

 1

CS 700: Quantitative Methods &
Experimental Design in Computer Science

Sanjeev Setia
Dept of Computer Science
George Mason University

2

Logistics

 Grade: 35% project, 25% Homework assignments
20% midterm, 20% take home final

 Slides, assignments, reading material on class web
page http://www.cs.gmu.edu/~setia/cs700/

 Several small assignments related to material
discussed in class
 Not all will be graded, but we will go over solutions in

class
 Term project

 should involve experimentation (measurement, simulation)
 select a topic in your research area if possible
 apply techniques discussed in this class

 2

3

Readings

 Textbook
 David Lilja, “Measuring Computer Performance: A

Practitioner’s Guide” OR
 Raj Jain, “Art of Computer Systems Performance

Analysis”
 Class notes, slides
 Relevant research articles (links on class web site)
 Books on probability and statistics for engineers

(see syllabus)
 More specialized topics

 Cohen “Empirical techniques in AI”
 Crovella et al “Internet Measurement”

4

Course Topics

 Basic techniques in “experimental” computer
science
 Basic measurement tools and techniques
 Simulation
 Design of experiments

 Quantitative Methods
 Use of statistical techniques in design of experiments
 Use of statistical techniques in comparing alternatives
 Characterizing and interpreting measured data

 Simple analytical modeling

Most examples will be from performance measurement of
computer systems and networks, but techniques are
applicable in all fields of CS

 3

5

Experimental Science

Scientific Method
1. Identify a problem and form hypothesis

 Hypothesis must be testable and refutable
2. Design an experiment
3. Conduct the experiment
4. Perform hypothesis testing

 Use statistical techniques

What about Computer Science?

6

Experimental Computer Science

Three definitions (Feitelson, 2006)
 Building of systems, hardware or software

 Counterpart to “theoretical CS”
 Experimentation as a feedback step in engineering

loop
 Evaluation of computer systems using the

methodologies of the natural sciences, i.e.
rigorous methodologies
 Focus of this class

Feitelson makes the case that there is a place for
observation of the real world, as in the natural
sciences, e.g., analyzing measured network traffic

 4

7

The Role of Experimentation in CS

8

Schedule

 Introduction
 Metrics
 Summarizing Measured Data
 Measurement Techniques
 Simulation
 Comparing Alternatives
 Linear Regression Models
 Design of experiments
 Interpreting & characterizing measured data
 Analytical Modeling

 5

9

Course Goals

 Understand the inherent trade-offs involved in
using simulation, measurement, and analytical
modeling.

 Rigorously compare computer
systems/networks/software/artifacts/… often
in the presence of measurement noise

 Usually compare performance but in many fields of CS,
“quality” of the output is more important than raw
performance, e.g. face recognition software

 Determine whether a change made to a system
has a statistically significant impact

10

Course Goals

 Use statistical tools to reduce the
number of simulations that need to be
performed of a computer system.

 Design a set of experiments to obtain the
most information for a given level of
effort.

 6

11

Course Goals

 Provide intuitive conceptual background
for some standard statistical tools.

• Draw meaningful conclusions in presence of
noisy measurements.

• Allow you to correctly and intelligently apply
techniques in new situations.

12

Course Goals

 Present techniques for aggregating and
interpreting large quantities of data.

• Obtain a big-picture view of your results.
• Obtain new insights from complex measurement and

simulation results.
→ E.g. How does a new feature impact the overall

system?

 7

13

Agenda

 Today
 Overview of course
 Performance metrics

o Characteristics of good metrics
o Standard processor and system metrics
o Speedup and relative change

14

Agenda (cont.)

 Measurement tools and techniques
 Fundamental strategies
 Interval timers
 Cycle counters
 Program profiling
 Tracing
 Indirect measurement
 Measuring network delays and bandwidth

 8

15

Agenda (cont.)

 Simulation
 Types of simulations
 Random number generation
 Verification and validation

16

Agenda (cont.)

 Statistical interpretation of measured
data
 Arithmetic, harmonic, geometric means
 Sources of measurement error
 Confidence intervals
 Statistically comparing alternatives

 9

17

Agenda (cont.)

