

Fitting Distributions to Data

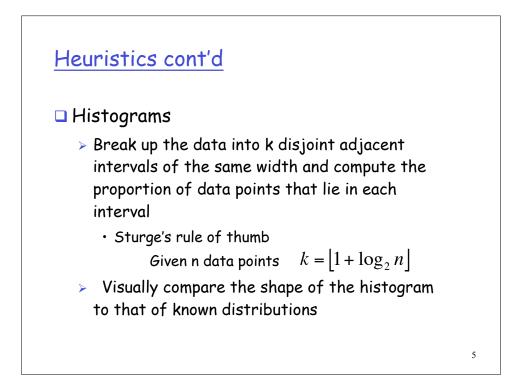
- First step: hypothesizing what family of distributions, e.g. Poisson, normal, is appropriate without worrying yet about the specific parameters for the distribution
 - > Have to consider the shape of the distribution

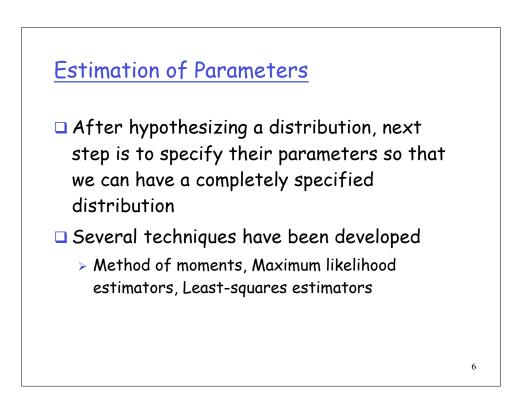
<u>Heuristics for hypothesizing a</u> distribution

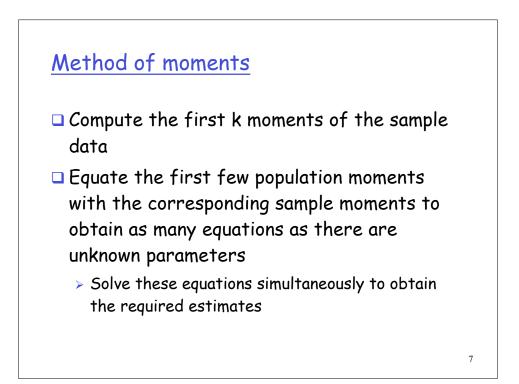
Summary statistics can provide some information

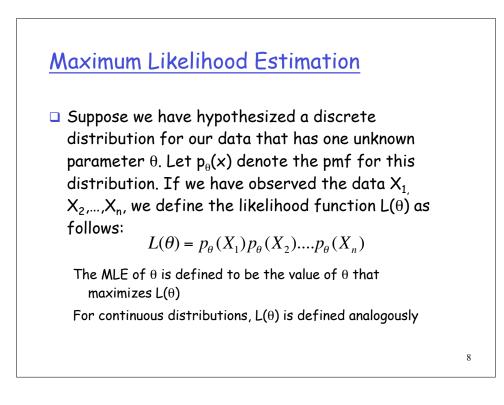
- Coefficient of variation (CV)
 - CV = 1 for exponential distribution, CV > 1 for hyperexponential, CV < 1 for hypo-exponential, erlang
 - But CV not useful for all distributions, e.g., N(0, σ^2)
- For discrete distributions, Lexis ratio τ = σ^2/μ has the same role that CV does for continuous distributions
 - + τ = 1 for Poisson, τ < 1 for binomial, τ > 1 for negative binomial

