changes in test

cases.

In the first stage, all the attributes or partitions of the contract are treated as being

independent even though the constraints exist.

The constraints among the parameters are tested as follows: The Rate option,

BUBD eligibility type, and BUBD request type of the contract are interdependent and

also depend on the values of another entity called a master commitment. The master

commitment has 30 partitions but MC LLBUBD eligibility and MC GFee add on

eligibility are the only partitions within the scope of this testable function.

The pair-wise coverage criterion is applied to derive test cases to test the

constraints among these parameters. Other partitions of the contract are prefixed with the

base test value of the contract.

Each and every distinct value chosen for the blocks are traced to different error

messages and an error code associated with it. Inputs are derived based on the functional

specifications and not from the implementation details. Some tests are infeasible, as the

design does not allow them. It is also a good practice to derive the inputs based on the

functional specifications instead of implementation details, as the tests may uncover the

errors in implementation (Grindal, Offut & Mellin, 2006).

 47

Applying the base choice technique produced 120 test cases for contracts; pair-

wise produced 207 test cases. A Java utility was built to generate base choice test cases

and Bach’s Perl program was used to generate the pair-wise test cases.

The contract entity has close to 200 business rules defined for the import contracts

feature in the LPC subsystem. Test inputs are derived in the above process by applying

the base choice and pair-wise coverage criteria to satisfy each and every business rule.

Second Stage

In the second stage, partitions required for “contract pricing” calculations were

separated and then base choice, multiple base choice, and pair-wise criteria are applied.

Problem analysis shows that among the inputs defined earlier, only Rate option, GFee,

Remittance option type, GFee grid remittance option, LLGFee eligibility, BUBD

Eligibility, and Max Buyup determine the controllability of the calculations. Therefore,

only these partitions are considered to derive the tests. Partitions and blocks of the

Contract Pricing are shown in Table 2.

.

Table 2: Contract Pricing Partitions and Blocks

Partitions Rate
Option GFee

Remittance
Option
Type

GFee Grid
Remittance

Option

MC
LLGFee

Eligibility

BUBD
Eligibility

Max
Buyup

{LT_1
2.5,

EQ_12.
5,

GT_12.
5,

NULL
}

Blocks
{FIXE

D,
ARM}

{NO
T_N
ULL,
NUL
L}

{GOLD,
FIRST_TU
ESDAY,

ARC,
SUPER_A

RC}

{GOLD,
FIRST_TUE

SDAY,
ARC,

SUPER_AR
C}

{Y, N}

{PROHIBI
TED,

REQUIRE
D,

OPTIONA
L}

 48

Base test #1, selected to generate base choice tests, is shown in Table 3.

Table 3: Contract Pricing Base Test #1

Partitions Rate
Option GFee Remittance

Option Type

GFee Grid
Remittance

Option

MC
LLGFee

Eligibility

BUBD
Eligibility

Max
Buyup

Blocks FIXED
NOT_
NULL GOLD GOLD

PROHIBIT
ED

LT_12.
5 Y

Base test #2, selected to generate base choice tests, is shown in Table 4.

Table 4: Contract Pricing Base Test #2

Partitions Rate
Option GFee

Remittance
Option
Type

GFee Grid
Remittance

Option

MC
LLGFee

Eligibility

BUBD
Eligibility

Max
Buyup

Blocks ARM
NOT_
NULL

SUPER_A
RC

PROHIBIT
ED

EQ_12
.5 GOLD N

4.1.1 Base Choice Coverage

Table 5 shows the base choice tests generated using base choice test #1.

 49

Table 5: Contract Pricing Base Choice Tests

Test

Rate
Option GFee Remittance

Option Type

GFee Grid
Remittance

Option

MC
LLGFee

Eligibility

BUBD
Eligibility

Max
Buyup

1 ARM

NOT_NULL GOLD GOLD Y PROHIBITED LT_12.5

2 FIXED NULL GOLD GOLD Y PROHIBITED LT_12.5

3 FIXED

NOT_NULL

FIRST_
TUESDAY GOLD Y PROHIBITED LT_12.5

4 FIXED

NOT_NULL ARC GOLD Y PROHIBITED LT_12.5

5 FIXED

NOT_NULL

SUPER_ARC GOLD Y PROHIBITED LT_12.5

6 FIXED

NOT_NULL GOLD

FIRST_TUE
SDAY Y PROHIBITED LT_12.5

7 FIXED

NOT_NULL GOLD ARC Y PROHIBITED LT_12.5

8 FIXED

NOT_NULL GOLD

SUPER_AR
C Y PROHIBITED LT_12.5

9 FIXED

NOT_NULL GOLD GOLD N PROHIBITED LT_12.5

10 FIXED

NOT_NULL GOLD GOLD Y REQUIRED LT_12.5

11 FIXED

NOT_NULL GOLD GOLD Y OPTIONAL LT_12.5

12 FIXED

NOT_NULL GOLD GOLD Y PROHIBITED

EQ_12.5

13 FIXED

NOT_NULL GOLD GOLD Y PROHIBITED

GT_12.5

14 FIXED

NOT_NULL GOLD GOLD Y PROHIBITED NULL

15 FIXED

NOT_NULL GOLD GOLD Y PROHIBITED LT_12.5

4.1.2 Multiple Base Choice Coverage

Table 6 shows the multiple base choice tests using base choice test #1 and base

choice test #2.

 50

Table 6: Contract Pricing Multiple Base Choice Tests

Test

Rate
Option GFee

Remittance
Option
Type

GFee Grid
Remittance

Option

MC
LLGFee

Eligibility

BUBD
Eligibility

Max
Buyup

1 ARM

NOT_NULL GOLD GOLD Y PROHIBITED LT_12.5

2 FIXED NULL GOLD GOLD Y PROHIBITED LT_12.5

3 FIXED

NOT_NULL

 FIRST_
TUESDAY GOLD Y PROHIBITED LT_12.5

4 FIXED

NOT_NULL ARC GOLD Y PROHIBITED LT_12.5

5 FIXED

NOT_NULL

 SUPER_
ARC GOLD Y PROHIBITED LT_12.5

6 FIXED

NOT_NULL GOLD

 FIRST_
TUESDAY Y PROHIBITED LT_12.5

7 FIXED

NOT_NULL GOLD ARC Y PROHIBITED LT_12.5

8 FIXED

NOT_NULL GOLD

 SUPER_
ARC Y PROHIBITED LT_12.5

9 FIXED

NOT_NULL GOLD GOLD N PROHIBITED LT_12.5

10 FIXED

NOT_NULL GOLD GOLD Y REQUIRED LT_12.5

11 FIXED

NOT_NULL GOLD GOLD Y OPTIONAL LT_12.5

12 FIXED

NOT_NULL GOLD GOLD Y PROHIBITED EQ_12.5

13 FIXED

NOT_NULL GOLD GOLD Y PROHIBITED GT_12.5

14 FIXED

NOT_NULL GOLD GOLD Y PROHIBITED NULL

15 FIXED

NOT_NULL GOLD GOLD Y PROHIBITED LT_12.5

16 FIXED

NOT_NULL

 SUPER_
ARC GOLD N PROHIBITED EQ_12.5

17 ARM NULL
 SUPER_
ARC GOLD N PROHIBITED EQ_12.5

18 ARM

NOT_NULL GOLD GOLD N PROHIBITED EQ_12.5

19 ARM

NOT_NULL

 FIRST_
TUESDAY GOLD N PROHIBITED EQ_12.5

20 ARM

NOT_NULL ARC GOLD N PROHIBITED EQ_12.5

21 ARM

NOT_NULL

 SUPER_
ARC

 FIRST_
TUESDAY N PROHIBITED EQ_12.5

22 ARM

NOT_NULL

 SUPER_
ARC ARC N PROHIBITED EQ_12.5

23 ARM

NOT_NULL

 SUPER_
ARC

 SUPER_
ARC N PROHIBITED EQ_12.5

24 ARM

NOT_NULL

 SUPER_
ARC GOLD Y PROHIBITED EQ_12.5

25 ARM

NOT_NULL

 SUPER_
ARC GOLD N REQUIRED EQ_12.5

 51

Remittance
Option
Type

Test

Rate
Option GFee

GFee Grid
Remittance

Option

MC
LLGFee

Eligibility

BUBD
Eligibility

Max
Buyup

26 ARM

NOT_NULL

 SUPER_
ARC GOLD N OPTIONAL EQ_12.5

27 ARM

NOT_NULL

 SUPER_
ARC GOLD N PROHIBITED LT_12.5

28 ARM

NOT_NULL

 SUPER_
ARC GOLD N PROHIBITED GT_12.5

29 ARM

NOT_NULL

 SUPER_
ARC GOLD N PROHIBITED NULL

30 ARM

NOT_NULL

 SUPER_
ARC GOLD N PROHIBITED EQ_12.5

4.1.3 Pair-Wise Coverage

Table 7 shows the pair-wise tests derived using Bach’s PERL program.

 52

Table 7: Contract Pricing Pair-Wise Tests

Test

Rate
Option GFee

Remittance
Option
Type

GFee Grid
Remittance

Option

MC
LLGFee

Eligibility

BUBD
Eligibility

Max
Buyup

1 FIXED NOT_NULL GOLD GOLD Y PROHIBITED LT_12.5

2 ARM NULL
FIRST_
TUESDAY GOLD N REQUIRED EQ_12.5

3 FIXED NULL
FIRST_
TUESDAY

FIRST_
TUESDAY Y OPTIONAL LT_12.5

4 ARM NOT_NULL GOLD
FIRST_
TUESDAY N PROHIBITED EQ_12.5

5 FIXED NOT_NULL ARC ARC N REQUIRED GT_12.5

6 ARM NOT_NULL
SUPER_
ARC ARC Y OPTIONAL NULL

7 FIXED NULL
SUPER_
ARC SUPER_ARC N PROHIBITED GT_12.5

8 ARM NULL ARC SUPER_ARC Y REQUIRED NULL
9 ARM NULL GOLD ARC N REQUIRED LT_12.5

10 FIXED NOT_NULL
FIRST_
TUESDAY SUPER_ARC Y OPTIONAL EQ_12.5

11 ARM ~NULL GOLD GOLD Y OPTIONAL GT_12.5

12 FIXED
~NOT_NUL
L

FIRST_
TUESDAY

FIRST_
TUESDAY N PROHIBITED NULL

13 ~ARM
~NOT_NUL
L ARC

FIRST_
TUESDAY N OPTIONAL GT_12.5

14 ~FIXED ~NULL ARC ARC ~Y PROHIBITED EQ_12.5

15 ~FIXED
~NOT_NUL
L

SUPER_
ARC GOLD ~N REQUIRED NULL

16 ~ARM
~NOT_NUL
L

SUPER_
ARC SUPER_ARC ~N ~PROHIBITED LT_12.5

17 ~FIXED ~NULL
SUPER_
ARC

FIRST_
TUESDAY ~Y REQUIRED GT_12.5

18 ~FIXED ~NULL GOLD GOLD ~N ~OPTIONAL NULL

19 ~ARM
~NOT_NUL
L ARC GOLD ~Y ~PROHIBITED LT_12.5

20 ~ARM
~NOT_NUL
L

FIRST_
TUESDAY ARC ~Y ~REQUIRED EQ_12.5

21 ~FIXED ~NULL GOLD SUPER_ARC ~N ~OPTIONAL EQ_12.5

22 ~ARM ~NULL
FIRST_
TUESDAY

~FIRST_
TUESDAY ~Y ~PROHIBITED GT_12.5

23 ~ARM ~NULL
SUPER_
ARC ~ARC ~N ~OPTIONAL EQ_12.5

4.2 Step # 1: Modeling Technique

The testable function for the Contract Pricing is modeled using the FTM tool.

Detailed outputs of the model are shown in Appendix A. Test cases are shown in Table 8.

 53

Table 8: Contract Pricing Test Inputs From Modeling

Test

Rate
Option GFee

Remittance
Option
Type

GFee Grid
Remittance

Option

MC
LLGFee

Eligibility

BUBD
Eligibility

Max
Buyup

1 FIXED NOT_NULL GOLD GOLD Y PROHIBITED GT_12.5
2 FIXED NOT_NULL GOLD GOLD Y PROHIBITED LE_12.5
3 FIXED NOT_NULL GOLD GOLD Y PROHIBITED GT_12.5
4 FIXED NOT_NULL GOLD GOLD Y PROHIBITED LE_12.5

5 FIXED NOT_NULL GOLD
SUPER_
ARC Y PROHIBITED GT_12.5

6 FIXED NOT_NULL GOLD
SUPER_
ARC Y PROHIBITED GT_12.5

7 FIXED NOT_NULL GOLD
FIRST_
TUESDAY Y PROHIBITED LE_12.5

8 FIXED NOT_NULL GOLD ARC Y PROHIBITED LE_12.5

9 FIXED NOT_NULL GOLD
FIRST_
TUESDAY Y PROHIBITED LE_12.5

10 FIXED NOT_NULL GOLD
FIRST_
TUESDAY Y PROHIBITED GT_12.5

11 FIXED NOT_NULL GOLD ARC Y PROHIBITED LE_12.5

12 FIXED NOT_NULL GOLD
FIRST_
TUESDAY Y PROHIBITED LE_12.5

13 FIXED NOT_NULL GOLD GOLD N PROHIBITED GT_12.5
14 FIXED NOT_NULL GOLD GOLD N PROHIBITED LE_12.5

15 FIXED NOT_NULL GOLD
SUPER_
ARC N PROHIBITED GT_12.5

16 FIXED NOT_NULL GOLD
SUPER_
ARC N PROHIBITED LE_12.5

17 FIXED NOT_NULL GOLD
SUPER_
ARC N PROHIBITED GT_12.5

18 FIXED NOT_NULL GOLD
SUPER_
ARC N PROHIBITED LE_12.5

19 ARM NOT_NULL
FIRST_
TUESDAY

FIRST_
TUESDAY Y PROHIBITED GT_25

20 ARM NOT_NULL
FIRST_
TUESDAY

FIRST_
TUESDAY Y PROHIBITED LE_25

21 ARM NOT_NULL
FIRST_
TUESDAY ARC Y PROHIBITED GT_25

22 ARM NOT_NULL
FIRST_
TUESDAY ARC Y PROHIBITED LE_25

23 ARM NOT_NULL
FIRST_
TUESDAY

SUPER_
ARC Y PROHIBITED GT_25

24 ARM NOT_NULL
FIRST_
TUESDAY

SUPER_
ARC Y PROHIBITED LE_25

25 ARM NOT_NULL
FIRST_
TUESDAY

FIRST_
TUESDAY N PROHIBITED GT_12.5

26 ARM NOT_NULL
FIRST_
TUESDAY ARC N PROHIBITED EQ_12.5

27 ARM NOT_NULL
FIRST_
TUESDAY ARC N PROHIBITED EQ_12.5

 54

4.3 Step #2: Generating Test Requirements

Sections 4.1 and 4.2 shows the test cases generated by both the ISP and modeling

technique for the contract pricing feature. The remaining attributes of the contract are

prefixed to make these test cases executable.

4.4 Step #3: Generating Test Data

Test data is built by passing actual values in place of abstract values such as

EQ_12.5, LE_25.

4.5 Step #4: Building the Simulator and Inputting Test Data

The contract pricing calculation simulator was built in Java. This simulator

program reads inputs from the spreadsheet, performs the calculations, and then outputs

the calculation results into another spreadsheet at a defined location. Test inputs derived

from the modeling and ISP techniques are then inputted to the calculation simulator. The

calculation simulator performs the calculations and generates the expected results for

each and every test input. The simulator program also writes the expected results into a

spreadsheet.

4.6 Step #5: Input Test Data Into System-Under-Test

Test inputs derived from the modeling and ISP techniques are then inputted to the

system-under-test. Because we have too many tests to enter them manually, a data-driven

automation technique is applied using the Rational’s robot tool. The system has another

feature called “import contracts” with which all these test inputs can be bundled into a

flat file and imported at once. Both methods are chosen to input the contracts into the

system-under-test, as they follow different paths of processing. When the contract is

 55

successfully created, the system automatically prices the contracts and stores the pricing

results in the database. These pricing results are the actual results.

4.7 Steps # 6, 7, and 8: Collecting Expected Results, Actual Results, and

Comparing the Results

Expected results are stored in a spreadsheet and actual results are stored in a DB2

database. The comparator program written in Java compares the expected results with

actual results. The program uses the contract number as the unique ID; it parses the

expected results in the spreadsheet row by row, picks up each contract ID and values of

its attributes, then searches the corresponding values of attributes for the same contract

ID in the database, and compares both the values. If the values match, the program flags

the test case as “Pass,” otherwise as “Fail.” In the calculations, tolerance will be defined

for rounding and is taken into account if the expected and actual results deviate within the

determined tolerance range.

Results and observations are discussed in Chapter 8.

 56

5 Case Study #2: Loan Pricing

The “Loan Pricing” feature in the pricing subsystem prices the loans when the

loans are newly created in the system or upon a reprice request by the business users.

In release 7.0, price recalculation for swap loans is triggered by a data correction

to one or more data elements that are used in the price calculation performed at the time

of settlement. These data corrections can be one or both of the following changes:

internal FM price definition terms (grid data), or seller delivered loan/contract data for

price affecting fields. Either type of data correction will trigger a total price recalculation

of all price components that apply to the loan, including GFEE/LLGFEE, BUBD and

Delivery Fees.

The Price recalculation can be approved either automatically or manually. Manual

approval of the price recalculation results is applicable only when the recalculation is

isolated solely to changes in either the BUBD and contract GFEE fee grid definition

changes.

Any data change to loan and/or delivery fee data will trigger a recalculation and

reprice all price component data that is effective at the time of settlement. This includes

any changes to BUBD or contract GFEE grid definition terms.

The mortgage loan entity has nearly 150 attributes, but only a few of those

attributes are relevant to “Loan Pricing” as described in the requirements. Following are

 57

12 partitions that are identified in this testable function and shown in Table 9. Among the

12, values for loan interest rate (3), and servicing fee rate (4) are received from the price

grids. These values are updated in the grids based on the current market. Max BU (9),

Max BD (11), and user requested Max Buy Up (12) are intermediate parameters whose

values are used in the final calculations. Even though they participate in the calculations,

their values depend on the values of the other attributes that are input for the loan.

Table 9: Loan Pricing Partitions and Blocks

Partition
Partition Name Partition Blocks

1 BUBD Request Type { NLBUBD, LLBUBD, CLBU, CLBD, NONE }
2 Current Loan Family Type { ARM, FIXED, BALLOON }
3 Loan Interest Rate
4 Servicing Fee Rate
5 Total Adjusted GFee { GT_MAXBD, LT_MAXBD, EQ_MAXBD }
6 BUBD Basis Points { GT_Z, LT_Z, EQ_Z, GT_SSBU, LT_SSBU,

EQ_SSBU, GT_URMP, LT_URMP, EQ_URMP,
GT_MAXBD, LT_MAXBD, EQ_MAXBD }

7 Investor Pass Thru Rate
8 Seller Specified Buy Up (SSBU) { GT_MAXBU, LT_MAXBU, EQ_MAXBU }
9 MAX BU
10 Seller Specified Buy Down

(SSBD)
{ GT_TGF, LT_TGF, EQ_TGF, GT_BUBDBP,
LT_BUBDBP, EQ_BUBDBP,

11 MAX BD
12 User Requested Max Buy Up

Among the 140 attributes of the loan, only the 12 partitions shown in Table 9 are

involved in the pricing calculations. Among these 12 partitions, only 6 partitions (1, 2, 5,

6, 8, and 10) influence the controllability of the pricing calculations. The remaining 6

partitions influence the observability of the calculations.