 Design of experiments
 Terminology
 One-factor analysis of variance (ANOVA)
 Two-factor ANOVA
 Generalized m-factor experiments
 Fractional factorial designs
 Multi-factorial designs (Plackett and Berman)

18

Agenda (cont’d)

 Characterizing Measured Data
 Workload Characterization
 Fitting Measured Data to Known Distributions

o Q-Q plots
o Chi-square, K-S tests

 10

19

Agenda (cont’d)

 Simple analytical modeling
 Simple queuing models

o Single queue models
o Networks of queues

 Operational analysis
o Little’s Law

20

Readings

 Dror Feitelson, “Experimental Computer
Science: The need for a cultural change”

 11

Metrics

22

Performance metrics

 What is a performance metric?
 Characteristics of good metrics
 Standard processor and system metrics
 Speedup and relative change

 12

23

What is a performance metric?

 Count
 Of how many times an event occurs

 Duration
 Of a time interval

 Size
 Of some parameter

 A value derived from these fundamental
measurements

24

Time-normalized metrics

 “Rate” metrics
 Normalize metric to common time basis

o Transactions per second
o Bytes per second

 (Number of events) ÷ (time interval over which
events occurred)

 “Throughput”
 Useful for comparing measurements over

different time intervals

 13

25

What makes a “good” metric?

 Allows accurate and detailed comparisons
 Leads to correct conclusions
 Is well understood by everyone
 Has a quantitative basis
 A good metric helps avoid erroneous

conclusions

26

Good metrics are …

 Linear
 Fits with our intuition
 If metric increases 2x, performance should

increase 2x
 Not an absolute requirement, but very appealing

o dB scale to measure sound is nonlinear

 14

27

Good metrics are …

 Reliable
 If metric A > metric B

o Then, Performance A > Performance B
 Seems obvious!
 However,

o MIPS(A) > MIPS(B), but
o Execution time (A) > Execution time (B)

28

Good metrics are …

 Repeatable
 Same value is measured each time an

experiment is performed
 Must be deterministic
 Seems obvious, but not always true…

o E.g. Time-sharing changes measured execution
time

 15

29

Good metrics are …

 Easy to use
 No one will use it if it is hard to measure
 Hard to measure/derive

o → less likely to be measured correctly
 A wrong value is worse than a bad metric!

30

Good metrics are …

 Consistent
 Units and definition are constant across

systems
 Seems obvious, but often not true…

o E.g. MIPS, MFLOPS
 Inconsistent → impossible to make comparisons

 16

31

Good metrics are …

 Independent
 A lot of $$$ riding on performance results
 Pressure on manufacturers to optimize for a

particular metric
 Pressure to influence definition of a metric
 But a good metric is independent of this

pressure

32

Good metrics are …

 Linear -- nice, but not necessary
 Reliable -- required
 Repeatable -- required
 Easy to use -- nice, but not necessary
 Consistent -- required
 Independent -- required

 17

33

Clock rate

 Faster clock == higher performance
 1 GHz processor always better than 2 GHz

 But is it a proportional increase?
 What about architectural differences?

 Actual operations performed per cycle
 Clocks per instruction (CPI)
 Penalty on branches due to pipeline depth

 What if the processor is not the
bottleneck?
 Memory and I/O delays

34

Clock rate

 (Faster clock)
≠ (better performance)

 A good first-order metric

☺Independent

☺Consistent

☺Easy to
measure

☺Repeatable

Reliable

Linear

 18

35

MIPS

 Measure of computation “speed”
 Millions of instructions executed per

second
 MIPS = n / (Te * 1000000)

 n = number of instructions
 Te = execution time

 Physical analog
 Distance traveled per unit time

36

MIPS

 But how much actual
computation per instruction?
 E.g. CISC vs. RISC
 Clocks per instruction (CPI)

 MIPS = Meaningless
Indicator of Performance

☺Independent

Consistent

☺Easy to
measure

☺Repeatable

Reliable

Linear

 19

37

MFLOPS

 Better definition of “distance traveled”
 1 unit of computation (~distance) ≡ 1

floating-point operation
 Millions of floating-point ops per second
 MFLOPS = f / (Te * 1000000)

 f = number of floating-point instructions
 Te = execution time

 GFLOPS, TFLOPS,…

38

MFLOPS

 Integer program = 0
MFLOPS
 But still doing useful work
 Sorting, searching, etc.