3









MLE for exponential distribution

$$p(\beta) = 1/\beta e^{-x/\beta}$$

$$L(\beta) = (1/\beta e^{-X_1/\beta})(1/\beta e^{-X_2/\beta})....(1/\beta e^{-X_n/\beta})$$

$$= \beta^{-n} \exp(-\frac{1}{\beta} \sum_{i=1}^n X_i)$$

Taking logs on both sides, we have

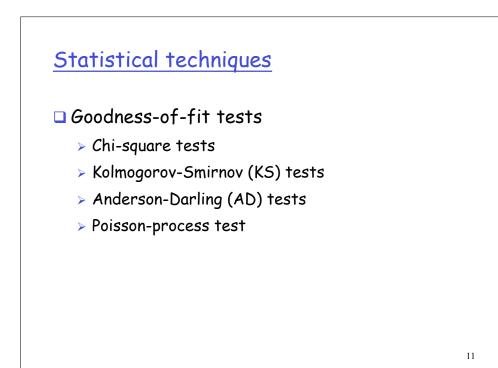
$$\ln L(\beta) = -n\ln\beta - \frac{1}{\beta}\sum_{i=1}^{n}X_{i}$$

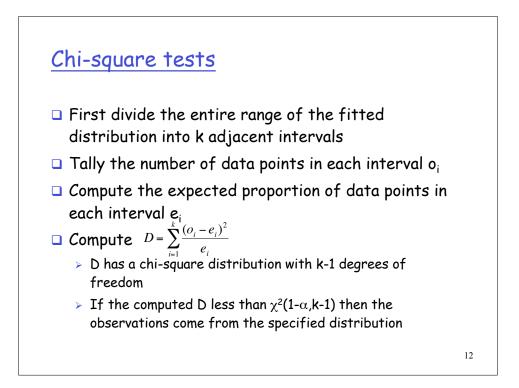
It can be shown through standard differential calculus by setting the derivative to 0 and solving for β that the value of β that maximizes L(β) is given by

$$\beta = (\sum_{i=1}^{n} X_i) / n = \overline{X}(n)$$

Determining how representative the fitted distributions are
Both heuristic procedures and statistical techniques can be used for this
Heuristics (Graphical/Visual techniques)
Density/Histogram Overplots and Frequency Comparisons
Q-Q plots
Probability plots (P-P plots)
Distribution Function Difference Plots