 58

5.1 Step #1: Input Space Partitioning

Test cases are derived based on the base choice, multiple-base choice, and pair-

wise coverage criteria taking the partitions that influence the controllability of the loan

pricing calculations. Values for the remaining partitions are prefixed with default values.

The base tests shown in Tables 10 and 11 are used to generate base choice tests and

multiple base choice tests with the help of a Java utility.

Table 10: Loan Pricing Base Test #1

BUBD
Request

Type

Loan
Type

Total
Adjusted

GFee

BUBD
Basis
points

Seller
Specified
Buy Up

Seller Specified
Buy Down

NLBUBD FIXED

GT_MAXBD

GT_MAXBU GT_Z GT_TGF

Table 11: Loan Pricing Base Test #2

BUBD
Request

Type

Loan
Type

Total
Adjusted

GFee

BUBD
Basis
points

Seller
Specified
Buy Up

Seller Specified
Buy Down

NLBUBD FIXED

GT_MAXBD GT_Z

GT_MAXBU GT_TGF

 59

5.1.1 Base Choice Coverage

Table 12 shows the base choice tests using base test #1.

Table 12: Loan Pricing Base Choice Tests

Test #
BUBD

Request
Type

Loan
Type

Total
Adjusted

GFee

BUBD Basis
Points

Seller
Specified
Buy Up

Seller
Specified Buy

Down

1 NLBUBD FIXED

GT_MAXBD GT_Z

GT_MAXBU GT_TGF

2 CLBU FIXED

GT_MAXBD GT_Z

GT_MAXBU GT_TGF

3 CLBD FIXED

GT_MAXBD GT_Z

GT_MAXBU GT_TGF

4 NONE FIXED

GT_MAXBD GT_Z

GT_MAXBU GT_TGF

5 LLBUBD ARM

GT_MAXBD GT_Z

GT_MAXBU GT_TGF

6 LLBUBD FIXED

LT_MAXBD GT_Z

GT_MAXBU GT_TGF

7 LLBUBD FIXED

EQ_MAXBD GT_Z

GT_MAXBU GT_TGF

8 LLBUBD FIXED

GT_MAXBD EQ_Z

GT_MAXBU GT_TGF

9 LLBUBD FIXED

GT_MAXBD LT_Z

GT_MAXBU GT_TGF

10 LLBUBD FIXED

GT_MAXBD GT_SSBU

GT_MAXBU GT_TGF

11 LLBUBD FIXED

GT_MAXBD LT_SSBU

GT_MAXBU GT_TGF

12 LLBUBD FIXED

GT_MAXBD EQ_SSBU

GT_MAXBU GT_TGF

13 LLBUBD FIXED

GT_MAXBD GT_URMP

GT_MAXBU GT_TGF

14 LLBUBD FIXED

GT_MAXBD LT_URMP

GT_MAXBU GT_TGF

15 LLBUBD FIXED

GT_MAXBD EQ_URMP

GT_MAXBU GT_TGF

16 LLBUBD FIXED

GT_MAXBD

GT_MAXBD

GT_MAXBU GT_TGF

17 LLBUBD FIXED

GT_MAXBD

LT_MAXBD

GT_MAXBU GT_TGF

18 LLBUBD FIXED

GT_MAXBD

EQ_MAXBD

GT_MAXBU GT_TGF

 60

Test #
BUBD

Request
Type

Loan
Type

Total
Adjusted

GFee

BUBD Basis
Points

Seller
Specified
Buy Up

Seller
Specified Buy

Down

19 LLBUBD FIXED

GT_MAXBD GT_Z

LT_MAXBU GT_TGF

20 LLBUBD FIXED

GT_MAXBD GT_Z

EQ_MAXBU GT_TGF

21 LLBUBD FIXED

GT_MAXBD GT_Z

GT_MAXBU LT_TGF

22 LLBUBD FIXED

GT_MAXBD GT_Z

GT_MAXBU EQ_TGF

23 LLBUBD FIXED

GT_MAXBD GT_Z

GT_MAXBU GT_BUBDBP

24 LLBUBD FIXED

GT_MAXBD GT_Z

GT_MAXBU LT_BUBDBP

25 LLBUBD FIXED

GT_MAXBD GT_Z

GT_MAXBU EQ_BUBDBP

26 LLBUBD

GT_MAXBD

GT_MAXBU GT_TGF FIXED GT_Z

5.1.2 Multiple Base Choice Coverage

The test cases in Table 13 are generated using multiple base choice coverage

criteria.

 61

Table 13: Loan Pricing Multiple Base Choice Tests

Test #
BUBD

Request
Type

Loan
Type

Total
Adjusted

GFee

BUBD Basis
Points

Seller
Specified
Buy Up

Seller
Specified Buy

Down

1 NLBUBD FIXED

GT_MAXBD GT_Z

GT_MAXBU GT_TGF

2 CLBU FIXED

GT_MAXBD GT_Z

GT_MAXBU GT_TGF

3 CLBD FIXED

GT_MAXBD GT_Z

GT_MAXBU GT_TGF

4 NONE FIXED

GT_MAXBD GT_Z

GT_MAXBU GT_TGF

5 LLBUBD ARM

GT_MAXBD GT_Z

GT_MAXBU GT_TGF

6 LLBUBD FIXED

LT_MAXBD GT_Z

GT_MAXBU GT_TGF

7 LLBUBD FIXED

EQ_MAXBD GT_Z

GT_MAXBU GT_TGF

8 LLBUBD FIXED

GT_MAXBD EQ_Z

GT_MAXBU GT_TGF

9 LLBUBD FIXED

GT_MAXBD LT_Z

GT_MAXBU GT_TGF

10 LLBUBD FIXED

GT_MAXBD GT_SSBU

GT_MAXBU GT_TGF

11 LLBUBD FIXED

GT_MAXBD LT_SSBU

GT_MAXBU GT_TGF

12 LLBUBD FIXED

GT_MAXBD EQ_SSBU

GT_MAXBU GT_TGF

13 LLBUBD FIXED

GT_MAXBD GT_URMP

GT_MAXBU GT_TGF

14 LLBUBD FIXED

GT_MAXBD LT_URMP

GT_MAXBU GT_TGF

15 LLBUBD FIXED

GT_MAXBD EQ_URMP

GT_MAXBU GT_TGF

16 LLBUBD FIXED

GT_MAXBD

GT_MAXBD

GT_MAXBU GT_TGF

17 LLBUBD FIXED

GT_MAXBD

LT_MAXBD

GT_MAXBU GT_TGF

18 LLBUBD FIXED

GT_MAXBD

EQ_MAXBD

GT_MAXBU GT_TGF

19 LLBUBD FIXED

GT_MAXBD GT_Z

LT_MAXBU GT_TGF

20 LLBUBD FIXED

GT_MAXBD GT_Z

EQ_MAXBU GT_TGF

21 LLBUBD FIXED

GT_MAXBD GT_Z

GT_MAXBU LT_TGF

 62

BUBD
Request

Type

Total
Adjusted

GFee

Seller
Specified
Buy Up

Seller
Specified Buy

Down

Loan
Type

BUBD Basis
Points Test #

GT_MAXBD

GT_MAXBU 22 LLBUBD FIXED GT_Z EQ_TGF

GT_MAXBD

GT_MAXBU 23 LLBUBD FIXED GT_Z GT_BUBDBP

GT_MAXBD

GT_MAXBU 24 LLBUBD FIXED GT_Z LT_BUBDBP

GT_MAXBD

GT_MAXBU 25 LLBUBD FIXED GT_Z EQ_BUBDBP

GT_MAXBD

GT_MAXBU 26 LLBUBD FIXED GT_Z GT_TGF

GT_MAXBD

GT_MAXBU 27 LLBUBD ARM GT_Z GT_TGF

GT_MAXBD

GT_MAXBU 28 CLBU ARM GT_Z GT_TGF

GT_MAXBD

GT_MAXBU 29 CLBD ARM GT_Z GT_TGF

GT_MAXBD

GT_MAXBU 30 NONE ARM GT_Z GT_TGF

GT_MAXBD

GT_MAXBU 31 NLBUBD FIXED GT_Z GT_TGF

LT_MAXBD

GT_MAXBU 32 NLBUBD ARM GT_Z GT_TGF

EQ_MAXBD

GT_MAXBU 33 NLBUBD ARM GT_Z GT_TGF

GT_MAXBD

GT_MAXBU 34 NLBUBD ARM EQ_Z GT_TGF

GT_MAXBD

GT_MAXBU 35 NLBUBD ARM LT_Z GT_TGF

GT_MAXBD

GT_MAXBU 36 NLBUBD ARM GT_SSBU GT_TGF

GT_MAXBD

GT_MAXBU 37 NLBUBD ARM LT_SSBU GT_TGF

GT_MAXBD

GT_MAXBU 38 NLBUBD ARM EQ_SSBU GT_TGF

GT_MAXBD

GT_MAXBU 39 NLBUBD ARM GT_URMP GT_TGF

GT_MAXBD 40 NLBUBD ARM LT_URMP

GT_MAXBU GT_TGF

41 NLBUBD ARM

GT_MAXBD EQ_URMP

GT_MAXBU GT_TGF

42 NLBUBD ARM

GT_MAXBD

GT_MAXBD

GT_MAXBU GT_TGF

43 NLBUBD ARM

GT_MAXBD

LT_MAXBD

GT_MAXBU GT_TGF

44 NLBUBD ARM

GT_MAXBD

EQ_MAXBD

GT_MAXBU GT_TGF

45 NLBUBD ARM

GT_MAXBD GT_Z

LT_MAXBU GT_TGF

 63

Test #
BUBD

Request
Type

Loan
Type

Total
Adjusted

GFee

BUBD Basis
Points

Seller
Specified
Buy Up

Seller
Specified Buy

Down

46 NLBUBD ARM

GT_MAXBD GT_Z

EQ_MAXBU GT_TGF

47 NLBUBD ARM

GT_MAXBD GT_Z

GT_MAXBU LT_TGF

48 NLBUBD ARM

GT_MAXBD GT_Z

GT_MAXBU EQ_TGF

49 NLBUBD ARM

GT_MAXBD GT_Z

GT_MAXBU GT_BUBDBP

50 NLBUBD ARM

GT_MAXBD GT_Z

GT_MAXBU LT_BUBDBP

51 NLBUBD ARM

GT_MAXBD GT_Z

GT_MAXBU EQ_BUBDBP

52 NLBUBD

GT_MAXBD

GT_MAXBU GT_TGF ARM GT_Z

5.1.3 Pair-Wise Coverage

Table 14 shows the pair-wise tests generated with the help of Bach’s PERL

utility.

 64

Table 14: Loan Pricing Pair-Wise Tests

Test

BUBD
Request

Type

Loan
Type

Total
Adjusted

GFee

BUBD
Basis
Points

Seller
Specified
Buy Up

Seller
Specified Buy

Down
1 NLBUBD ARM GT_maxBD GT_0 GT_maxBU GT_Tgfee
2 LLBUBD FIXED LT_maxBD GT_0 LT_maxBU LT_Tgfee
3 LLBUBD ARM EQ_maxBD EQ_0 EQ_maxBU GT_Tgfee
4 NLBUBD FIXED GT_maxBD EQ_0 LT_maxBU LT_Tgfee
5 CLBU FIXED LT_maxBD LT_0 GT_maxBU GT_Tgfee
6 CLBD ARM EQ_maxBD LT_0 EQ_maxBU LT_Tgfee
7 CLBU ARM EQ_maxBD GT_ssBU LT_maxBU EQ_Tgfee
8 CLBD FIXED LT_maxBD GT_ssBU EQ_maxBU GT_BUBDbp
9 NONE FIXED GT_maxBD LT_ssBU EQ_maxBU EQ_Tgfee

10 NLBUBD ARM EQ_maxBD LT_ssBU GT_maxBU GT_BUBDbp
11 NONE ARM LT_maxBD EQ_ssBU GT_maxBU LT_BUBDbp
12 NLBUBD FIXED EQ_maxBD EQ_ssBU EQ_maxBU EQ_BUBDbp
13 LLBUBD FIXED GT_maxBD GT_Urmp GT_maxBU LT_BUBDbp
14 CLBU ARM GT_maxBD GT_Urmp LT_maxBU EQ_BUBDbp
15 CLBD ARM LT_maxBD LT_Urmp GT_maxBU EQ_Tgfee
16 NONE FIXED EQ_maxBD LT_Urmp LT_maxBU GT_BUBDbp
17 CLBD FIXED GT_maxBD EQ_Urmp LT_maxBU LT_BUBDbp
18 LLBUBD ARM LT_maxBD EQ_Urmp GT_maxBU EQ_BUBDbp
19 CLBU FIXED EQ_maxBD GT_maxBD EQ_maxBU LT_BUBDbp
20 NONE ARM GT_maxBD GT_maxBD LT_maxBU GT_Tgfee
21 NLBUBD ARM LT_maxBD LT_maxBD GT_maxBU LT_Tgfee
22 LLBUBD FIXED GT_maxBD LT_maxBD EQ_maxBU GT_BUBDbp
23 CLBD FIXED EQ_maxBD EQ_maxBD GT_maxBU GT_Tgfee
24 NLBUBD ARM LT_maxBD EQ_maxBD EQ_maxBU EQ_Tgfee
25 LLBUBD ~FIXED EQ_maxBD GT_0 EQ_maxBU EQ_Tgfee
26 CLBU ~ARM LT_maxBD EQ_0 GT_maxBU GT_BUBDbp
27 NLBUBD ~ARM GT_maxBD LT_0 LT_maxBU LT_BUBDbp
28 NONE ~FIXED GT_maxBD GT_ssBU GT_maxBU EQ_BUBDbp
29 CLBU ~FIXED LT_maxBD LT_ssBU LT_maxBU LT_Tgfee
30 CLBD ~ARM GT_maxBD EQ_ssBU LT_maxBU LT_Tgfee
31 NONE ~ARM EQ_maxBD GT_Urmp EQ_maxBU LT_Tgfee
32 CLBU ~ARM GT_maxBD LT_Urmp EQ_maxBU EQ_BUBDbp
33 NONE ~FIXED EQ_maxBD EQ_Urmp EQ_maxBU GT_Tgfee
34 CLBD ~FIXED LT_maxBD GT_maxBD GT_maxBU EQ_BUBDbp
35 NONE ~FIXED EQ_maxBD LT_maxBD LT_maxBU EQ_Tgfee
36 LLBUBD ~ARM GT_maxBD EQ_maxBD LT_maxBU GT_BUBDbp
37 NLBUBD ~FIXED LT_maxBD GT_Urmp ~LT_maxBU GT_Tgfee
38 NONE ~ARM ~LT_maxBD GT_0 ~EQ_maxBU LT_BUBDbp
39 CLBD ~FIXED ~GT_maxBD EQ_0 ~GT_maxBU EQ_Tgfee
40 LLBUBD ~FIXED ~EQ_maxBD LT_0 ~LT_maxBU EQ_BUBDbp
41 LLBUBD ~ARM ~EQ_maxBD GT_ssBU ~GT_maxBU LT_Tgfee
42 CLBD ~ARM ~EQ_maxBD LT_ssBU ~LT_maxBU LT_BUBDbp
43 CLBU ~FIXED ~GT_maxBD EQ_ssBU ~EQ_maxBU GT_Tgfee

 65

Test

BUBD
Request

Type

Loan
Type

Total
Adjusted

GFee

BUBD
Basis
Points

Seller
Specified
Buy Up

Seller
Specified Buy

Down
44 LLBUBD ~FIXED ~LT_maxBD LT_Urmp ~LT_maxBU GT_Tgfee
45 CLBU ~ARM ~EQ_maxBD EQ_Urmp ~GT_maxBU LT_Tgfee
46 NLBUBD ~ARM ~GT_maxBD GT_maxBD ~EQ_maxBU LT_Tgfee
47 CLBU ~ARM ~LT_maxBD LT_maxBD ~EQ_maxBU LT_BUBDbp
48 NONE ~FIXED ~LT_maxBD EQ_maxBD ~GT_maxBU LT_BUBDbp
49 CLBD ~ARM ~GT_maxBD GT_0 ~LT_maxBU GT_BUBDbp
50 CLBU ~FIXED ~EQ_maxBD GT_0 ~GT_maxBU EQ_BUBDbp
51 NONE ~ARM ~LT_maxBD EQ_0 ~LT_maxBU EQ_BUBDbp
52 NONE ~ARM ~GT_maxBD LT_0 ~GT_maxBU EQ_Tgfee
53 NLBUBD ~FIXED ~LT_maxBD GT_ssBU ~EQ_maxBU LT_BUBDbp
54 LLBUBD ~FIXED ~GT_maxBD LT_ssBU ~EQ_maxBU EQ_BUBDbp
55 LLBUBD ~FIXED ~LT_maxBD EQ_ssBU ~GT_maxBU GT_BUBDbp
56 CLBD ~ARM ~LT_maxBD GT_Urmp ~EQ_maxBU EQ_Tgfee
57 NLBUBD ~FIXED ~EQ_maxBD LT_Urmp ~GT_maxBU LT_BUBDbp
58 NLBUBD ~FIXED ~GT_maxBD EQ_Urmp ~EQ_maxBU GT_BUBDbp
59 LLBUBD ~ARM ~EQ_maxBD GT_maxBD ~LT_maxBU EQ_Tgfee
60 CLBD ~ARM ~EQ_maxBD LT_maxBD ~LT_maxBU GT_Tgfee
61 CLBU ~ARM ~GT_maxBD EQ_maxBD ~EQ_maxBU LT_Tgfee
62 ~LLBUBD ~ARM ~EQ_maxBD EQ_0 ~EQ_maxBU LT_BUBDbp
63 ~CLBU ~FIXED ~LT_maxBD LT_0 ~EQ_maxBU GT_BUBDbp
64 ~NLBUBD ~FIXED ~GT_maxBD GT_ssBU ~LT_maxBU GT_Tgfee
65 ~CLBD ~ARM ~LT_maxBD LT_ssBU ~GT_maxBU GT_Tgfee
66 ~NLBUBD ~FIXED ~EQ_maxBD EQ_ssBU ~LT_maxBU EQ_Tgfee
67 ~NONE ~FIXED ~EQ_maxBD GT_Urmp ~GT_maxBU GT_BUBDbp
68 ~NONE ~ARM ~GT_maxBD LT_Urmp ~EQ_maxBU LT_Tgfee
69 ~CLBU ~ARM ~LT_maxBD EQ_Urmp ~LT_maxBU EQ_Tgfee
70 ~CLBD ~FIXED ~LT_maxBD GT_maxBD ~GT_maxBU GT_BUBDbp
71 ~CLBD ~FIXED ~GT_maxBD LT_maxBD ~GT_maxBU EQ_BUBDbp
72 ~NLBUBD ~FIXED ~EQ_maxBD EQ_maxBD ~LT_maxBU EQ_BUBDbp

5.2 Step #1: Modeling Technique

The requirements model generated 131 test cases. Most of these test cases are

redundant because the same flow of information is duplicated for Fixed, ARM, and

Balloon contracts. In the requirements modeling, the scope of the testable function

chosen is larger than that of ISP.