 How to count a FLOP?
 E.g. transcendental ops, roots

 Too much flexibility in
definition of a FLOP

 Not consistent across
machines Independent

Consistent

☺Easy to
measure

☺Repeatable

Reliable

Linear

 20

39

SPEC

 System Performance Evaluation Coop
 Computer manufacturers select

“representative” programs for benchmark
suite

 Standardized methodology
 Measure execution times
 Normalize to standard basis machine
 SPECmark = geometric mean of normalized

values

40

SPEC

 Geometric mean is
inappropriate (more later)

 SPEC rating does not
correspond to execution
times of non-SPEC programs

 Subject to tinkering
 Committee determines which

programs should be part of the
suite

 Targeted compiler
optimizations Independent

☺Consistent

½☺Easy to
measure

☺Repeatable

Reliable

Linear

 21

41

Execution time

 Ultimately interested in time required to
execute your program

 Smallest total execution time == highest
performance

 Compare times directly
 Derive appropriate rates
 Time == fundamental metric of

performance
 If you can’t measure time, you don’t know

anything

42

Execution time

 “Stopwatch” measured execution time
Start_count = read_timer();

Portion of program to be measured
Stop_count = read_timer();
Elapsed_time = (stop_count – start_count)
 * clock_period;

 Measures “wall clock” time
 Includes I/O waits, time-sharing, OS overhead,

…
 “CPU time” -- include only processor time

 22

43

Execution time

 Best to report both wall
clock and CPU times

 Includes system noise
effects
 Background OS tasks
 Virtual to physical page

mapping
 Random cache mapping and

replacement
 Variable system load

 Report both mean and
variance (more later)

☺Independent

☺Consistent

☺Easy to
measure

≈☺Repeatable

☺Reliable

☺Linear

44

Performance metrics summary

TIMESPECMFLOPSMIPSClock

☺
☺
☺
☺

☺

☺
☺

☺
☺

☺
½☺
☺

☺Independent

☺Consistent

☺Easy to
measure

☺Repeatable

≈☺Reliable

☺Linear

 23

45

Other metrics

 Response time
 Elapsed time from request to response

 Throughput
 Jobs, operations completed per unit time
 E.g. video frames per second

 Bandwidth
 Bits per second

 Ad hoc metrics
 Defined for a specific need

46

Means vs. ends metrics

 Means-based metrics
 Measure what was done
 Whether or not it was useful!

o Nop instructions, multiply by zero, …
 Produces unreliable metrics

 Ends-based metrics
 Measures progress towards a goal
 Only counts what is actually accomplished

 24

47

Means vs. ends metrics

Means-based Ends-based

C
lo

ck
 ra

te

M
IP

S

M
FL

O
P

S

S
P

E
C

E
xe

cu
tio

n
tim

e

48

Speedup

 Speedup of System 1 w.r.t System 2
 S2,1 such that: R2 = S2,1 R1

 R1 = “speed” of System 1
 R2 = “speed” of System 2

 System 2 is S2,1 times faster than System
1

 25

49

Speedup

 “Speed” is a rate metric
 Ri = Di / Ti
 Di ~ “distance traveled” by System i

 Run the same benchmark program on both
systems
 → D1 = D2 = D

 Total work done by each system is defined
to be “execution of the same program”
 Independent of architectural differences

50

Speedup

2

1

1

2

11

22

1

2

1,2
/

/

/

/

T

T

TD

TD

TD

TD

R

R
S

=

===

 26

51

Speedup

1 Systemn slower tha is 2 System1

1 Systemn faster tha is 2 System1

1,2

1,2

!<

!>

S

S

52

Relative change

 Performance of System 2 relative to
System 1 as percent change

1

12

1,2
R

RR !
="

 27

53

Relative change

1

/

//

1,2

2

21

1

12

1

12

1,2

!=

!
=

!
=

!
="

S

T

TT

TD

TDTD

R

RR

54

Relative change

1 Systemn slower tha is 2 System0

1 Systemn faster tha is 2 System0

1,2

1,2

!<"

!>"

 28

55

Important Points

 Metrics can be
 Counts
 Durations
 Sizes
 Some combination of the above

56

Important Points

 Good metrics are
 Linear

o More “natural”
 Reliable

o Useful for comparison and prediction
 Repeatable
 Easy to use
 Consistent

o Definition is the same across different systems
 Independent of outside influences