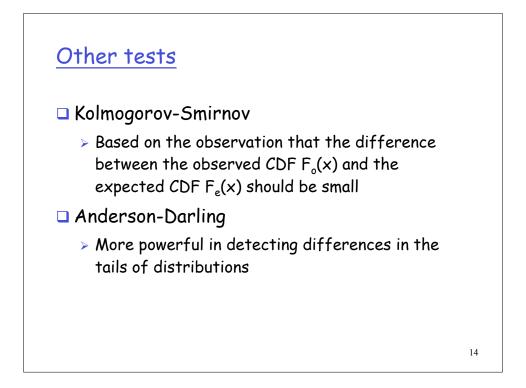
10

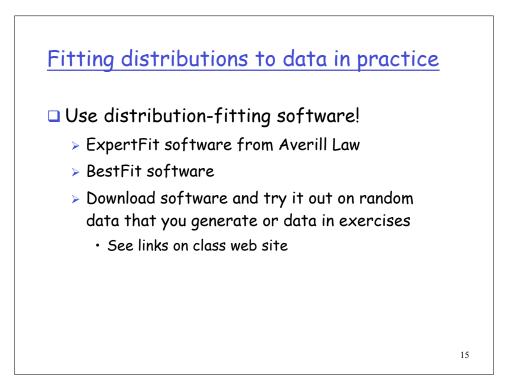


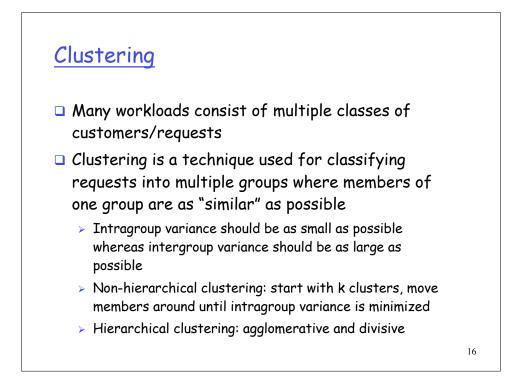


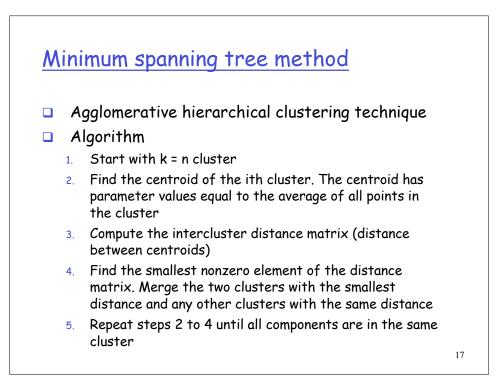
Chi-square tests cont'd

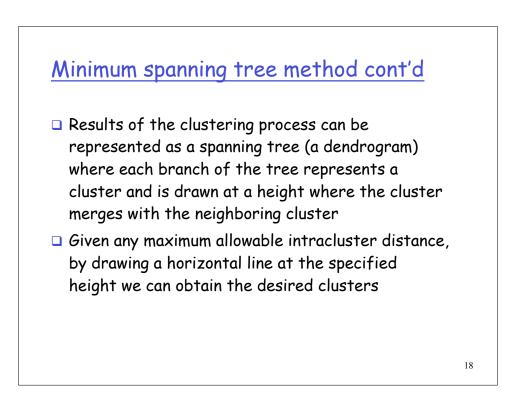
- Cell sizes should be chosen so that the expected probabilities e_i are all equal
- If the parameters of the hypothesized distribution are estimated from the sample then the degrees of freedom for the chi-square statistic should be reduced to k-r-1, where r is the number of estimated parameters
- For continuous distributions and for small sample sizes, the chi-square test is an approximation









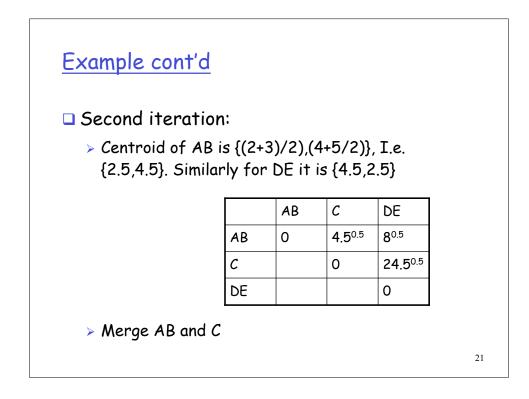


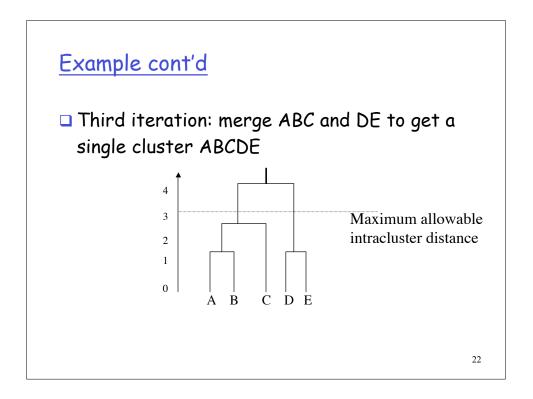
Example

Consider a workload with five components and two parameters

Program	CPU time	Disk I/O
A	2	4
В	3	5
С	1	6
D	4	3
E	5	2

First iteration:		A	В	С	D	E
	A	0	2 ^{0.5}	5 ^{0.5}	5 ^{0.5}	13 ^{0.5}
	В		0	5 ^{0.5}	5 ^{0.5}	13 ^{0.5}
	С			0	18 ^{0.5}	32 ^{0.5}
	D				0	2 ^{0.5}
	E					0
Minimum inter-clu and D and E. Th						ind B,





Additional Reading

- Articles on workload characterization by Calzorossa and Feitelson
 - > On class web site