 66

5.3 Other Steps in the Process

Steps 2 to 8 are very similar to Case Study #3 (in the next chapter). Tests derived

using ISP and the modeling technique are updated with real values by replacing the

arbitrary values chosen in generating the tests. The simulator program is developed in

Java and tests are passed to the simulator to generate the expected results. The LPC

subsystem of the Selling System has the option of importing the maximum of 5000

(configurable) loans in bulk. All the tests are imported at the same time with no need for

automation to input these into the system. A comparator program is used to compare the

values expected from the spreadsheet and the actual results in the DB2 database. Results

and observations are discussed in Chapter 8.

 67

6 Case Study # 3: Amortization

The Amortization calculator is a modular section of code that calculates the

amortized cash flows of a given loan. Calculation the Loan Amortization requires the

following 11 steps.

1. Calculate Intermediate Results: This step calculates several intermediate

timing outputs (in months) from loan level data inputs. These intermediate

outputs will later be used as inputs to steps that follow.

2. Calculate Monthly Interest Rates: This step calculates the Monthly Interest

Rate used in later calculations.

3. Calculate Beginning Balances: This step calculates the unpaid principal

balance at the beginning of Period t .

4. Calculate Total Mortgage Payments: This step calculates the mortgage

payment in Period t .

5. Calculate Scheduled Interest Payments: This step calculates the portion of the

Total Mortgage Payment attributable to interest in Period t .

6. Calculate Scheduled Principal Payments: This step calculates the portion of

the Total Mortgage Payment attributable to principal in Period t .

7. Calculate Prepayments: This step calculates the value attributed to the

probability that the borrower will make a prepayment.

 68

8. Calculate Balloons: This step calculates a one-time balloon payment that only

occurs in the Final Cash Flow Period when Remaining Amortization Period is

greater than the Remaining Term.

9. Calculate Total Principal Cash Flows: This step calculates the total principal

paid in Period t .

10. Calculate Ending Balances: This step calculates the unpaid principal balance

at the end of Period t .

11. Calculate Weighted Average Life (WAL): This step calculates the measure of

how fast the principal is being paid back for a loan (in years).

This case study is a typical example of how different calculations will be

triggered upon the preceding conditions. There are a total of 15 calculations that follow

one another in a sequence and feed their outputs to the following calculator. Five of them

are preliminary calculations. The remaining 10 calculations occur recursively until the

end of the loan’s term. For example, the ending balance of the loan changes from month

to month, i.e. if the loan’s life is 30 years, the loan will have 360 installments and when

amortized it will have 360 records with varying ending balances for each month. For a

given loan, the same types of calculations occur 360 times. Therefore, when defining the

scope of each testable function, the loop is considered as one of the partitions and critical

characteristics of loops are included as the blocks.

6.1 Step #1: Input Space Partitioning

The amortization of whole loans, structured bonds, and unstructured bond

instruments are the scope of this use case. Each instrument consists of nearly 160

 69

attributes and receives the reference values such as interest rates from multiple grids for

the calculations.

Among the 160 attributes, the following are the 14 attributes (with their short

form in parentheses) which contribute to these calculations: loan type (LT1), prepayment

function (PPF2), conditional prepayment rate (CPR3), term cap (TC4), yield maintenance

cap (YMC5), mortgage note rate (MR6), unpaid principal balance (UPB7), loan age

(LA8), months to funding (MTF9), original term (OT10), original amortization period

(OAP11), original yield maintenance period (OYMP12), original interest only period

(OIOP13), and original amortization after interest only period (OAIOP14).

6.1.1 Testable Functions

All 16 calculations are treated as 16 testable functions for this case study. The

first 6 are the preliminary calculations, which means the values or outputs from these

calculations are necessary for the next 9 calculations. These are also called intermediate

calculations. The next 9 calculations are performed for each period of the loan until the

end of its term. The last calculator needs all the amortized values for each time period of

the loan’s term.

Preliminary Calculations

 Remaining term (RT-P1), remaining amortization period (RAP-P2), remaining

YM period (RYMP-P3), remaining IO period (RIOP-P4), final cash flow period (FCP-

P5), and prepay window (PPW-P6) are the preliminary calculations and they are

represented as short forms in parentheses. They are also represented as the abstract

outputs from these calculations, which are used in the final calculations.

 70

6.1.1.1 TF #1: Calculate Remaining Term (RT-PC1)

Table 15 shows the partitions and blocks for TF #1.

The partitions TC4, and LA8 have only one block. The value for the Term cap (TC4) is

pulled from the grids and the value for the loan age is always a constant value for a

particular business cycle.

Table 15: Partitions and Blocks for TF # 1

No Partitions Blocks
1 OT10 GT_TC4, LT_TC4, EQ_TC4
2 TC4 TC4
3 LA8 LA8

6.1.1.2 TF #2: Calculate Remaining Amortization Period (RAP-PC2)

Table 16 shows the partitions and blocks for TF #2.

Table 16: Partitions and Blocks for TF # 2

No Partitions Blocks
1 OOIP13 GT_0, EQ_0, LT_0
2 RIOP-P4 GT_0, EQ_0, LT_0
3 LA8 LA8

6.1.1.3 TF #3: Calculate Remaining Yield Maintenance Period (RYMP-PC3)

Table 17 shows the partitions and blocks for TF #3.

 71

Table 17: Partitions and Blocks for TF # 3

No Partitions Blocks
1 OYMP12 GT_YMC5, EQ_YMC5, LT_YMC5
2 YMC5 YMC5
3 LA8 LA8

6.1.1.4 TF #4: Calculate Remaining Interest Only Period (RIOP-PC4)

Table 18 shows the partitions and blocks for TF #4.

Table 18: Partitions and Blocks for TF # 4

No Partitions Blocks
1 OOIP13 EQ_0, GT_0
2 LA8 LA8

6.1.1.5 TF #5: Calculate Final Cash Flow Period (FCP-PC5)

This calculation does not have any preconditions. Table 19 shows the partitions

and blocks for TF #5.

Table 19: Partitions and Blocks for TF # 5

No Partitions Blocks
1 RT-PC1 RT-PC1
2 MTF9 MTF9

 72

6.1.1.6 TF #6: Calculate Prepayment Window (PPW-PC6)

This calculation does not have any preconditions. Table 20 shows the partitions

and blocks for TF #6. The output of TF #1 and TF # 3 are inputs to the two partitions of

this testable function.

Table 20: Partitions and Blocks for TF # 6

No Partitions Blocks
1 RT-PC1 RT-PC1
2 RYMP-PC3 RYMP-PC3

Loops

The calculations in the following 9 testable functions occur recursively to the end

of the instrument’s term starting from the current period in the term. Therefore, loop

characteristics such as initial period, current period, final period, and reference periods

with other partitions (greater than final cash flow period, less than, or equal to final cash

flow period) are included as the blocks for the partition “period.” This can be observed in

all of the following 9 testable functions from TF #7 to TF # 15.

The calculations in following testable functions occur in a sequence. Each

calculation in a testable function results in the output. The output is represented in a short

form in parentheses. Their output is eventually used in the following calculators, which

can be observed in their respective blocks and partitions.

 73

6.1.1.7 TF #7: Calculate Monthly Interest Rates (MIR-FC1)

Table 21 shows the partitions and blocks for TF #7. The output of TF #8: BB-FC2

is one of the inputs to this calculation.

Table 21: Partitions and Blocks for TF # 7

No Partitions Blocks
1 MR6 MR6
2 FCP-P5 FCP-P5
3 Period t GT_FCP-P5, LT_FCP-P5, EQ_FCP-P5, Period i , Period f

4 BB-FC2 BB-FC2

6.1.1.8 TF #8: Calculate Beginning Balances (BB-FC2)

Table 22 shows the partitions and blocks for TF # 8.

Table 22: Partitions and Blocks for TF # 8

No Partitions Blocks
1 FCP-P5 FCP-P5
2 MTF9 MTF9
3 UPB7 UPB7
4 Period t GT_FCP-P5, LT_FCP-P5, EQ_FCP-P5, GT_MTF9,

LT_MTF9, EQ_MTF9, EQ_MTF9+1, Period i , Period f

6.1.1.9 TF # 9: Calculate Total Mortgage Payments (TMP-FC3)

Table 23 shows the partitions and blocks for TF #9.

 74

Table 23: Partitions and Blocks for TF # 9

No Partitions Blocks
1 FCP-P5 FCP-P5
2 MTF9 MTF9
3 RIOP-P4 RIOP-P4
4 Period t GT_FCP-P5, LT_FCP-P5, EQ_FCP-P5, GT_(RIOP-P4

+MTF9+1), LT_(RIOP-P4 +MTF9+1), EQ_(RIOP-P4
+MTF9+1), Period i , Period f

5 MIR-FC1 MIR-FC1
6 BB-FC2 BB-FC2
7 RAP-PC2 RAP-PC2

6.1.1.10 TF # 10: Calculate Scheduled Interest Payments (SIP-FC4)

Table 24 shows the partitions and blocks for TF #10.

Table 24: Partitions and Blocks for TF # 10

No Partitions Blocks
1 MR6 MR6
2 FCP-P5 FCP-P5
3 Period t GT_FCP-P5, LT_FCP-P5, EQ_FCP-P5, Period i , Period f

4 MTF9 MTF9
5 BB-FC2 BB-FC2

6.1.1.11 TF # 11: Calculate Scheduled Principal Payments (SPP-FC5)

Table 25 shows the partitions and blocks for TF #11.

 75

Table 25: Partitions and Blocks for TF # 11

No Partitions Blocks
1 FCP-P5 FCP-P5
2 MTF9 MTF9
3 RIOP-P4 RIOP-P4
4 Period t GT_FCP-P5, LT_FCP-P5, EQ_FCP-P5, GT_(RIOP-P4

+MTF9+1), LT_(RIOP-P4 +MTF9+1), EQ_(RIOP-P4
+MTF9+1), Period i , Period f

5 SIP-FC4 SIP-FC4
6 TMP-FC3 TMP-FC3

6.1.1.12 TF # 12: Calculate Prepayments (PP-FC6)

Table 26 shows the partitions and blocks for TF #12.

Table 26: Partitions and Blocks for TF # 12

No Partitions Blocks
1 FCP-P5 FCP-P5
2 MTF9 MTF9
3 RYMP-P3 RYMP-P3
4 Period t GT_FCP-P5, LT_FCP-P5, EQ_FCP-P5, GT_(RYMP-P3

+MTF9), LT_(RYMP-P3 +MTF9), EQ_(RYMP-P3 +MTF9),
Period i , Period f

5 BB-FC2 BB-FC2
6 SIP-FC4 SIP-FC4
7 CPR3 CPR3

6.1.1.13 TF # 13: Calculate Balloons (BP-FC7)

Table 27 shows the partitions and blocks for TF #13.

 76

Table 27: Partitions and Blocks for TF # 13

No Partitions Blocks
1 FCP-P5 FCP-P5
2 Period t GT_FCP-P5, LT_FCP-P5, EQ_FCP-P5, Period i , Period f

3 UPB7 UPB7
4 SPP-FC5 SPP-FC5
5 PP-FC6 PP-FC6

6.1.1.14 TF #14: Calculate Total Principal Cash Flows (TPCF-FC8)

Table 28 shows the partitions and blocks for TF #14.

Table 28: Partitions and Blocks for TF # 14

No Partitions Blocks
1 FCP-P5 FCP-P5
2 Period t GT_FCP-P5, LT_FCP-P5, EQ_FCP-P5, Period i , Period f

3 SPP-FC5 SPP-FC5
4 PP-FC6 PP-FC6
5 BP-FC7 BP-FC7

6.1.1.15 TF # 15: Calculate Ending Balance (EB-FC9)

Table 29 shows the partitions and blocks for TF #15.

 77

Table 29: Partitions and Blocks for TF # 15

No Partitions Blocks
1 FCP-P5 FCP-P5
2 Period t GT_FCP-P5, LT_FCP-P5, EQ_FCP-P5, Period , Period i f

3 TPCF-FC8 TPCF-FC8
4 BB-FC2 BB-FC2

6.1.1.16 TF #16: Calculate WAL (WAL-FC10)

The following table shows the partitions and blocks for TF #16. The previous 9

calculations produce the values for all the terms of the instrument beginning from its

current period. Then this calculator averages all the beginning balances and calculates the

weighted average life (WAL) of a loan or an instrument. Therefore, the blocks for the

partition period consist of all the periods as shown in Table 30.

Table 30: Partitions and Blocks for TF # 16

No Partitions Blocks
1 BB-FC2 BB-FC2
2 Period t Period to Period i f

3 UPB7 UPB7

 78

6.1.2 Base Choice Coverage

The number of base choice tests from each testable function is as follows: TF #1,

3; TF #2, 5; TF #3, 3; TF #4, 2; TF #5, 1; TF #6, 1; TF #7, 5; TF #8, 9; TF #9, 8; TF #10,

5; TF #11, 8; TF #12, 8; TF #13, 5; TF #14, 5; TF #15, 5; and TF #16, 1. The total

number of base choice tests is 74.

The base choice tests are not shown because they are relatively simple and can be

easily understood from the blocks. In the majority of the testable functions, only the

period partition has more than one block, and the other partitions have only one value.

Domain knowledge is required to determine the values for the blocks. The invalid values

and invalid combinations for each partition are not considered, because the entities come

from other external systems and the project assumed that it would always receive valid

entities for amortization.

The period partition will have more blocks than are required to test the loop

conditions because the calculation at each period also depends on the final cash flow

period and remaining months to funding. For example, the calculator in the testable

function TF #13 uses a different formula to calculate balloons based on the current period

whether the period is greater than or less than the final cash flow period. Therefore, the

same inputs at different time periods result in different outputs.

6.1.3 Multiple Base Choice Coverage

The Multiple base choice coverage criterion does not offer any additional

coverage, as the partitions chosen are the same for all the instruments, such as whole

loans, structured bonds, and unstructured bonds. The same set of base choice tests can be

 79

cloned for all three types of instruments. Therefore, the multiple base choice coverage

criterion is not applied for this case study.

6.1.4 Pair-Wise Coverage

The pairwise coverage also does not offer any extra coverage. The constraints

among different blocks of the partitions are limited to two at the most. Base choice

coverage offers all the combinations in this case. Therefore the pair-wise coverage

criterion is not applied.

6.2 Step # 1 Modeling Technique

The modeling technique was not applied for this case study. At the time this case

study was conducted, the tool was not built.

6.3 Step # 2: Generating Test Requirements

The tests discussed in Section 6.1 are automatically generated using the Java

utility.

6.4 Step # 3: Generating Test Data

The abstract values chosen to generate the tests are replaced with the real values.

The other attributes for whole loans, structured, and unstructured bonds are prefixed to

the test cases to make them executable. Amortization is part of the asset valuations. Asset

valuations in Multifamily are calculated every month. Assets of three categories—whole

loans, structured bonds, and unstructured bonds—number in the thousands. When test

data is prefixed, all three categories are considered to produce test data with good

variation. Also, the same data is cloned to run the tests for different time periods such as

monthly, quarterly, and annually.

 80

6.5 Steps # 4 and 5: Building the Simulator and Inputting Test Data and

Collecting Expected Results

In this case study the simulator is built using VB macros in an MS-Excel

spreadsheet. This is one of the end user computing (EUC) application that needs to be

implemented as a robust system. All of these calculations are being performed using the

spreadsheets. The testing team used these spreadsheets as the simulators with some

changes. Although it eased the process of building the simulators, it came with a price, as

the test team went back and forth with the development team to determine whether the

output of the simulator was correct or that of the system-under-test. In some cases, output

of the simulator was proved correct.

Another challenge in generating the expected results is to pass the output of one

calculator to another calculator for the same period of the loan’s term. This process of

collecting the output for a term, and passing it as the input to another calculator for the

same term, is automated.

6.6 Steps # 6 and 7: Inputting Test Data Into System-Under-Test and Collecting

Actual Results

This application receives all the input data from external systems. In other words,

the system does have a user interface, but it prompts the user to enter a start date and an

end date for which valuations need to run for different kinds of instruments. The testing

team used SQL scripts to input test data into the database by satisfying all the database

entity constraints. When a user enters a start date, an end date, and runs the valuation, the

 81

system picks the data within the date range from the database, performs the calculations,

and stores the actual results into the database in different tables.

6.7 Step # 8: Comparing Actual and Expected Results

Actual results are pulled into a spreadsheet and the comparator program is run to

compare the actual and expected results. It took quite a few cycles to reconcile small

differences between expected and actual results. Most of these differences stemmed from

the previous implementation of the logic in Excel and the current implementation of the

logic in Java. The business team determined the tolerance levels and later results are

considered “Passes” if the differences are within the tolerance limits.

 82

7 Case Study # 4

Freddie Mac intends to change the methodology for amortizing GOs such that a

GO is amortized at the greater of the cumulative amortization calculated with the Static

Effective Yield (SEY) method or the cumulative amortization calculated with the

Declining UPB method. Specifications to calculate SEY IRR, which is used in GO

Amortization to calculate SEY amortization for pools and in segment reporting to

calculate SEY amortization for cohorts of whole loans, are described in the form of use

cases. A use case can be found in Appendix B of this thesis.

Specifications of this use case encompass many characteristics for the calculation

engines mentioned in Chapter 2 Section 2.4 of this thesis. The problem analysis is

conducted with the help of the standard framework recommended in this thesis.

Amortization calculation functions are recursive in nature.

7.1 Input Space Partitioning

This use case document has 9 sections. Sections 7 and 8 consist of the functional

requirements that are important for this case study. The other sections contain technical

and business details of the functionality such as introduction, references, description,

process flow diagrams, data elements, and table structures of the database.

 83

7.1.1 Testable Functions

SEY-IRR calculation methods choose the loan or any other structured instrument

for GO amortization or segment reporting, get the PSA values or prepayment factors, and

then perform the calculations. The testing team identified 8 testable functions, sections 7

and 8 of which are discussed in the following subsections 7.1.1 to 7.1.9.

7.1.1.1 TF # 1: Choose Instruments for GO Amortization

The testable function TF #1 covers the requirements described in 7.3.1, 7.3.3,

7.3.4, and 7.3.5.

Expected output: The testable function TF #1 should eliminate the invalid

instruments going into GO Amortization calculations.

The partitions and blocks for TF #1 are listed in Tables 31 and 32.

Table 31: SEY IRR - TF # 1 – Partitions and Blocks

Test # Partitions Blocks
1 Amortization Purpose GO_GAAP, INVALID_VALUE (*GO_GAAP)
2 Amortization Effective Begin

Date
First day of current GL cycle month (MON),
INVALID VALUE (*MON)

3 Date of Inception Month prior to current GL cycle month (MON - 1),
INVALID VALUE (*MON - 1)

4 Amortization Method SEY, *SEY
5 Original UPB Amount NULL, <=0, NOT NULL
6 Original Base Fee NULL, NOT NULL

 84

Table 32: SEY IRR - TF #1 Base Choice Tests

Test

Amortization
Purpose

Begin
Date

Inception
Date

Amortization
Method

Original
UPB

Original
Base Fee A/R

1 GO_GAAP MON MON – 1 SEY NOT NULL NOT
NULL

A

2 *GO_GAAP MON MON – 1 SEY NOT NULL NOT
NULL

R

3 GO_GAAP *MON MON – 1 SEY NOT NULL NOT
NULL

R

4 GO_GAAP MON *MON – 1 SEY NOT NULL NOT
NULL

R

5 GO_GAAP MON MON – 1 *SEY NOT NULL NOT
NULL

R

6 GO_GAAP MON MON – 1 SEY NULL NOT
NULL

R

7 GO_GAAP MON MON – 1 SEY <=0 NOT
NULL

R

8 GO_GAAP MON MON – 1 SEY NOT NULL NULL R

7.1.1.2 TF # 2: Choose Instruments for Segment Reporting

This testable function covers requirements described in 7.3.2, 7.3.3, 7.3.4, and

7.3.5.

Expected output: Testable function TF #2 should eliminate the invalid instruments

going for segment reporting.

Partitions and blocks for TF #2 are listed in Tables 33 and 34.

 85

Table 33: SEY IRR - TF #2 Partitions and Blocks

Test # Partitions Blocks
1 Amortization purpose SR, *SR
2 Amortization effective begin

date
First day of current GL cycle month (MON),
INVALID VALUE (*MON)

3 Date funding begin period date Month prior to current GL cycle month (MON-1),
INVALID VALUE (*MON-1)

4 Accounting level process name COHORT, *COHORT
5 Amortization method SEY, *SEY
6 Original UPB Amount NULL, <=0, NOT NULL
7 Original Base Fee NULL, NOT NULL

Table 34: SEY IRR - TF #2 Base Choice Tests

S # Amortization
Purpose

Begin
Date

Funding
Date

Accounting
Process

Amorti-
zation

Method
Original UPB Original

Base Fee A/R

1 GO_GAAP MON MON – 1 COHORT SEY NOT NULL NOT NULL A

2 *GO_GAAP MON MON – 1 COHORT SEY NOT NULL NOT NULL R

3 GO_GAAP *MON MON – 1 COHORT SEY NOT NULL NOT NULL R

4 GO_GAAP MON *MON – 1 COHORT SEY NOT NULL NOT NULL R

5 GO_GAAP MON MON – 1 *COHORT SEY NOT NULL NOT NULL R

6 GO_GAAP MON MON – 1 COHORT *SEY NOT NULL NOT NULL R

7 GO_GAAP MON MON – 1 COHORT SEY NULL NOT NULL R

8 GO_GAAP MON MON – 1 COHORT SEY <=0 NOT NULL R

9 GO_GAAP MON MON – 1 COHORT SEY NOT NULL NULL R

 86

7.1.1.3 TF # 3: Chose Prepayment Factors

This testable function covers the requirements described in 7.4.1, 7.4.2, and 7.4.3.

Expected output: Testable function TF #3 should choose the appropriate

prepayment factors for each instrument based on the instrument’s characteristics shown

as partitions in Table 35.

Partitions and blocks for TF #3 are shown in Tables 35 and 36.

Table 35: SEY IRR - TF # 3 Partitions and Blocks

S # Partitions Blocks
1 Amortization Effective Begin Date First day of current GL cycle month (MON),

INVALID VALUE (*MON)
2 CD Scenario Current CD, Non current CD
3 Prepayment Identifier = Prepayment ID of the chosen record, *PID

Table 36: SEY IRR - TF # 3 Base Choice Tests

S # Amortization Begin date CD Scenario Prepayment ID A / R
1 MON Current = PID A
2 *MON Current = PID R
3 MON Non Current CD = PID R
4 MON Current <> PID R

7.1.1.4

7.1.1.5 TF #4: Choose PSA - Speed Values

This testable function covers the requirements described in 7.5.1.

 87

Expected output: Testable function TF #4 should choose the appropriate PSA

speed values for each instrument based on the instrument’s characteristics shown as

partitions in Table 37.

Partitions and blocks for TF #4 are shown in Tables 37 and 38.

Table 37: SEY IRR - TF # 4 Partitions and Blocks

S # Partitions Blocks
1 Amortization Effective Begin Date First day of current GL cycle month (FD), *FD
2 Amortization Run Parameter Starts with PSA *PSA

Table 38: SEY IRR - TF #4 Base Choice Tests

S # Amortization Begin Date Amortization Run Parameter A/R
1 FD LIKE PSA% A
2 *FD LIKE PSA% R
3 FD *LIKE PSA% R

Loops

In the amortization, initial period, first period, current period, and final period of

the instrument are important. Unpaid principal balance (UPB) will be the original UPB

for the initial period. In many cases the amortization amount for the initial month will be

set to 0, for the convenience of the customer. Amortization starts a month after the

instrument is funded. Application of the SEY IRR calculation can occur at any time

 88

during the life of the loan, therefore, current period is an important block in this partition.

At the end of the final period, the amortization amount should be equal to 0.

Partitions and blocks for loops are shown in Table 39.

Table 39: SEY IRR Partitions and Blocks for Loops

S # Partitions Blocks
1 Current Period 0, First Period, Current Period, Final Period

The following 4 testable functions, TF #5, 6, 7, and 8, are calculation related. All

of these calculations are performed recursively for each time period of the instrument’s

life until the end time period. Therefore these 4 blocks should always be considered, at

minimum, for the loops.

7.1.1.6 TF #5: Calculate UPB - Prepayment Factor = NOT NULL

The testable function TF #5 covers the requirements described at 7.6.2.1 and

7.6.2.2.

Expected output: The system should calculate UPB and set default cash flow flag

= N.

Partitions and blocks for TF #5 are shown in Table 40.

 89

Table 40: SEY IRR - TF # 5 Partitions and Blocks

S # Partitions Blocks
1 UPB Value Value from TF # 1 or TF # 2
2 Prepayment factor < 0, > 1, Between 0 and 1

7.1.1.7 TF # 6: Calculate UPB Using PSA Speed Values - Prepayment Factor =

NULL

This testable function covers requirements described at 7.6.3.1, 7.6.3.2, and

7.6.3.3.

Expected output: The system should calculate UPB and set default cash flow flag

= Y.

Partitions and blocks for TF #6 are shown in Table 41.

Table 41: SEY IRR - TF #6 Partitions and Blocks

S # Partitions Blocks
1 Prepayment Factor Null
2 Original Term > 20 Years, < = 20 Years, NULL

7.1.1.8 TF #7: Calculate Cash Flow for Each Period

This testable function covers the requirement described at 7.6.6.

Expected output: The system calculates cash flow as follows:

 90

Cash flow = UPB or prior month – UPB of current month.

Partitions and blocks for TF #7 are shown in Table 42.

Table 42: SEY IRR - TF # 7 Partitions and Blocks

S # Partitions Blocks
1 Unpaid Principal Balance (UPB) UPB of prior month, UPB of current month

7.1.1.9 TF #8: Calculate SEY IRR for Each Period

This testable function covers the requirement described in 7.6.7.1.

Expected output: If SEY IRR value = NULL, < 0, or > 1, then generate an

exception with the error message.

7.1.2 Base Choice Coverage

Applying the base choice coverage criterion to TF #1 gives 8 base choice tests;

TF #2 gives 9 base choice tests. TF #3 and TF #4 cover the specifications for pulling the

current values from the grids and give 4 and 3 base choice tests respectively. The blocks

of these partitions mentioned in these testable functions should serve as search conditions

or where clauses combined with the ‘and’ operator in the SQL query. The number of base

choice tests for TF #5, 6, 7, and 8 are 3, 3, 1, and 1.

Calculations in TF #5, 6, 7, and 8 are recursive in nature, which means the same

calculations are performed repetitively beginning from the current period of the

instrument until the end of its life period.

 91

The base choice tests derived from TF #5, TF #6, TF #7, and TF #8 should be

tested for different time periods of the loan instrument. The blocks for this loop

characteristic are shown Table 43.

Table 43: Partitions and Blocks for loops

S # Partitions Blocks
1 Period 0, First Period, Current Period, Final Period

 Applying the base choice tests at the periods mentioned in Table 43 gives a total

of 12, 12, 4, and 4 base choice tests for the testable functions TF #5, TF #6, TF #7, and

TF #8.

7.1.3 Multiple Base Choice Coverage

The multiple base choice coverage criterion does not achieve any additional

coverage. Therefore this was not applied.

7.1.4 Pair-Wise Coverage

The pair-wise coverage criterion was not applied, as the blocks of the partitions

do not have complex dependencies. The combination of calculations with different time

periods of the loan’s term is tested with the help of base choice tests as mentioned in

Section 7.1.2: Base Choice Coverage.

7.2 Modeling Technique

The requirements are classified as 8 testable functions in the previous section of

this thesis. When modeling, the requirements are grouped together into 3 testable

 92

functions. Modeling produced 12 test cases. The modeling of these requirements and the

test cases are shown in Appendix B.

7.3 Application of the Framework

7.3.1 Step # 1: Identify the Functionality to Be Tested – Define Scope

In the first step, the requirements document is analyzed and the functionality to

test is identified. The document has 9 sections, but only sections 7 and 8 contain the

functional requirements. This step is to define the scope of the functionality.

7.3.2 Step # 2: Identify the Testable Functions

In this step testable functions are identified as discussed in subsections 7.1.1 to

7.1.9.

7.3.3 Step # 3: Identify the Entities and Attributes - Partitions

Requirements define how to select the whole loan instrument for amortization, as

well as segment reporting, and how to perform the calculations. The whole loan

instrument is identified as the entity and its attributes are identified. Partitions of this

entity are identified in TF #1, Section 7.1.1 and TF #2, Section 7.1.2. The loan instrument

has nearly 150 attributes, but only a few attributes are key to test the functionality

identified in Step #1.

7.3.4 Step # 4: Identify Distinct Values – Blocks

Distinct values for each partition, which are called blocks, are derived from the

requirements within each testable function. Partitions and blocks tables in Sections 7.1.1

to 7.1.9 show these distinct values.

 93

7.3.5 Step # 5: Apply Base Choice Criteria to Filter the Invalid Values

Calculations most often will be performed only with valid values, which means

testable functions related to the calculations are to be tested with valid values. The system

should reject the invalid records or entities and only accept the entities with valid values

and then perform the calculations. The Base choice criterion is applied to generate the

base choice tests, which are shown in the base choice tests tables in Sections 7.1.1 and

7.1.2. Each base choice test is tagged with the value A or R in the last column of these

tables. Tests tagged with A should be accepted by the system and test tagged with R

should be rejected by the system.

7.3.6 Steps # 6, 7, 8, and 9: Eliminate Invalid Values and Combinations

Steps 6, 7, 8, and 9 tell how to eliminate the invalid values and combinations.

Base choice criteria can be applied again only on the valid values. Pair-wise can be

applied to derive the tests for combinational requirements and multiple base choice

coverage criterion can be applied to derive the tests emphasizing different characteristics

of a partition.

In this case study, the base choice coverage criterion generates all the required

tests. This is because testable functions are chosen as small units. If there are

dependencies between only 2 partitions, base choice coverage can determine all the

combinations between the 2 partitions. Therefore, other coverage criteria are not applied.

 94

7.3.7 Step #10: Ensure the Functional Coverage With RTM

The RTM is built manually with requirements in the first column and the

corresponding base choice tests in the other column. All the testable requirements have at

least one test case and a majority of the requirements have more than one test case.

7.3.8 Steps # 11 and 12: Prefix the Test Cases and Provide Real Values

The test cases derived above have abstract values and only the active attributes

are chosen from 150 attributes of the loan instrument. In order to make these tests

executable, real values must be passed and the other values of the excluded attributes

should be prefixed. The test environment should be configured such that the system pulls

either PSA values from grids or uses prepayment factors for SEY-IRR calculations. The

test environment and data are configured appropriately.

7.3.9 Step #13: Build the Calculation Simulator

The calculation simulator is built using the spreadsheet functions and the expected

results are stored in the spreadsheet.

7.3.10 Step #14: Collect the Actual Results

The test cases derived in the earlier steps are executed against the system-under-

test. Actual results are stored in the database. SQL queries are written to collect the actual

results of the calculations from the database. The actual results are then copied into the

spreadsheet manually.

 95

7.3.11 Step # 15: Compare the Actual and Expected Results

The expected and actual results are stored in the spreadsheet. These values are

compared using spreadsheet functions with the loan identification number as the unique

key. The results are discussed in Chapter 8.

 96

8 Results

Each case study chosen for this thesis possesses different characteristics. They

differ in the nature of the calculations as well as in their implementations. In this section,

results of each case study are analyzed, and observations are documented. The

effectiveness of this approach is measured in terms of percentage of coverage on the

requirements as well as code.

The case studies documented here are only part of the entire applications on

which this approach is applied. The results obtained here refer only to the scope of the

functionality used for this thesis.

Martin, Ruud, and Veenendall (2000), Chapter 15 defines test “coverage” as a

measure of the degree to which the software has been exercised by the executed tests.

In this thesis, two types of coverage measures are used to determine the

effectiveness of the test cases: functional coverage and structural coverage. Functional

coverage is a measure of the number of functional requirements executed within the

testable function. Structural coverage is a proportional measure of the logical code

structures that are executed within the testable functions.

Functional coverage is evaluated from a requirements traceability matrix (RTM),

which is the list of requirements and their corresponding test cases. The RTM document

shows each requirement is covered by at least one test case.

The structural coverage is evaluated using jTest tool. However, it should be noted

that structural testing could often miss logical errors, so it is not safe to assume that better

 97

structural coverage equates to good quality software. The evaluation or measurement of

the structural coverage requires the use of tools called coverage analyzers or monitors.

Structural coverage analysis is a useful mechanism for identifying the gaps or the

redundancies in the test cases.

I had 2 limitations in determining the structural coverage: (1) I am not authorized to

the access the code and (2) the programs really cannot be isolated for the scope of this

case study.

Case study # 1 and 2 belongs to the Selling System that has ~1200 java files and

the size of the compiled code is ~600 MB.

Freddie Mac uses Parasoft’s jTest tool for unit testing. This tool offers the statistics

for only statement coverage and method coverage. Therefore, branch coverage is not

determined. The program’s logical correctness is determined by comparing the output of

the system-under-test and a simulator.

In addition, the defects logged in the defect management system were analyzed for

the past 8 releases and identified that this approach would have eliminated 75% of the

defects in the functionality of case study # 1 and 2.

8.1 Case Study #1: Contract Pricing

The ISP method was applied to derive the testable functions. This case study was

conducted in two stages. In the first stage, all the parameters or attributes of the entity

“Contract” were tested to validate their individual characteristics. Contract has 29

attributes. Base Choice (BC) coverage was applied assuming all the attributes are

independent and have no conflicts.

 98

In the second stage, attributes that only participate in the calculations were

isolated and then Base Choice, Multiple Base Choice, and Pair-Wise coverage criteria

were applied.

8.1.1 Requirements Coverage

Base choice coverage criterion produced 205 test cases. This feature has 89

requirements for business rules, 22 system-specific requirements, and 92 requirements to

generate error messages, for a total of 203 requirements. The application also has 22

requirements for different combinations of the attributes. The 205 test cases generated by

the BC criterion covered all of the 203 requirements. The tests also covered some of the

requirements more than once. Base choice tests also covered 8 of 22 combinational

requirements. The rest are covered by the pair-wise tests.

Base choice tests, multiple base choice tests, and pair-wise tests together offered

100% functional coverage of the requirements for the testable functions chosen to test

contract pricing.

8.1.2 Code Coverage

Contract pricing is chosen as one of the testable functions using the ISP

technique. Both implicit and explicit attributes for this testable function are identified.

Possible values are derived for each attribute. BC, MBC, and PW coverage criteria are

applied to derive the test cases. Requirements of this testable function are modeled using

the FTM tool. The number of test cases generated for each method is as follows: BC, 15;

MBC, 30; PW, 23; and Requirements Model, 27.

 99

Table 44: Case Study #1 - Statement Coverage Results

 Base
Choice

Multiple
Base

Choice
Pair-Wise Pair-Wise

– Refined
Requirements

Model

Number of Tests 15 30 23 23 27
SwapContractService
Coverage

86% 92% 85% 92% 92%

SwapContractCalculator
Coverage

85% 90% 79% 90% 82%

The following 6 Java programs contain the logic for this case study. The LOC for each

program appear in the parenthesis.

1. SwapBUBDDetail.java – (461 LOC)

2. SwapContractCalculator.java – (166 LOC)

3. SwapContractService.Java – (258 LOC)

4. SwapDetailPriceResult.java – (757 LOC)

5. SwapPriceResult.java – (1343 LOC)

6. SwapService.java – (4040 LOC)

In the above programs, program # 1 gets the inputs for calculations from buy-up and buy-

down (BUBD) grids. Program # 3 gets pricing attributes for the contract from LPC

subsystem. Program # 4 displays the pricing results on the user interface and # 5 save the

results in the database. Program # 6 distinguishes the swap contracts from cash contracts.

 100

In addition, there are other files in which contract attributes are defined and are

initialized. There are also separate programs that are initialized to catch the exceptions

and throw the error messages defined in the XML files. The statement coverage is

measured on the programs 2 and 3.

The contract entity has 203 business rules defined for its 29 attributes. There are 16

programs to handle the logic for the business rules.

ISP is applied in 2 stages for this case study. In the first stage, all the business rules are

verified using BC coverage and PW-coverage. Since this scope is not part of the

calculation engines, only the functional coverage of the tests is mentioned and not the

structural coverage.

The statement coverage achieved by the test cases from each method is shown in Table

44

8.1.3 Observations

Base choice coverage achieved good coverage of the functional requirements for

the characteristics defined for each and every attribute. Characteristics of these attributes

are validated at the client layer of the application, which means that the application filters

any invalid values for each attribute, before saving the entity in the database. This may

not be true in all cases, as the data for calculations will be received from external systems

that were implemented decades ago and may be defective.

Contracts are fundamentally of three types: Fixed Contract, Balloon Contract, or

ARM Contract. Fixed and Balloon contracts possess the same characteristics. Therefore,

 101

the MBC criterion is applied by choosing the value for Contract type as “Fixed” in base

test #1 and “ARM” in base test # 2.

When the implementation is inspected, the information flow for the Fixed and

ARM Contracts is the same for the most part. This is also clear from the coverage results,

as BC offered 86% of the coverage and MBC offered 92% of the coverage.

When the PW criterion was applied, the program generated the test cases with

“default” or “do not care” values after all the combinations of that attribute with others

were fulfilled. When a default value is accepted as the input, the coverage is 82%. When

the default value was replaced test case #16 by “FIXED,” it achieved 91% coverage.

When the individual characteristics of each attribute need to be tested, BC test

cases offer good coverage of the functional requirements. It is relatively easy to trace the

test cases to the requirements, as each characteristic defined for the attribute will have

one test case from BC.

The PW criterion does not help when the characteristics have a large number of

attributes because it is difficult to map the PW test cases to the requirements where

traceability is an important factor to determine the coverage. Using pair-wise is also

cumbersome, because mapping tests to the requirements is hard with too many partitions.

The pair-wise criterion definitely helps in reducing or eliminating the duplicate pairs of

inputs and hence is used to eliminate the constraints that do not coexist. If the

implementation is such that it will not allow these combinations to be input, then almost

all of the pair-wise tests become infeasible from a design perspective. Grindal, Offutt,

and Mellin (2006) proposed a submodel strategy to handle the constraints between the

 102

partitions. Later, I found it is more helpful than the pair-wise strategy. As mentioned

earlier, this case study is tested in 2 stages. In the first stage only, out of 230

requirements, base choice did not cover 16 requirements. Pair-wise covered these 16

requirements, but it took a very long time to filter these 16 from 172 pair-wise tests.

Instead of applying the pair-wise criterion, a submodel strategy would have helped.

8.2 Case Study #2: Loan Pricing

The ISP method is applied to determine the testable functions for the Loan Pricing

feature. The testable function in this feature has the following three entities involved:

Loan, Contract, and Master Commitment, which have 140, 29, and 35 attributes

respectively. Out of these only 6 attributes contribute to the calculations. BC, MBC, and

PW coverage criteria are applied to generate the test cases. The requirements of this

testable function are also modeled using the FTM tool. Coverage of these test cases

against the requirements as well as code are described in the following sections.

8.2.1 Requirements Coverage

Loan pricing functionality in this case study is captured in the form of a use case

that has one main flow, one alternate flow, and three exception flows. Other flows are

ignored for this case study. BC, MBC, and PW together covered 100% of the functional

requirements.

8.2.2 Code Coverage

Logic for loan pricing was captured in three Java classes namely,

SwapLoanService.java, SwapLoanCalculator.Java, and SwapLoanBase.java. The LOC

for each program are 549, 194, and 139 respectively.

 103

A method priceLoan () was added to SwapLoanService.java to receive the inputs

directly from the spreadsheet. Parasoft’s jTest tool was used to determine the code

coverage. The test configuration was created in the tool that takes the inputs from

spreadsheet. The tests were run using the inputs from BC, MBC, PW, and Requirements

Modeling. Java classes were modified/commented without altering the behavior of the

programs. Code coverage is shown in Table 45.

Table 45: Case Study #2 - Statement Coverage Results

 Base Choice Multiple Base
Choice Pair-Wise Requirements

Model
Number of Tests 26 52 72 131
Statement Coverage 86% 89% 92% 97%

8.2.3 Observations

Requirements coverage achieved by the BC and MBC are quite different, as the

loans are broadly classified as Fixed loans and ARM loans. Even though they share some

functional requirements, they are duplicated for the most part. Therefore, functional

coverage by the BC tests and the MBC tests are very different, even though code

coverage on same tests was only slightly higher with the MBC tests.

Attributes that are chosen in this testable function have a number of constraints.

The PW tests had good coverage, but have a lot of test cases when compared to BC. To

manually determine which pair-wise tests actually filled the gaps left by base choice

coverage took very long time.

 104

The requirements model generated 131 test cases. Most of these test cases are

redundant because the same flow of the information is duplicated for Fixed, ARM, and

Balloon contracts. In the requirements modeling, the testable function chosen has more

scope than the function considered for ISP.

8.3 Case Study #3

The testable function of the Amortization feature has very distinct characteristics.

For each loan or instrument, the system should generate amortized payments for every

month until the end of the loan’s life. This testable function involves a series of

calculations that occur sequentially; output of one calculation is sent to the next

calculation. When this testable function is considered, loops are isolated and tested

separately. The loop characteristics are considered as a separate testable function and are

tested separately.

8.3.1 Requirements Coverage

Base choice tests had good functional requirements coverage: 100% of the

functional requirements are covered with base choice tests.

8.3.2 Code Coverage

The base choice tests had statement coverage of 100%, as shown in Table 46.

The logic in this case study is captured in seven programs. It was relatively easy to

isolate the programs, as this is the new system. Among the seven programs, three are

related to declaration, initialization, and obtaining the data from the external systems.

Two programs capture the logic of persisting the amortized data to the database. The

 105

remaining two programs compute the amortization on different conditions. These two

programs had 1733 and 1521 LOC.

This entire application has ~80K LOC. This application has 630 base

choice tests for the entire functionality.

Table 46: Case Study #3 - Statement Coverage Results

 Base Choice Multiple Base
choice Pair-Wise Requirements

Model
Number of Tests 74 N/A N/A N/A
Statement Coverage 100% 0 0 0

8.3.3 Observations

This case study contains 16 different calculations that occur sequentially to

generate the final result. I did this case study in two ways: (a) all 16 calculators are

wrapped in a single testable function, and (b) each calculator is considered as one testable

function.

In the first case, I applied base choice, pair-wise, and multiple base choice

criteria. Each criterion achieved 20, 41, and 36 tests and 81%, 81%, and 68% of the

statement coverage. Although the pair-wise has a greater number of tests, they resulted in

infeasible tests. However, this method of choosing the testable function is not correct in

this type of calculation application.

 106

In the second case, I applied base choice criteria to all 16 testable functions. The

74 base choice tests not only achieved 100% functional coverage on requirements, but

also achieved 100% statement coverage.

8.4 Case Study #4

Specifications for this case study are very typical for the calculation engines as

discussed in Chapter 2 Section 2.4. Amortization calculations in this case study are

similar to those of Case Study #3. The framework recommended in the Chapter 10 of this

thesis is applied to validate whether the steps defined in the framework provide proper

guidance in applying ISP. The base choice tests alone offered the required coverage of

the requirements. Therefore, multiple base choice coverage and pair-wise coverage were

not applied.

8.4.1 Requirements Coverage

Base choice tests achieved 100% functional coverage of the requirements. The 8

testable functions have a total number of 32 base choice tests. The testable functions TF

#5, 6, 7, and 8 should be tested at different periods of the loop conditions. Therefore, 8

base choice tests of these testable functions should be repeated at the initial period, first

period, current period, and the final period of the loan instrument and they result in 32

tests. These 32 tests are in addition to 24 base choice tests of the testable functions TF #1,

2, 3, and 4, which covered all the functional requirements within the scope.

8.4.2 Code Coverage

Code coverage is summarized in Table 47.

 107

The logic in this case study is captured in three programs, excluding the programs

to access the data from external systems and save it to the database after processing.

These programs have 212, 1243, and 119 LOC.

 The total LOC is not known for this application.

Table 47: Case Study # 4 - Statement Coverage Results

 Base Choice Multiple Base
Choice Pair-Wise Requirements

Model
Number of Tests 56 N/A N/A N/A
Statement Coverage 100% 0 0 0

8.4.3 Observations

The 8 testable functions have a total of 32 base choice tests. The testable

functions TF #5, 6, 7, and 8 should be tested at different periods of the loop conditions.

Therefore, 8 base choice tests of these testable functions should be repeated at the initial

period, first period, current period, and the final period of the loan instrument and they

result in 32 tests.

The requirements were modeled with a different approach. The model produced

12 tests as shown in Appendix B. Because these test cases required a lot of rework in the

prefixing, later the idea of using the modeling to test this use case was dropped. However,

if the testable functions deduced in this case study are used for modeling, then modeling

would have certainly achieved good coverage.

 108

The systematic/methodical application of the standard framework defined in this

thesis simplified the complexity in analyzing the requirements. Base choice coverage not

only achieved complete coverage on the requirements, but also achieved 100% statement

coverage on the code.

 109

9 Advantage and Disadvantages

This chapter analyzes the results and observations of Chapter 8 and presents the

pros and cons of each method applied to test the calculation engines.

9.1 Pros and Cons of Modeling

Test models provide a straightforward representation of the requirements where a

testable function, particular response, or response subset is to be selected by evaluating

many related conditions. The test models are effective for revealing defects in their

implementation and their specification. They can also support test design at any scope,

from methods at the unit level to a system in its entirety. The FTM supports automated

generation of test cases. The following subsections explain the advantages and

disadvantages of modeling.

9.1.1 Advantages of Modeling

 Requirements modeling using FTM instantly generates the test cases from the

model. When modeled early in the life cycle, the requirements provide the test

analyst an idea of the number of test cases that need to be tested, which can be

used to measure or estimate the time needed to test.

 FTM helps to map the test cases to the requirements. The traceability of the

test cases to the specifications is simultaneously achieved along with the

modeling.

 110

 Audit requirements for the test cases are: (a) test cases should be repeatable,

(b) test cases should contain enough level of detail, and (c) test cases should

be mapped to the requirements. These 3 audit requirements are met using the

FTM.

 FTM allows users to mark the critical paths in a tree. These paths help in

identifying the regression testing suite or the smoke-testing suite.

 Models bring common understanding of the requirements among the business

analysts, the programmers, and the test analysts.

 When the requirements are changed, and when the changes are applied to the

tests, the FTM is designed to highlight the impacted paths, easing impact

analysis.

 When the relations or constraints among the attributes are modeled carefully,

modeling precludes unnecessary or infeasible combinations.

9.1.2 Disadvantages of Modeling

A model’s success largely depends on the following factors.

 Skill set: Modeling requires the personnel to understand software engineering

concepts in order to be efficient. For example, if the test analysts understand

different UML diagrams, it helps them to transform use cases, sequence

diagrams, and activity diagrams into test models using FTM, which in turn

helps them to derive test cases. In an environment where all the resources

including business analysts are used to conduct testing, it is optimal to expect

the required skill set.

 111

 Domain knowledge: The effectiveness of the test model largely depends on

the domain knowledge of the test analysts. For example, in Case Study #1 and

Case Study #2, the requirements state that a calculator should pull the price

values from grids. In this case, if the test analyst understands the domain and

nature of the application, this step can be ignored in modeling. It is difficult to

decide what to model and what to omit from modeling unless the modelers are

experienced and trained.

 Model’s inconsistency: In spite of the guidance on modeling, different test

analysts model the same requirements differently. In some cases test analysts

are obsessed with modeling, leading them to modeling analysis paralysis.

Analysis Paralysis is a term given to the situation where a team of otherwise

intelligent and well-meaning analysts enters into a phase of analysis that only

ends when the project is cancelled (Analysis Paralysis). In Case Study #2

users were unable to confine themselves to the scope of the testable function.

The model generated 131 test cases, but most of them are redundant.

 Consistency in practice: In large organizations, a consistent way of developing

the software is very important. Freddie Mac is hugely disadvantaged by

accounting mistakes in the past. The methodology and controls insist on

consistency in practice. Any new tool has to complement the existing tools.

TestManager is used to manage the test cases. Test cases generated by FTM

have to be translated into a format that the TestManager tool can understand.

Changes in requirements leads to changes in the test models, and therefore

 112

changes in test cases. This incurred an extra burden on the teams. Flux in the

requirements also leads to problems in maintaining the models. These

problems lead to less management support.

9.2 Pros and Cons of ISP

Case studies are discussed in Chapters 4, 5, 6, and 7. Chapter 8 details the results

and observations of the case studies. The following section explains the pros and cons of

the ISP technique.

9.2.1 Advantages of ISP

 Test analysts are knowledgeable about the fundamentals of the equivalence

partitioning, boundary value analysis, error guessing and other techniques of

black box testing. The ISP technique can easily be understood with such a

background.

 ISP gives good guidance when deriving the testable functions: Steps defined

in the recommended framework provide clear guidance on how to isolate the

set of requirements that can form a testable function. This method of

exploring the requirements unfolds the complexity in an application. For

example, in Case Study #4, although calculations appear to be receiving the

inputs from four different external systems, this analysis of identifying the

testable function simplified the complex look of the requirements.

 Test cases to satisfy different coverage criteria are automated. What is

established with the help of case studies is the fact that these test cases, when

executed, achieved good coverage of the requirements as well as the statement

 113

coverage. This coverage provided more assurance to adapt this framework and

implement the suggested approach.

 Test cases can be generated early in the cycle. Soon after the objects are

identified, entities are defined, and their relations are specified, test case

design can be started using this approach. In Case Study #2, test analysts

designed and completed the test cases even before developers completed

coding the requirements. Developers used these tests to test their

implementation in addition to their unit tests. When system testing is

conducted, fewer functional defects were found.

 It is easy to trace BC and MBC test cases to the requirements, which is the

essential part of Freddie Mac’s methodology.

 Freddie Mac’s methodology requires test cases to be repeatable, contain

enough level of detail, and then they should be mapped to the requirements.

Test cases derived using this technique satisfy the methodology requirements.

 The majority of the applications in Freddie Mac, or any other financial

service, are data intensive, which means the same scenario may need to be

executed by multiple sets of data. For example, Freddie Mac has hundreds of

products for Fixed and ARM categories. All of the products in each category

share most of their properties and differ in some. In many test cases derived

using the BC and MBC, the same requirement is covered more than once. In

this case, when the test cases need prefixing of the values, they are varied with

 114

different products. Therefore, not only are requirements well covered, but

tests have a rich variety in data.

 Controllability: The case studies discussed in this thesis show that test cases

derived using ISP offer good coverage not only of the requirements but also

on the code.

 Observability: When there are multiple calculations occurring in a series or in

parallel, all the requirements are broken into multiple testable functions for

each calculation. While generating the expected results, all the intermediate

values of the attributes are logged. The test team suggested the development

team follow the same approach, which means to save the intermediate values

of these variables into traces, while persisting the final values in the database.

This approach simplified the process of diagnosing the differences in expected

and actual results.

 Data aging: Test data that is used for one reporting cycle may not be useful for

another reporting cycle. For example, when a loan is created in the system in

January with the settlement date in April, the same loan data cannot be reused

to test the February month cycle. This problem is called data aging. In test

case design, only abstract values are used so that actual values can be applied

periodically and with the current data. Automation is also applied to keep the

data current. This approach simplified and resolved the data aging problem by

keeping the test case design abstract from passing the real values during the

test case design.

 115

 Changes in requirements: When the requirements were changed, the

traceability matrix allowed test analysts to quickly identify the impacted test

cases. As the entire process of test case design was automated, it became easy

to quickly generate a new set of test cases. The test analyst needed to simply

identify the impacted testable function, change the partitions and/or values in

the blocks to reflect the changes in requirements, and follow through the test

case design steps.

 Submodeling: If the constraints among the attributes in a testable function

span more than 2 attributes and their relations are complex in nature, then any

one of the following actions can be taken to reduce the complexity: (a) the

testable function can be further separated into small testable functions, or (b) a

subset of attributes in the testable function can be chosen to apply the

coverage criteria in the first stage, and in the second stage outputs of the first

stage can be tested in conjunction with the outputs of the second stage

(Grindal, Offutt, & Mellin, 2006).

 Business rules: A business rule is a requirement that is expressed in non-

procedural and non-technical form, which implies specific constraints on data

or business processes (i.e. valid values, calculations, timing ranges, etc.). The

base choice criterion is best suited to test the business rules. For example, in

Case Study #1, there are 180 business rules to test in a feature. The first part

of the case study demonstrates how effective and efficient ISP was at testing

the business rules. In another instance, where there are 1359 business rules,

 116

application of BC coverage criterion coupled with automation reduced the

testing cycle time from 5 business days to less than 2 hours. Also, the

maintenance time was reduced drastically.

 Business cycles testing: In some applications, all the calculations in an

application need to be tested for different business cycles: weekly, monthly,

quarterly, and annually. Test data, along with the environment, needs to be

changed to simulate these cycles. The ISP technique with automation offered

this dynamism with the test data, keeping the process compliant with audit

requirements.

9.2.2 Disadvantages of ISP

 The success of ISP largely depends on how well the testable functions are

identified and how discrete they are. For example, Case Study #3 considered

all the calculators as 1 single testable function instead of 11 testable functions.

When these 11 calculations are considered as individual testable functions,

they become very simple and straightforward. Case Study #4 demonstrates the

effectiveness of choosing testable function at a unit level.

 ISP generates a large number of test cases across the entire application. ISP is

more efficient if complemented by automation.

 The pair-wise criterion needs to be chosen carefully, otherwise more tests will

be invalid. It is difficult to determine which tests are invalid.

 117

10 Conclusions and Recommendations

10.1 Conclusion

Calculation engines are similar in their characteristics with respect to their

specifications, architecture, and implementation. In this thesis’s case studies, a common

observation is that not all the attributes of the entities are important for the calculations.

Problem analysis is the first step in finding the solution, and identifying the testable

functions is a critical part in the problem analysis. Complexity in testing the calculations

can be reduced by identifying the testable functions that are part of the calculations. A

testable function can be a single requirement or a set of requirements that can be tested as

a single unit. Each testable function should be independent of the other and should be

testable in isolation. Functional and structural coverage of the requirements largely

depends on the identified testable functions.

The framework recommended in Section 10.2 explains a way to identify the

testable functions. Using automation, these sets of testable functions can be executed at

once.

Thus, this thesis proposes a framework to test calculation engines. The framework

provides guidance on deriving the testable functions and deriving the test cases. Case

studies demonstrated the effectiveness of the approach by using common applications in

the calculation engines and covering different characteristics.

 118

• Case Study #1 explains how to isolate and test the calculation engines at

different layers.

• Case Study #2 demonstrates how to analyze and simplify the calculation

requirements and then how to test them.

• Case Study #3 demonstrates testing the very common amortization application

in the financial services industry using ISP and automation.

• Case Study #4 shows a practical application of this framework.

This thesis began with addressing the problem with the help of modeling

requirements. Although comparing the results of modeling with ISP was not an initial

goal, the ISP technique was found to be better and to produce more consistent results.

The outcome of the modeling approach largely depends on the skill set of the test analyst.

Systematic application of the technique to the problem is necessary. All four case

studies confirm that BC and MBC, if applied according to the steps defined in the

framework, offer good functional and structural coverage. It was also found that BC and

MBC cover a large number of combinations among the attributes.

In the case studies # 1 and # 2, the statement coverage gaps, are traced to the

exceptions. Programs handle the additional exceptions that are not in the scope of the

functionality under tests. But when inputs are derived using ISP, blocks for the

exceptions are not considered, as these exceptions are already filtered in the client layer.

The FTM framework is best applicable at the integration, system, and user

acceptance test levels. In Case Study #3, test inputs were derived in advance to the

coding and were given to the development team to satisfy these tests. This helped

 119

improve the software, as there were relatively few functional defects observed during

system testing.

Tests derived following this framework and using the BC or MBC coverage

criterion offer simple traceability to the requirements, which is an important requirement

in the Freddie Mac’s methodology.

This framework can easily be adapted to different development methodologies

such as waterfall, spiral model, and RAD.

In all the cases examined, this framework not only proved to be effective in terms

of coverage, but also very efficient. In Case Study #3, the entire application has 11 use

cases and the total number of tests is close to 600. The application first runs with these

600 tests with a clean pass. Subsequently this application is tested with monthly cycle

data that has 17,000 records with 0 defects. This entire process eventually was reduced to

0.5 days from 5 days.

10.2 Recommendations

The following framework, when used to test the calculation engines using the ISP

technique, achieved consistency and offered repeatability. The steps below describe the

process framework to test the calculation engines and extend the category partition

method framework defined by Ostrand and Balcer (1998).

Step 1 Problem analysis is a crucial part of the ISP. In the first step, identify the

problem to be addressed.

Step 2 Identify the testable functions. The testable functions could be a

calculation set, a characteristic of a single attribute, a set of

 120

characteristics of multiple attributes that can be tested together, a set of

conditions that triggers calculations, or a set of combination of values

that triggers calculations.

Step 3 Identify explicit and the implicit attributes of the testable function. Many

entities may take part in the testable function, but only a few attributes

influence the objective of the testable function.

Step 4 Identify all the possible distinct values that are both valid and invalid for

each attribute. Design specifications for the attributes of the testable

function can help identify these values. In this step, real values may not

be possible to consider. Therefore, any abstract values such as < 0, >0,

and =0 can be chosen as distinct values. Amortization calculations occur

recursively until the end of their term. Derive the blocks for loop

characteristics carefully. In addition, Grindal and Offutt’s (2007)

guidance on choosing the distinct values for the blocks using

equivalence partitioning and boundary value analysis helps in

determining the values.

Step 5 Apply the BC criteria with the invalid values and to derive the test cases

to test all the error conditions.

Step 6 After testing the invalid conditions, eliminate the invalid values from

each partition.

Step 7 Apply base choice, multiple base choice, and pair-wise coverage criteria

appropriately to the remaining valid values of each partition to generate

 121

test cases with the valid values. Constraints may exist among these valid

values. If the constraints exist only between 2 partitions, then base

choice criterion covers critical constraints. If constraints exist among

more than 2 partitions, then pair-wise criterion helps in reducing the

number of tests, but it is very cumbersome to identify which

combinations are valid. Grindal, Offutt, and Mellin (2006) suggested

different strategies for conflict handling. The submodels strategy is

relatively simple and easy to apply, and can be used in place of the pair-

wise criterion to test the constraints among the partitions.

Step 8 Analyze requirements in the testable function and then identify the

constraints among the partitions. These constraints can be of two types:

either two or more attributes can coexist together with certain values, or

they do not coexist.

Step 9 Test cases derived in Step 7 should be manually inspected for the

conditions described in Step 8. Test cases that cannot be used should be

excluded from the test suite or can be included as negative test cases.

Step 10 Ensure that test cases cover all the functional requirements in the

testable function with the help of the Requirements Traceability Matrix

(RTM). Each requirement can be covered by more than one test case by

applying different coverage criteria as mentioned in Step 7. If the

coverage is not sufficient, then choose more values for each partition

and repeat from Step 3 to Step 10.

 122

Step 11 Prefix the test cases with other attribute values that are trivial in this

testable function but are required to execute the test case. In Step 3, if

any of the other trivial attributes of the entities that are excluded in

deriving the test cases are described in Step 7, prefix the test cases with

these excluded attributes.

Step 12 Provide the real values for each attribute of the test cases, in place of

arbitrary values chosen in the Step 3. Now the test case becomes

executable.

Step 13 Build the calculation simulator, and then execute the test cases against

the simulator to derive expected results.

Step 14 Execute the test cases against the system-under-test and get the actual

results.

Step 15 Compare actual results with expected results to determine whether the

test case passes or fails.

10.3 Further Work

10.3.1 Automatic Generation of Test Data for ISP tests

Abstract values are used to generate the ISP tests. Later, real values are added in

place of arbitrary values. If the ranges of values for each partition/block and their

constraints of other values in different partitions/blocks are known, then automatic test

data generation is possible. If the automation is coupled with auto generation of the test

data, this will further improve the efficiency of testing the calculation engines.

 123

10.3.2 Filter the Conflicting Combinations Automatically

In the first two case studies, the pair-wise criterion is applied to derive the

combinatorial tests. In both the cases, a number of pair-wise tests are invalid and more

time is spent in filtering the valid tests from the pair-wise tests. I found it is more efficient

to apply the submodels strategy instead of pair-wise tests. Grindal, Offutt, and Mellon

(2006) discussed several strategies in managing the conflicts. The dependencies or

conflicts between the partitions can be identified and the tests can be filtered accordingly

using the automation.

10.3.3 Build the Tool With a User Interface

A Java utility was written to automatically generate the Base Choice and Multiple

Base Choice test cases. Bach’s PERL program is used to generate the pair-wise tests.

These utilities read the inputs from spreadsheet and write the outputs to spreadsheet or a

word processor. Freddie Mac’s methodology requires proper documentation of the

practice. A tool with the help of a user interface to define the partitions, blocks, and input

the values will greatly enhance and ease the process of deriving the test inputs. This

approach can then be incorporated in their test strategy.

10.3.4 Auto Detection of the Requirements Coverage and Building Traceability

Requirements within the scope of testing can be divided into multiple testable

functions. When a testable function is chosen to derive the test inputs, and if the

corresponding requirement numbers are associated with each test input, then functional

coverage of the requirements can be analyzed. For example, Bach’s PERL program

generates the test inputs along with the pairs of attributes that are covered in each test

 124

input. When the same requirement is covered multiple times, it will help in varying the

values of the inputs. For example, when the partition “product type” is covered multiple

times, different products—30 Y FIXED, 40 Y FIXED, etc.—are passed as real values.

This not only improves coverage, but also provides rich variation in the test data. At

present, this identification is done manually. Automating this detection of the coverage

could greatly enhance the testing efficiency.

10.3.5 Testable Functions as an Estimation Technique

Test analysts are able to quickly identify the testable functions after analyzing a

few use cases or a subset of the requirements. They are also able to recognize the testable

functions that can be tested and executed together. Derived testable functions can be

categorized as low, medium, and high by the number of characteristics of each attribute

and constraints among the attributes. It is possible to predict the number of test inputs for

each testable function. This information, if obtained early in the life cycle of the project,

could help estimate the testing efforts of the project.

 125

Appendix A. Modeling Outputs for Case Study # 1

125

126

127

128

129

AUC 5 - Main Flow: Scenario - 1
1. Branch: If Interest Rate Type = Fixed or Balloon (SS_FAP_1122)

2. Branch: If LLGfee Ind = Y and LLGfee Type = A-Minus

3. Step: Retrieve Gfee Rate, Buyup Max, A-Minus Buyup

4. Step: Set Remittance Type = GOLD i.e., 19 days

5. Step: Retrieve Gfee rate, Max BUYUP, Super ARC days, Remittance Cycle
option, Locked/Floating Indicator

6. Step: Retrieve Contract (LPC) Remittance Type

7. Branch: If Remittance Type = Remittance Cycle Option

8. Step: Set Remittance Adj = 0

9. Step: Calcualte Contract Max Buyup = MC Product Max Buy Up + Remittance
Adj

10. Branch: If Contract Max Buyup >12.5

11. Step: No change in Contract Max Buyup

12. Step: Calculate A-Minus contract Max Buyup = MC product A-Minus Max
Buyup

13. Branch: If A-Minus contract Max Buyup >25 bps (SS_FAP.123)

14. Step: Set A-Minus contract Max Buyup = User Requested A-Minus Max Buyup =
25 bps

AUC 5 - Main Flow: Scenario - 2

1. Branch: If Interest Rate Type = Fixed or Balloon (SS_FAP_1122)

2. Branch: If LLGfee Ind = Y and LLGfee Type = A-Minus

3. Step: Retrieve Gfee Rate, Buyup Max, A-Minus Buyup

4. Step: Set Remittance Type = GOLD i.e., 19 days

5. Step: Retrieve Gfee rate, Max BUYUP, Super ARC days, Remittance Cycle
option, Locked/Floating Indicator

6. Step: Retrieve Contract (LPC) Remittance Type

7. Branch: If Remittance Type = Remittance Cycle Option

 130

8. Step: Set Remittance Adj = 0

9. Step: Calcualte Contract Max Buyup = MC Product Max Buy Up + Remittance
Adj

10. Branch: If Contract Max Buyup >12.5

11. Step: No change in Contract Max Buyup

12. Step: Calculate A-Minus contract Max Buyup = MC product A-Minus Max
Buyup

13. Branch: If A-Minus contract Max Buyup <=25 bps

14. Step: Set User requested A-Minus Buyup = Calculated contract A-Minus Max
Buyup

AUC 5 - Main Flow: Scenario - 3

1. Branch: If Interest Rate Type = Fixed or Balloon (SS_FAP_1122)

2. Branch: If LLGfee Ind = Y and LLGfee Type = A-Minus

3. Step: Retrieve Gfee Rate, Buyup Max, A-Minus Buyup

4. Step: Set Remittance Type = GOLD i.e, 19 days

5. Step: Retrieve Gfee rate, Max BUYUP, Super ARC days, Remittance Cycle
option, Locked/Floating Indicator

6. Step: Retrieve Contract (LPC) Remittance Type

7. Branch: If Remittance Type = Remittance Cycle Option

8. Step: Set Remittance Adj = 0

9. Step: Calcualte Contract Max Buyup = MC Product Max Buy Up + Remittance
Adj

10. Branch: If Contract Max Buyup <=12.5

11. Step: Contract Max BuyUp = User Requested Max Buyup = MC Product Max
Buyup = 12.5bps

12. Step: Calculate A-Minus contract Max Buyup = MC product A-Minus Max
Buyup

13. Branch: If A-Minus contract Max Buyup >25 bps

 131

14. Step: Set A-Minus contract Max Buyup = User Requested A-Minus Max Buyup =
25 bps

AUC 5 - Main Flow: Scenario - 4

1. Branch: If Interest Rate Type = Fixed or Balloon (SS_FAP_1122)

2. Branch: If LLGfee Ind = Y and LLGfee Type = A-Minus

3. Step: Retrieve Gfee Rate, Buyup Max, A-Minus Buyup

4. Step: Set Remittance Type = GOLD i.e, 19 days

5. Step: Retrieve Gfee rate, Max BUYUP, Super ARC days, Remittance Cycle
option, Locked/Floating Indicator

6. Step: Retrieve Contract (LPC) Remittance Type

7. Branch: If Remittance Type = Remittance Cycle Option

8. Step: Set Remittance Adj = 0

9. Step: Calcualte Contract Max Buyup = MC Product Max Buy Up + Remittance
Adj

10. Branch: If Contract Max Buyup <=12.5

11. Step: Contract Max BuyUp = User Requested Max Buyup = MC Product Max
Buyup = 12.5bps

12. Step: Calculate A-Minus contract Max Buyup = MC product A-Minus Max
Buyup

13. Branch: If A-Minus contract Max Buyup <=25 bps

14. Step: Set User requested A-Minus Buyup = Calculated contract A-Minus Max
Buyup

AUC 5 - Main Flow: Scenario - 5

1. Branch: If Interest Rate Type = Fixed or Balloon (SS_FAP_1122)

2. Branch: If LLGfee Ind = Y and LLGfee Type = A-Minus

3. Step: Retrieve Gfee Rate, Buyup Max, A-Minus Buyup

4. Step: Set Remittance Type = GOLD i.e, 19 days

 132

5. Step: Retrieve Gfee rate, Max BUYUP, Super ARC days, Remittance Cycle
option, Locked/Floating Indicator

6. Step: Retrieve Contract (LPC) Remittance Type

7. Branch: If Remittance Type <> Remittance Cycle Option

8. Branch: If Remittance Option is Floating

9. Step: Retrive One day float value from Pricing parameter Table using pooling
prod. Id float type and contract date

10. Step: Calculate Remittance Adj = (Default Remittance days based on the product
- P/I No. of days)* float value

11. Step: Calculate Contract Adjusted Gfee = Base Gfee Rate - Remitence Adj

12. Step: Calcualte Contract Max Buyup = MC Product Max Buy Up + Remitence
Adj

13. Branch: If Contract Max Buyup >12.5

14. Step: No change in Contract Max Buyup

15. Step: Calculate A-Minus contract Max Buyup = MC product A-Minus Max
Buyup

16. Branch: If A-Minus contract Max Buyup >25 bps

17. Step: Set A-Minus contract Max Buyup = User Requested A-Minus Max Buyup =
25 bps

AUC 5 - Main Flow: Scenario - 6

1. Branch: If Interest Rate Type = Fixed or Balloon (SS_FAP_1122)

2. Branch: If LLGfee Ind = Y and LLGfee Type = A-Minus

3. Step: Retrieve Gfee Rate, Buyup Max, A-Minus Buyup

4. Step: Set Remittance Type = GOLD i.e, 19 days

5. Step: Retrieve Gfee rate, Max BUYUP, Super ARC days, Remittance Cycle
option, Locked/Floating Indicator

6. Step: Retrieve Contract (LPC) Remittance Type

7. Branch: If Remittance Type <> Remittance Cycle Option

 133

8. Branch: If Remittance Option is Floating

9. Step: Retrive One day float value from Pricing parameter Table using pooling
prod. Id float type and contract date

10. Step: Calculate Remittance Adj = (Default Remittance days based on the product
- P/I No. of days)* float value

11. Step: Calculate Contract Adjusted Gfee = Base Gfee Rate - Remitence Adj

12. Step: Calcualte Contract Max Buyup = MC Product Max Buy Up + Remitence
Adj

13. Branch: If Contract Max Buyup >12.5

14. Step: No change in Contract Max Buyup

15. Step: Calculate A-Minus contract Max Buyup = MC product A-Minus Max
Buyup

16. Branch: If A-Minus contract Max Buyup <=25 bps

17. Step: Set User requested A-Minus Buyup = Calculated contract A-Minus Max
Buyup

AUC 5 - Main Flow: Scenario - 7

1. Branch: If Interest Rate Type = Fixed or Balloon (SS_FAP_1122)

2. Branch: If LLGfee Ind = Y and LLGfee Type = A-Minus

3. Step: Retrieve Gfee Rate, Buyup Max, A-Minus Buyup

4. Step: Set Remittance Type = GOLD i.e, 19 days

5. Step: Retrieve Gfee rate, Max BUYUP, Super ARC days, Remittance Cycle
option, Locked/Floating Indicator

6. Step: Retrieve Contract (LPC) Remittance Type

7. Branch: If Remittance Type <> Remittance Cycle Option

8. Branch: If Remittance Option is Floating

9. Step: Retrive One day float value from Pricing parameter Table using pooling
prod. Id float type and contract date

10. Step: Calculate Remittance Adj = (Default Remittance days based on the product
- P/I No. of days)* float value

 134

11. Step: Calculate Contract Adjusted Gfee = Base Gfee Rate - Remitence Adj

12. Step: Calcualte Contract Max Buyup = MC Product Max Buy Up + Remitence
Adj

13. Branch: If Contract Max Buyup <=12.5

14. Step: Contract Max BuyUp = User Requested Max Buyup = MC Product Max
Buyup = 12.5bps

15. Step: Calculate A-Minus contract Max Buyup = MC product A-Minus Max
Buyup

16. Branch: If A-Minus contract Max Buyup >25 bps

17. Step: Set A-Minus contract Max Buyup = User Requested A-Minus Max Buyup =
25 bps

AUC 5 - Main Flow: Scenario - 8

1. Branch: If Interest Rate Type = Fixed or Balloon (SS_FAP_1122)

2. Branch: If LLGfee Ind = Y and LLGfee Type = A-Minus

3. Step: Retrieve Gfee Rate, Buyup Max, A-Minus Buyup

4. Step: Set Remittance Type = GOLD i.e, 19 days

5. Step: Retrieve Gfee rate, Max BUYUP, Super ARC days, Remittance Cycle
option, Locked/Floating Indicator

6. Step: Retrieve Contract (LPC) Remittance Type

7. Branch: If Remittance Type <> Remittance Cycle Option

8. Branch: If Remittance Option is Floating

9. Step: Retrive One day float value from Pricing parameter Table using pooling
prod. Id float type and contract date

10. Step: Calculate Remittance Adj = (Default Remittance days based on the product
- P/I No. of days)* float value

11. Step: Calculate Contract Adjusted Gfee = Base Gfee Rate - Remitence Adj

12. Step: Calcualte Contract Max Buyup = MC Product Max Buy Up + Remitence
Adj

13. Branch: If Contract Max Buyup <=12.5

 135

14. Step: Contract Max BuyUp = User Requested Max Buyup = MC Product Max
Buyup = 12.5bps

15. Step: Calculate A-Minus contract Max Buyup = MC product A-Minus Max
Buyup

16. Branch: If A-Minus contract Max Buyup <=25 bps

17. Step: Set User requested A-Minus Buyup = Calculated contract A-Minus Max
Buyup

AUC 5 - Main Flow: Scenario - 9

1. Branch: If Interest Rate Type = Fixed or Balloon (SS_FAP_1122)

2. Branch: If LLGfee Ind = Y and LLGfee Type = A-Minus

3. Step: Retrieve Gfee Rate, Buyup Max, A-Minus Buyup

4. Step: Set Remittance Type = GOLD i.e, 19 days

5. Step: Retrieve Gfee rate, Max BUYUP, Super ARC days, Remittance Cycle
option, Locked/Floating Indicator

6. Step: Retrieve Contract (LPC) Remittance Type

7. Branch: If Remittance Type <> Remittance Cycle Option

8. Branch: If Remittance Option is Locked

9. Step: Retrive One day float value from GFEE Table using pooling prod. Id, float
type and locked date

10. Step: Calculate Remittance Adj = (Default Remittance days based on the product
- P/I No. of days)* float value

11. Step: Calculate Contract Adjusted Gfee = Base Gfee Rate - Remitence Adj

12. Step: Calcualte Contract Max Buyup = MC Product Max Buy Up + Remitence
Adj

13. Branch: If Contract Max Buyup >12.5

14. Step: No change in Contract Max Buyup

15. Step: Calculate A-Minus contract Max Buyup = MC product A-Minus Max
Buyup

16. Branch: If A-Minus contract Max Buyup >25 bps

 136

17. Step: Set A-Minus contract Max Buyup = User Requested A-Minus Max Buyup =
25 bps

AUC 5 - Main Flow: Scenario - 10

1. Branch: If Interest Rate Type = Fixed or Balloon (SS_FAP_1122)

2. Branch: If LLGfee Ind = Y and LLGfee Type = A-Minus

3. Step: Retrieve Gfee Rate, Buyup Max, A-Minus Buyup

4. Step: Set Remittance Type = GOLD i.e, 19 days

5. Step: Retrieve Gfee rate, Max BUYUP, Super ARC days, Remittance Cycle
option, Locked/Floating Indicator

6. Step: Retrieve Contract (LPC) Remittance Type

7. Branch: If Remittance Type <> Remittance Cycle Option

8. Branch: If Remittance Option is Locked

9. Step: Retrive One day float value from GFEE Table using pooling prod. Id, float
type and locked date

10. Step: Calculate Remittance Adj = (Default Remittance days based on the product
- P/I No. of days)* float value

11. Step: Calculate Contract Adjusted Gfee = Base Gfee Rate - Remitence Adj

12. Step: Calcualte Contract Max Buyup = MC Product Max Buy Up + Remitence
Adj

13. Branch: If Contract Max Buyup >12.5

14. Step: No change in Contract Max Buyup

15. Step: Calculate A-Minus contract Max Buyup = MC product A-Minus Max
Buyup

16. Branch: If A-Minus contract Max Buyup <=25 bps

17. Step: Set User requested A-Minus Buyup = Calculated contract A-Minus Max
Buyup

AUC 5 - Main Flow: Scenario - 11

1. Branch: If Interest Rate Type = Fixed or Balloon (SS_FAP_1122)

 137

2. Branch: If LLGfee Ind = Y and LLGfee Type = A-Minus

3. Step: Retrieve Gfee Rate, Buyup Max, A-Minus Buyup

4. Step: Set Remittance Type = GOLD i.e, 19 days

5. Step: Retrieve Gfee rate, Max BUYUP, Super ARC days, Remittance Cycle
option, Locked/Floating Indicator

6. Step: Retrieve Contract (LPC) Remittance Type

7. Branch: If Remittance Type <> Remittance Cycle Option

8. Branch: If Remittance Option is Locked

9. Step: Retrive One day float value from GFEE Table using pooling prod. Id, float
type and locked date

10. Step: Calculate Remittance Adj = (Default Remittance days based on the product
- P/I No. of days)* float value

11. Step: Calculate Contract Adjusted Gfee = Base Gfee Rate - Remitence Adj

12. Step: Calcualte Contract Max Buyup = MC Product Max Buy Up + Remitence
Adj

13. Branch: If Contract Max Buyup <=12.5

14. Step: Contract Max BuyUp = User Requested Max Buyup = MC Product Max
Buyup = 12.5bps

15. Step: Calculate A-Minus contract Max Buyup = MC product A-Minus Max
Buyup

16. Branch: If A-Minus contract Max Buyup >25 bps

17. Step: Set A-Minus contract Max Buyup = User Requested A-Minus Max Buyup =
25 bps

AUC 5 - Main Flow: Scenario - 12

1. Branch: If Interest Rate Type = Fixed or Balloon (SS_FAP_1122)

2. Branch: If LLGfee Ind = Y and LLGfee Type = A-Minus

3. Step: Retrieve Gfee Rate, Buyup Max, A-Minus Buyup

4. Step: Set Remittance Type = GOLD i.e, 19 days

 138

5. Step: Retrieve Gfee rate, Max BUYUP, Super ARC days, Remittance Cycle
option, Locked/Floating Indicator

6. Step: Retrieve Contract (LPC) Remittance Type

7. Branch: If Remittance Type <> Remittance Cycle Option

8. Branch: If Remittance Option is Locked

9. Step: Retrive One day float value from GFEE Table using pooling prod. Id, float
type and locked date

10. Step: Calculate Remittance Adj = (Default Remittance days based on the product
- P/I No. of days)* float value

11. Step: Calculate Contract Adjusted Gfee = Base Gfee Rate - Remitence Adj

12. Step: Calcualte Contract Max Buyup = MC Product Max Buy Up + Remitence
Adj

13. Branch: If Contract Max Buyup <=12.5

14. Step: Contract Max BuyUp = User Requested Max Buyup = MC Product Max
Buyup = 12.5bps

15. Step: Calculate A-Minus contract Max Buyup = MC product A-Minus Max
Buyup

16. Branch: If A-Minus contract Max Buyup <=25 bps

17. Step: Set User requested A-Minus Buyup = Calculated contract A-Minus Max
Buyup

AUC 5 - Main Flow: Scenario - 13

1. Branch: If Interest Rate Type = Fixed or Balloon (SS_FAP_1122)

2. Branch: If LLGfee Ind = N and LLGfee Type = Not A-Minus

3. Step: Retrieve Gfee Rate, Buyup Max

4. Step: Set Remittance Type = GOLD i.e, 19 days

5. Step: Retrieve Gfee rate, Max BUYUP, Super ARC days, Remittance Cycle
option, Locked/Floating Indicator

6. Step: Retrieve Contract (LPC) Remittance Type

7. Branch: If Remittance Type = Remittance Cycle Option

 139

8. Step: Set Remittance Adj = 0

9. Step: Calcualte Contract Max Buyup = MC Product Max Buy Up + Remitence
Adj

10. Branch: If Contract Max Buyup >12.5

11. Step: No change in Contract Max Buyup

AUC 5 - Main Flow: Scenario - 14
1. Branch: If Interest Rate Type = Fixed or Balloon (SS_FAP_1122)

2. Branch: If LLGfee Ind = N and LLGfee Type = Not A-Minus

3. Step: Retrieve Gfee Rate, Buyup Max

4. Step: Set Remittance Type = GOLD i.e, 19 days

5. Step: Retrieve Gfee rate, Max BUYUP, Super ARC days, Remittance Cycle
option, Locked/Floating Indicator

6. Step: Retrieve Contract (LPC) Remittance Type

7. Branch: If Remittance Type = Remittance Cycle Option

8. Step: Set Remittance Adj = 0

9. Step: Calcualte Contract Max Buyup = MC Product Max Buy Up + Remitence
Adj

10. Branch: If Contract Max Buyup <=12.5

11. Step: Contract Max BuyUp = User Requested Max Buyup = MC Product Max
Buyup = 12.5bps

AUC 5 - Main Flow: Scenario - 15

1. Branch: If Interest Rate Type = Fixed or Balloon (SS_FAP_1122)

2. Branch: If LLGfee Ind = N and LLGfee Type = Not A-Minus

3. Step: Retrieve Gfee Rate, Buyup Max

4. Step: Set Remittance Type = GOLD i.e, 19 days

5. Step: Retrieve Gfee rate, Max BUYUP, Super ARC days, Remittance Cycle
option, Locked/Floating Indicator

 140

6. Step: Retrieve Contract (LPC) Remittance Type

7. Branch: If Remittance Type <> Remittance Cycle Option

8. Branch: If Remittance Option is Floating

9. Step: Retrive One day float value from Pricing parameter Table using pooling
prod. Id float type and contract date

10. Step: Calculate Remittance Adj = (Default Remittance days based on the product
- P/I No. of days)* float value

11. Step: Calculate Contract Adjusted Gfee = Base Gfee Rate - Remitence Adj

12. Step: Calcualte Contract Max Buyup = MC Product Max Buy Up + Remitence
Adj

13. Branch: If Contract Max Buyup >12.5

14. Step: No change in Contract Max Buyup

AUC 5 - Main Flow: Scenario - 16
1. Branch: If Interest Rate Type = Fixed or Balloon (SS_FAP_1122)

2. Branch: If LLGfee Ind = N and LLGfee Type = Not A-Minus

3. Step: Retrieve Gfee Rate, Buyup Max

4. Step: Set Remittance Type = GOLD i.e, 19 days

5. Step: Retrieve Gfee rate, Max BUYUP, Super ARC days, Remittance Cycle
option, Locked/Floating Indicator

6. Step: Retrieve Contract (LPC) Remittance Type

7. Branch: If Remittance Type <> Remittance Cycle Option

8. Branch: If Remittance Option is Floating

9. Step: Retrive One day float value from Pricing parameter Table using pooling
prod. Id float type and contract date

10. Step: Calculate Remittance Adj = (Default Remittance days based on the product
- P/I No. of days)* float value

11. Step: Calculate Contract Adjusted Gfee = Base Gfee Rate - Remitence Adj

 141

12. Step: Calcualte Contract Max Buyup = MC Product Max Buy Up + Remitence
Adj

13. Branch: If Contract Max Buyup <=12.5

14. Step: Contract Max BuyUp = User Requested Max Buyup = MC Product Max
Buyup = 12.5bps

AUC 5 - Main Flow: Scenario - 17

1. Branch: If Interest Rate Type = Fixed or Balloon (SS_FAP_1122)

2. Branch: If LLGfee Ind = N and LLGfee Type = Not A-Minus

3. Step: Retrieve Gfee Rate, Buyup Max

4. Step: Set Remittance Type = GOLD i.e, 19 days

5. Step: Retrieve Gfee rate, Max BUYUP, Super ARC days, Remittance Cycle
option, Locked/Floating Indicator

6. Step: Retrieve Contract (LPC) Remittance Type

7. Branch: If Remittance Type <> Remittance Cycle Option

8. Branch: If Remittance Option is Locked

9. Step: Retrive One day float value from GFEE Table using pooling prod. Id, float
type and locked date

10. Step: Calculate Remittance Adj = (Default Remittance days based on the product
- P/I No. of days)* float value

11. Step: Calculate Contract Adjusted Gfee = Base Gfee Rate - Remitence Adj

12. Step: Calcualte Contract Max Buyup = MC Product Max Buy Up + Remitence
Adj

13. Branch: If Contract Max Buyup >12.5

14. Step: No change in Contract Max Buyup

AUC 5 - Main Flow: Scenario - 18
1. Branch: If Interest Rate Type = Fixed or Balloon (SS_FAP_1122)

2. Branch: If LLGfee Ind = N and LLGfee Type = Not A-Minus

3. Step: Retrieve Gfee Rate, Buyup Max

 142

4. Step: Set Remittance Type = GOLD i.e, 19 days

5. Step: Retrieve Gfee rate, Max BUYUP, Super ARC days, Remittance Cycle
option, Locked/Floating Indicator

6. Step: Retrieve Contract (LPC) Remittance Type

7. Branch: If Remittance Type <> Remittance Cycle Option

8. Branch: If Remittance Option is Locked

9. Step: Retrive One day float value from GFEE Table using pooling prod. Id, float
type and locked date

10. Step: Calculate Remittance Adj = (Default Remittance days based on the product
- P/I No. of days)* float value

11. Step: Calculate Contract Adjusted Gfee = Base Gfee Rate - Remitence Adj

12. Step: Calcualte Contract Max Buyup = MC Product Max Buy Up + Remitence
Adj

13. Branch: If Contract Max Buyup <=12.5

14. Step: Contract Max BuyUp = User Requested Max Buyup = MC Product Max
Buyup = 12.5bps

AUC 5 - Main Flow: Scenario - 19

1. Branch: If Interest Rate Type = ARM

2. Branch: If LLGfee Ind = Y and LLGfee Type = A-Minus

3. Step: Retrieve Gfee Rate, Buyup Max, A-Minus Buyup

4. Step: Set Remittance Type = 1st Tuesday i.e, 31.4 days

5. Step: Retrieve Gfee rate, Max BUYUP, Super ARC days, Remittance Cycle
option, Locked/Floating Indicator

6. Step: Retrieve Contract (LPC) Remittance Type

7. Branch: If Remittance Type = Remittance Cycle Option

8. Step: Set Remittance Adj = 0

9. Step: Contract Max BuyUp = User Requested Max Buyup = MC Product Max
Buyup = 12.5bps

 143

10. Step: Calculate A-Minus contract Max Buyup = MC product A-Minus Max
Buyup

11. Branch: If A-Minus contract Max Buyup >25 bps

12. Step: Set A-Minus contract Max Buyup = User Requested A-Minus Max Buyup =
25 bps

AUC 5 - Main Flow: Scenario - 20

1. Branch: If Interest Rate Type = ARM

2. Branch: If LLGfee Ind = Y and LLGfee Type = A-Minus

3. Step: Retrieve Gfee Rate, Buyup Max, A-Minus Buyup

4. Step: Set Remittance Type = 1st Tuesday i.e, 31.4 days

5. Step: Retrieve Gfee rate, Max BUYUP, Super ARC days, Remittance Cycle
option, Locked/Floating Indicator

6. Step: Retrieve Contract (LPC) Remittance Type

7. Branch: If Remittance Type = Remittance Cycle Option

8. Step: Set Remittance Adj = 0

9. Step: Contract Max BuyUp = User Requested Max Buyup = MC Product Max
Buyup = 12.5bps

10. Step: Calculate A-Minus contract Max Buyup = MC product A-Minus Max
Buyup

11. Branch: If A-Minus contract Max Buyup <=25 bps

12. Step: Set User requested A-Minus Buyup = Calculated contract A-Minus Max
Buyup

AUC 5 - Main Flow: Scenario - 21

1. Branch: If Interest Rate Type = ARM

2. Branch: If LLGfee Ind = Y and LLGfee Type = A-Minus

3. Step: Retrieve Gfee Rate, Buyup Max, A-Minus Buyup

4. Step: Set Remittance Type = 1st Tuesday i.e, 31.4 days

 144

5. Step: Retrieve Gfee rate, Max BUYUP, Super ARC days, Remittance Cycle
option, Locked/Floating Indicator

6. Step: Retrieve Contract (LPC) Remittance Type

7. Branch: If Remittance Type <> Remittance Cycle Option

8. Branch: If Remittance Option is Floating

9. Step: Retrive One day float value from Pricing parameter Table using pooling
prod. Id float type and contract date

10. Step: Calculate Remittance Adj = (Default Remittance days based on the product
- P/I No. of days)* float value

11. Step: Calculate Contract Adjusted Gfee = Base Gfee Rate - Remitence Adj

12. Step: Contract Max BuyUp = User Requested Max Buyup = MC Product Max
Buyup = 12.5bps

13. Step: Calculate A-Minus contract Max Buyup = MC product A-Minus Max
Buyup

14. Branch: If A-Minus contract Max Buyup >25 bps

15. Step: Set A-Minus contract Max Buyup = User Requested A-Minus Max Buyup =
25 bps

AUC 5 - Main Flow: Scenario - 22

1. Branch: If Interest Rate Type = ARM

2. Branch: If LLGfee Ind = Y and LLGfee Type = A-Minus

3. Step: Retrieve Gfee Rate, Buyup Max, A-Minus Buyup

4. Step: Set Remittance Type = 1st Tuesday i.e, 31.4 days

5. Step: Retrieve Gfee rate, Max BUYUP, Super ARC days, Remittance Cycle
option, Locked/Floating Indicator

6. Step: Retrieve Contract (LPC) Remittance Type

7. Branch: If Remittance Type <> Remittance Cycle Option

8. Branch: If Remittance Option is Floating

9. Step: Retrive One day float value from Pricing parameter Table using pooling
prod. Id float type and contract date

 145

10. Step: Calculate Remittance Adj = (Default Remittance days based on the product
- P/I No. of days)* float value

11. Step: Calculate Contract Adjusted Gfee = Base Gfee Rate - Remittance Adj

12. Step: Contract Max BuyUp = User Requested Max Buyup = MC Product Max
Buyup = 12.5bps

13. Step: Calculate A-Minus contract Max Buyup = MC product A-Minus Max
Buyup

14. Branch: If A-Minus contract Max Buyup <=25 bps

15. Step: Set User requested A-Minus Buyup = Calculated contract A-Minus Max
Buyup

AUC 5 - Main Flow: Scenario - 23

1. Branch: If Interest Rate Type = ARM

2. Branch: If LLGfee Ind = Y and LLGfee Type = A-Minus

3. Step: Retrieve Gfee Rate, Buyup Max, A-Minus Buyup

4. Step: Set Remittance Type = 1st Tuesday i.e, 31.4 days

5. Step: Retrieve Gfee rate, Max BUYUP, Super ARC days, Remittance Cycle
option, Locked/Floating Indicator

6. Step: Retrieve Contract (LPC) Remittance Type

7. Branch: If Remittance Type <> Remittance Cycle Option

8. Branch: If Remittance Option is Locked

9. Step: Retrive One day float value from GFEE Table using pooling prod. Id, float
type and locked date

10. Step: Calculate Remittance Adj = (Default Remittance days based on the product
- P/I No. of days)* float value

11. Step: Calculate Contract Adjusted Gfee = Base Gfee Rate - Remittance Adj

12. Step: Contract Max BuyUp = User Requested Max Buyup = MC Product Max
Buyup = 12.5bps

13. Step: Calculate A-Minus contract Max Buyup = MC product A-Minus Max
Buyup

 146

14. Branch: If A-Minus contract Max Buyup >25 bps

15. Step: Set A-Minus contract Max Buyup = User Requested A-Minus Max Buyup =
25 bps

AUC 5 - Main Flow: Scenario - 24

1. Branch: If Interest Rate Type = ARM

2. Branch: If LLGfee Ind = Y and LLGfee Type = A-Minus

3. Step: Retrieve Gfee Rate, Buyup Max, A-Minus Buyup

4. Step: Set Remittance Type = 1st Tuesday i.e, 31.4 days

5. Step: Retrieve Gfee rate, Max BUYUP, Super ARC days, Remittance Cycle
option, Locked/Floating Indicator

6. Step: Retrieve Contract (LPC) Remittance Type

7. Branch: If Remittance Type <> Remittance Cycle Option

8. Branch: If Remittance Option is Locked

9. Step: Retrive One day float value from GFEE Table using pooling prod. Id, float
type and locked date

10. Step: Calculate Remittance Adj = (Default Remittance days based on the product
- P/I No. of days)* float value

11. Step: Calculate Contract Adjusted Gfee = Base Gfee Rate - Remittance Adj

12. Step: Contract Max BuyUp = User Requested Max Buyup = MC Product Max
Buyup = 12.5bps

13. Step: Calculate A-Minus contract Max Buyup = MC product A-Minus Max
Buyup

14. Branch: If A-Minus contract Max Buyup <=25 bps

15. Step: Set User requested A-Minus Buyup = Calculated contract A-Minus Max
Buyup

AUC 5 - Main Flow: Scenario - 25

1. Branch: If Interest Rate Type = ARM

2. Branch: If LLGfee Ind = N and LLGfee Type = Not A-Minus

 147

3. Step: Retrieve Gfee Rate, Buyup Max

4. Step: Set Remittance Type = 1st Tuesday i.e, 31.4 days

5. Step: Retrieve Gfee rate, Max BUYUP, Super ARC days, Remittance Cycle
option, Locked/Floating Indicator

6. Step: Retrieve Contract (LPC) Remittance Type

7. Branch: If Remittance Type = Remittance Cycle Option

8. Step: Set Remittance Adj = 0

9. Step: Contract Max BuyUp = User Requested Max Buyup = MC Product Max
Buyup = 12.5bps

AUC 5 - Main Flow: Scenario - 26

1. Branch: If Interest Rate Type = ARM

2. Branch: If LLGfee Ind = N and LLGfee Type = Not A-Minus

3. Step: Retrieve Gfee Rate, Buyup Max

4. Step: Set Remittance Type = 1st Tuesday i.e, 31.4 days

5. Step: Retrieve Gfee rate, Max BUYUP, Super ARC days, Remittance Cycle
option, Locked/Floating Indicator

6. Step: Retrieve Contract (LPC) Remittance Type

7. Branch: If Remittance Type <> Remittance Cycle Option

8. Branch: If Remittance Option is Floating

9. Step: Retrive One day float value from Pricing parameter Table using pooling
prod. Id float type and contract date

10. Step: Calculate Remittance Adj = (Default Remittance days based on the product
- P/I No. of days)* float value

11. Step: Calculate Contract Adjusted Gfee = Base Gfee Rate - Remittance Adj

12. Step: Contract Max BuyUp = User Requested Max Buyup = MC Product Max
Buyup = 12.5bps

AUC 5 - Main Flow: Scenario - 27

1. Branch: If Interest Rate Type = ARM

 148

2. Branch: If LLGfee Ind = N and LLGfee Type = Not A-Minus

3. Step: Retrieve Gfee Rate, Buyup Max

4. Step: Set Remittance Type = 1st Tuesday i.e, 31.4 days

5. Step: Retrieve Gfee rate, Max BUYUP, Super ARC days, Remittance Cycle
option, Locked/Floating Indicator

6. Step: Retrieve Contract (LPC) Remittance Type

7. Branch: If Remittance Type <> Remittance Cycle Option

8. Branch: If Remittance Option is Locked

9. Step: Retrive One day float value from GFEE Table using pooling prod. Id, float
type and locked date

10. Step: Calculate Remittance Adj = (Default Remittance days based on the product
- P/I No. of days)* float value

11. Step: Calculate Contract Adjusted Gfee = Base Gfee Rate - Remittance Adj

12. Step: Contract Max BuyUp = User Requested Max Buyup = MC Product Max
Buyup = 12.5bps

 149

Appendix B. Modeling Outputs for Case Study # 4

150

Usecase- Calculate SEY IRR - Testable function 1: Scenario - 1

1. Step: Get Original Base Fee, Original UPB, Prepayment factors, Original Term

2. Branch: If Original UPB is NULL [7.3.3]

3. Verification Point: Drop record and report error

Usecase- Calculate SEY IRR - Testable function 1: Scenario - 2
1. Step: Get Original Base Fee, Original UPB, Prepayment factors, Original Term

2. Branch: If Original UPB is <= 0 [7.3.4]

3. Verification Point: Drop record and report error

Usecase- Calculate SEY IRR - Testable function 1: Scenario - 3
1. Step: Get Original Base Fee, Original UPB, Prepayment factors, Original Term

2. Branch: If Original UPB > 0

3. Branch: If Original Base Fee is NULL [7.3.5]

4. Verification Point: Drop record and report error

Usecase- Calculate SEY IRR - Testable function 1: Scenario - 4
1. Step: Get Original Base Fee, Original UPB, Prepayment factors, Original Term

2. Branch: If Original UPB > 0

3. Branch: Calculate Cash Outflow [7.6.1]

4. Branch: If Prepayment factors exist

5. Branch: If Prepayment factor >0 and < 1

Usecase- Calculate SEY IRR - Testable function 1: Scenario - 5
1. Step: Get Original Base Fee, Original UPB, Prepayment factors, Original Term

2. Branch: If Original UPB > 0

3. Branch: Calculate Cash Outflow [7.6.1]

4. Branch: If Prepayment factors exist

5. Branch: If NOT Prepayment factor >0 and < 1

 151

6. Verification Point: Report error in Amortization engine run report [7.6.2.1]

7. Verification Point: Flag record in results table [7.6.2.1]

Usecase- Calculate SEY IRR - Testable function 1: Scenario - 6
1. Step: Get Original Base Fee, Original UPB, Prepayment factors, Original Term

2. Branch: If Original UPB > 0

3. Branch: Calculate Cash Outflow [7.6.1]

4. Branch: If Prepayment factor doesn&apost exist [7.6.3]

5. Branch: If Original Term is NULL [7.6.3.3]

6. Verification Point: Use 30-Year default PSA speed

7. Step: Calculate UPB for periods 1 to n [7.6.2]

8. Step: Calculate estimated cash flows for periods 1 to n [7.6.6]

9. Step: Calculate IRR [7.6.7]

Usecase- Calculate SEY IRR - Testable function 1: Scenario - 7
1. Step: Get Original Base Fee, Original UPB, Prepayment factors, Original Term

2. Branch: If Original UPB > 0

3. Branch: Calculate Cash Outflow [7.6.1]

4. Branch: If Prepayment factor doesn&apost exist [7.6.3]

5. Branch: If Original Term is NOT NULL

6. Branch: If Original Term > 20 years [7.6.3.1]

7. Verification Point: Use 30-Year default PSA speed [7.6.3]

8. Step: Calculate UPB for periods 1 to n [7.6.2]

9. Step: Calculate estimated cash flows for periods 1 to n [7.6.6]

10. Step: Calculate IRR [7.6.7]

Usecase- Calculate SEY IRR - Testable function 1: Scenario - 8

1. Step: Get Original Base Fee, Original UPB, Prepayment factors, Original Term

 152

2. Branch: If Original UPB > 0

3. Branch: Calculate Cash Outflow [7.6.1]

4. Branch: If Prepayment factor doesn&apost exist [7.6.3]

5. Branch: If Original Term is NOT NULL

6. Branch: If Original Term <= 20 years [7.6.3.2]

7. Verification Point: Use 15-Year default PSA speed

8. Step: Calculate UPB for periods 1 to n [7.6.2]

9. Step: Calculate estimated cash flows for periods 1 to n [7.6.6]

10. Step: Calculate IRR [7.6.7]

Usecase- Calculate SEY IRR - Testable function 2: Scenario - 9
1. Branch: If UPB for final period = 0 [7.6.2.2]

2. Verification Point: set UPB = 0

Usecase- Calculate SEY IRR - Testable function 3: Scenario - 10
1. Branch: If IRR is NULL [7.6.7.1]

2. Verification Point: Report error in Amortization engine run report

3. Verification Point: Flag record in results table

Usecase- Calculate SEY IRR - Testable function 3: Scenario - 11
1. Branch: If IRR > 1 [7.6.7.1]

2. Verification Point: Report error in Amortization engine run report

3. Verification Point: Flag record in results table

Usecase- Calculate SEY IRR - Testable function 3: Scenario - 12
1. Branch: If IRR < 0 [7.6.7.1]

2. Verification Point: Report error in Amortization engine run report

3. Verification Point: Flag record in results table

 153

Appendix C. Glossary

Selling System: Freddie Mac’s Web-based selling system integrates all secondary

marketing functions—from pricing through delivery, certification and funding—

into one system. The system provides a seamless secondary marketing process

that incorporates pricing, contracting, loan allocation, purchase edits, note

certification, contract settlement, and funding. By tying all the secondary

marketing functions together, Freddie Mac eliminated the need to interact with

multiple systems or to complete tasks through fax and phone.

Business Rules: A business rule is a requirement that is expressed in non-procedural and

non-technical form, which implies specific constraints on data or business

processes (i.e. valid values, calculations, timing ranges, etc.).

 154

REFERENCES

 155

REFERENCES

Ammann, P., & Offutt. J. (2008). Introduction to software testing. Cambridge University
Press, Cambridge, U.K.

Bach, J. Better Allpairs Test Tool. Download the pairs.zip file from

http://www.satisfice.com/tools.shtml and follow the instructions.

Bach, J. (2003). Heuristics of software testability. Retrieved May, 2008 from
 http://www.satisfice.com/testmethod.shtml/

 Bach, J., & Schroeder, P. (2004). Pairwise testing: A best practice that isn’t. Proceedings
of 22nd Pacific Northwest Software Quality Conference, 2004, pp. 180-196

Beizer, B. (1990). Black-box testing: Techniques for functional testing of software and
 systems. New York: John Wiley & Sons.

Beizer, B. (1990). Software testing techniques. New York: Van Nostrand Reinhold.

Binder, R. V. (1999). Testing object-oriented systems: Models, patterns, and tools.
 Reading, MA: Addison-Wesley Professional.

Czerwonka, J. (2006) Pairwise testing in real world: Practical extensions to test case
 generators. Proceedings of 24th Northwest Quality Conference, 2006. Retrieved

May 26, 2007, from http://www.pairwise.org

Dalal, S. R., Jain, A., Karunanithi, N., Leaton, J. M., Patton, C. M., & Horowitz, B. M.
 (1999). Model-based testing in practice. Proceedings of International Conference

on Software Engineering, 1999. ACM Press.

El-Far, I., & Whitaker, A. (2001). Model-based software testing. In J. J. Marciniak (Ed.),
 Encyclopedia on software engineering. Wiley.

Grindal, M., Offutt, J. (2007). Input parameter modeling for combination strategies.

 Proceedings of IASTED International Conference on Software Engineering (SE
2007) Innsbruck, Austria.

Grindal, M., Offutt, J., & Mellin, J. (2007). Conflict management when using

combination strategies for software testing. Proceedings of Australian Software
Engineering Conference ASWEC 2007, pp. 255-264, Melbourne, Australia.

 156

http://www.satisfice.com/tools.shtml

Investopedia. Mortgage Definitions. Retrieved from http://www.investopedia.com/

Martin, P., Ruud, T., & Veenendaal, E. V. (2001). Software testing: A guide to the
 TMap approach. Reading, MA: Addison-Wesley Professional.

Pemmaraju, K. (1998, December). Effective test strategies for enterprise-critical
 applications. Java Report.

Pressman, R. (2005). Software engineering: A practitioners approach. New York:
 McGraw-Hill.

Tai, K., & Lei, Y. (2002, January). A test generation strategy for pairwise testing. IEEE
 Transactions on Software Engineering, pp. 254-261.

Analysis Paralysis. Retrieved from http://c2.com/cgi/wiki?AnalysisParalysis

T. J. Ostrand and M. J. Balcer. The category-partition method for specifying and

generating functional tests. Communications of ACM, 31(6): 676-686, June 1988.

M. Grochtmann, K. Grimm, and J. Wegener. Tool-supported test case design for

blackbox testing by means of the classification-tree editor. In Proceedings of the
1st European International Conference on Software Testing Analysis & Review
(EuroSTAR 1993), pages 169–176, London, Great Britain, October 1993.

 157

http://c2.com/cgi/wiki?AnalysisParalysis

CURRICULUM VITAE

Chandra M. Alluri graduated with a Bachelor’s of Technology in Mechanical
Engineering from Nagarjuna University, Andhra Pradesh, India in 1996. He started his IT
career teaching Oracle SQL and worked as a freelance Oracle forms developer. He was
later employed at RelQ pvt limited India as a Sr. Software Engineer (11/1997 – 01/2000),
LG software India pvt limited (02/2000 – 06/2000) as a Sr. Systems Analyst, Softalia pvt
limited India and Softalia Inc. USA as a Test Manager (07/2001 – 04/2003), Cell
Exchange pvt limited India as a Test Lead (05/2003 – 02/2004), and is currently working
as a Test Lead in Freddie Mac, McLean, VA, U.S.A.

 158

	1 Introduction
	2 Characteristics of the Calculation Engines
	2.1 Controllability Factors of Testability
	2.2 Observability Factors of Testability
	2.3 Specification Formats for Calculation Engines
	2.3.1 Precision, Truncation, and Rounding

	2.4 Design or Implementation Characteristics
	2.4.1 Pricing Grids
	2.4.2 Data Flow
	2.4.3 Conditional Events
	2.4.4 Calculation Algorithms
	2.4.5 Architecture
	2.4.6 Important Attributes
	2.4.7 Intermediate Values
	2.4.8 Business Cycles

	3 Test Approach
	3.1 Step #1: Applying the Technique
	3.1.1 Input Space Partitioning (ISP)
	3.1.1.1 The Category Partition Method
	3.1.1.2 Coverage Criterion for Input Space Partitioning
	3.1.1.2.1 Pair-Wise (PW)
	3.1.1.2.2 Base Choice (BC)
	3.1.1.2.3 Multiple Base Choices (MBC)

	3.1.2 Requirements Modeling
	3.1.3 Overview of the Process
	3.1.4 Modeling Technique
	3.1.5 Requirements and Specifications
	3.1.5.1 Logical Expressions
	3.1.5.2 Use Cases
	3.1.5.3 Loops
	3.1.5.4 Other Common Elements in Specifications

	3.1.6 Rationale Behind This Modeling Design
	3.1.6.1 Requirements Traceability
	3.1.6.2 Audit Requirements
	3.1.6.3 Specification Formats
	3.1.6.4 Easy to Learn
	3.1.6.5 Preserving the Models
	3.1.6.6 Complementing the Existing Tools to Manage Testing

	3.1.7 Coverage Criterion
	3.1.7.1 Prime Path Coverage

	3.2 Step #2: Generating Test Requirements
	3.3 Step #3: Generating Test Data
	3.4 Step #4: Simulating Calculation Engine and Inputting the Test Data
	3.5 Step #5: Collecting Expected Results
	3.6 Step #6: Input Test Data to the System-Under-Test
	3.7 Step #7: Collecting Actual Results
	3.8 Step #8: Comparing Actual and Expected Results Using a Comparator

	4 Case Study #1: Contract Pricing
	4.1 Step #1: Input Space Partitioning
	
	4.1.1 Base Choice Coverage
	
	4.1.2 Multiple Base Choice Coverage
	
	4.1.3 Pair-Wise Coverage

	
	4.2 Step # 1: Modeling Technique
	4.3 Step #2: Generating Test Requirements
	4.4 Step #3: Generating Test Data
	4.5 Step #4: Building the Simulator and Inputting Test Data
	4.6 Step #5: Input Test Data Into System-Under-Test
	4.7 Steps # 6, 7, and 8: Collecting Expected Results, Actual Results, and Comparing the Results

	5 Case Study #2: Loan Pricing
	5.1 Step #1: Input Space Partitioning
	
	5.1.1 Base Choice Coverage
	
	5.1.2 Multiple Base Choice Coverage
	
	5.1.3 Pair-Wise Coverage

	
	5.2 Step #1: Modeling Technique
	5.3 Other Steps in the Process

	6 Case Study # 3: Amortization
	6.1 Step #1: Input Space Partitioning
	6.1.1 Testable Functions
	6.1.1.1 TF #1: Calculate Remaining Term (RT-PC1)
	6.1.1.2 TF #2: Calculate Remaining Amortization Period (RAP-PC2)
	6.1.1.3 TF #3: Calculate Remaining Yield Maintenance Period (RYMP-PC3)
	6.1.1.4 TF #4: Calculate Remaining Interest Only Period (RIOP-PC4)
	6.1.1.5 TF #5: Calculate Final Cash Flow Period (FCP-PC5)
	6.1.1.6 TF #6: Calculate Prepayment Window (PPW-PC6)
	6.1.1.7 TF #7: Calculate Monthly Interest Rates (MIR-FC1)
	
	6.1.1.8 TF #8: Calculate Beginning Balances (BB-FC2)
	6.1.1.9 TF # 9: Calculate Total Mortgage Payments (TMP-FC3)
	6.1.1.10 TF # 10: Calculate Scheduled Interest Payments (SIP-FC4)
	6.1.1.11 TF # 11: Calculate Scheduled Principal Payments (SPP-FC5)
	
	6.1.1.12 TF # 12: Calculate Prepayments (PP-FC6)
	6.1.1.13 TF # 13: Calculate Balloons (BP-FC7)
	6.1.1.14 TF #14: Calculate Total Principal Cash Flows (TPCF-FC8)
	6.1.1.15 TF # 15: Calculate Ending Balance (EB-FC9)
	6.1.1.16 TF #16: Calculate WAL (WAL-FC10)

	6.1.2 Base Choice Coverage
	6.1.3 Multiple Base Choice Coverage
	6.1.4 Pair-Wise Coverage

	6.2 Step # 1 Modeling Technique
	6.3 Step # 2: Generating Test Requirements
	6.4 Step # 3: Generating Test Data
	6.5 Steps # 4 and 5: Building the Simulator and Inputting Test Data and Collecting Expected Results
	6.6 Steps # 6 and 7: Inputting Test Data Into System-Under-Test and Collecting Actual Results
	6.7 Step # 8: Comparing Actual and Expected Results

	7 Case Study # 4
	7.1 Input Space Partitioning
	7.1.1 Testable Functions
	7.1.1.1 TF # 1: Choose Instruments for GO Amortization
	7.1.1.2 TF # 2: Choose Instruments for Segment Reporting
	7.1.1.3 TF # 3: Chose Prepayment Factors
	7.1.1.4
	7.1.1.5 TF #4: Choose PSA - Speed Values
	7.1.1.6 TF #5: Calculate UPB - Prepayment Factor = NOT NULL
	7.1.1.7 TF # 6: Calculate UPB Using PSA Speed Values - Prepayment Factor = NULL
	7.1.1.8 TF #7: Calculate Cash Flow for Each Period
	7.1.1.9 TF #8: Calculate SEY IRR for Each Period

	7.1.2 Base Choice Coverage
	7.1.3 Multiple Base Choice Coverage
	7.1.4 Pair-Wise Coverage

	7.2 Modeling Technique
	7.3 Application of the Framework
	7.3.1 Step # 1: Identify the Functionality to Be Tested – Define Scope
	7.3.2 Step # 2: Identify the Testable Functions
	7.3.3 Step # 3: Identify the Entities and Attributes - Partitions
	7.3.4 Step # 4: Identify Distinct Values – Blocks
	7.3.5 Step # 5: Apply Base Choice Criteria to Filter the Invalid Values
	7.3.6 Steps # 6, 7, 8, and 9: Eliminate Invalid Values and Combinations
	7.3.7 Step #10: Ensure the Functional Coverage With RTM
	7.3.8 Steps # 11 and 12: Prefix the Test Cases and Provide Real Values
	7.3.9 Step #13: Build the Calculation Simulator
	7.3.10 Step #14: Collect the Actual Results
	7.3.11 Step # 15: Compare the Actual and Expected Results

	8 Results
	8.1 Case Study #1: Contract Pricing
	8.1.1 Requirements Coverage
	8.1.2 Code Coverage
	
	8.1.3 Observations

	8.2 Case Study #2: Loan Pricing
	8.2.1 Requirements Coverage
	8.2.2 Code Coverage
	
	8.2.3 Observations

	8.3 Case Study #3
	8.3.1 Requirements Coverage
	8.3.2 Code Coverage
	
	8.3.3 Observations

	8.4 Case Study #4
	8.4.1 Requirements Coverage
	8.4.2 Code Coverage
	8.4.3 Observations

	9 Advantage and Disadvantages
	9.1 Pros and Cons of Modeling
	9.1.1 Advantages of Modeling
	9.1.2 Disadvantages of Modeling

	9.2 Pros and Cons of ISP
	9.2.1 Advantages of ISP
	9.2.2 Disadvantages of ISP

	10 Conclusions and Recommendations
	10.1 Conclusion
	10.2 Recommendations
	10.3 Further Work
	10.3.1 Automatic Generation of Test Data for ISP tests
	10.3.2 Filter the Conflicting Combinations Automatically
	10.3.3 Build the Tool With a User Interface
	10.3.4 Auto Detection of the Requirements Coverage and Building Traceability
	10.3.5 Testable Functions as an Estimation Technique
	Appendix A. Modeling Outputs for Case Study # 1
	Appendix B. Modeling Outputs for Case Study # 4
	 Appendix C. Glossary

	10
	REFERENCES

