

 1

Measuring Performance

2

Measurement tools and techniques

 Fundamental strategies
 Interval timers & cycle counters
 Program profiling
 Tracing
 Indirect measurement

 2

3

Events

 Most measurement tools based on events
 Some predefined change to system state

 Definition depends on metric being
measured
 Memory reference
 Disk access
 Change in a register’s state
 Network message
 Processor interrupt

4

Event Classification

 Count metrics
 The number of times event X occurs
 Number of cache misses
 Number of I/O operations

 3

5

Event Classification

Secondary-event metrics
 Record a value when triggered

by some event
 Record block size for each I/O

operation
 Count number of operations
 Find average I/O transfer size

6

Event Classification

 Profiles
 Characterization of overall

behavior
 Aggregate/big picture view of an

application program
 Time spent in each function

 4

7

Event-Driven Strategies

 Record necessary information only when
selected event occurs

 Modify system to record event
 Dump data when program terminates

 May need intermediate dumps also
 E.g. simple counter in page fault routine

8

Event-Driven Strategies

 System overhead
 Only when the event of interest actually occurs
 Infrequent events → little perturbation
 Frequent events → high perturbation

 No longer “typical” behavior?
 Perturbation changes system being measured

 5

9

Event-Driven Strategies

 Inter-event time is unpredictable
 Depends on when events actually occur
 Makes it hard to estimate perturbation
 How long to measure?

 Event-driven measurement tools
 → Good for low-frequency events

10

Event-Driven Strategies

 Counts 8 events exactly

+1 +1 +1 +1 +1 +1 +1 +1

 6

11

Tracing

 Similar to event-driven
 But record additional system state

 Event has occurred – count
 Additional information to uniquely identify

event
 E.g. addresses that cause page faults

 Overhead
 Additional memory or disk storage
 Time to save state

 Relatively large system perturbation

12

Tracing

 Counts 8 events plus extra data

+1;
Addr

+1;
Addr

+1;
Addr

+1;
Addr

+1;
Addr

+1;
Addr

+1;
Addr

+1;
Addr

 7

13

Sampling

 Record necessary state at fixed time
intervals

 Overhead
 Independent of specific event frequency
 Depends on sampling frequency

 Misses some events
 Produces statistical summary

 May miss infrequent events
 Each replication will produce different results

14

Sampling

 Counts 3 events out of 5 samples

+1 +1 +1

 8

15

Comparisons

FixedHigh~ #eventsPerturbation

ConstantHighLowOverhead

Statistical
summary

Detailed
info

Exact
countResolution

SamplingTracing
Event
count

16

Comparison

 Event counting
 Best for low frequency events
 Required if exact counts needed

 Sampling
 Best for high frequency events
 If statistical summary is adequate

 Tracing
 When additional detail is required

 9

17

Indirect Measurements

 Used when desired metric is not directly
accessible

 Measure one thing directly
 Derive or deduce desired metric

 Highly dependent on creativity of
performance analyst

Time Measurement

Based on Ch 9 of Computer Systems:
A Programmer’s Perspective -

Bryant & O’Halloran

 10

19

Computer Time Scales

Two Fundamental Time Scales
 Processor: ~10–9 sec.
 External events: ~10–2 sec.

 Keyboard input
 Disk seek
 Screen refresh

 Implication
 Can execute many instructions

while waiting for external
event to occur

 Can alternate among
processes without anyone
noticing

Time Scale (1 Ghz Machine)

1.E-09 1.E-06 1.E-03 1.E+00Time (seconds)

1 ns 1 µs 1 ms 1 s

Integer Add
FP Multiply

FP Divide
Keystroke
Interrupt
Handler

Disk Access
Screen Refresh
Keystroke

Microscopic Macroscopic

20

Measurement Challenge

 How Much Time Does Program X Require?
 CPU time

 How many total seconds are used when executing X?
 Measure used for most applications
 Small dependence on other system activities

 Actual (“Wall”) Time
 How many seconds elapse between the start and the completion

of X?
 Depends on system load, I/O times, etc.

 Confounding Factors
 How does time get measured?
 Many processes share computing resources

 Transient effects when switching from one process to another
 Suddenly, the effects of alternating among processes become

noticeable

 11

21

“Time” on a Computer System

real (wall clock) time

= user time (time executing instructions in the user process)

+ = real (wall clock) time

We will use the word “time” to refer to user time.

= system time (time executing instructions in kernel on behalf
of user process)

+

= some other user’s time (time executing instructions in
different user’s process)

cumulative user time

22

Activity Periods: Light Load

 Most of the time spent
executing one process

 Periodic interrupts every
10ms
 Interval timer
 Keep system from

executing one process to
exclusion of others

 Other interrupts
 Due to I/O activity

 Inactivity periods
 System time spent

processing interrupts
 ~250,000 clock cycles

Activity Periods, Load = 1

0 10 20 30 40 50 60 70 80

1

Time (ms)

Active

Inactive

 12

23

Activity Periods: Heavy Load

 Sharing processor with one other active
process

 From perspective of this process, system
appears to be “inactive” for ~50% of the time
 Other process is executing

Activity Periods, Load = 2

0 10 20 30 40 50 60 70 80

1

Time (ms)

Active

Inactive

24

Interval Counting

 OS Measures Runtimes Using Interval
Timer
 Maintain 2 counts per process

 User time
 System time

 Each time get timer interrupt, increment
counter for executing process
 User time if running in user mode
 System time if running in kernel mode

 13

25

Interval Counting Example

Au Au Au As Bu Bs Bu Bu Bu Bu As Au Au Au Au Au Bs Bu Bu Bs Au Au Au As As

A 110u + 40s

B 70u + 30s

(a) Interval Timings

B BAA A

(b) Actual Times

B

AA

B

A 120.0u + 33.3s

B 73.3u + 23.3s

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

A

Au Au Au As Bu Bs Bu Bu Bu Bu As Au Au Au Au Au Bs Bu Bu Bs Au Au Au As As

A 110u + 40s

B 70u + 30s

(a) Interval Timings

B BAA A

Au Au Au As Bu Bs Bu Bu Bu Bu As Au Au Au Au Au Bs Bu Bu Bs Au Au Au As As

A 110u + 40s

B 70u + 30s

(a) Interval Timings

B BAA A

(b) Actual Times

B

AA

B

A 120.0u + 33.3s

B 73.3u + 23.3s

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

A

(b) Actual Times

B

AA

B

A 120.0u + 33.3s

B 73.3u + 23.3s

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

A

26

Unix time Command

 0.82 seconds user time
 82 timer intervals

 0.30 seconds system time
 30 timer intervals

 1.32 seconds wall time
 84.8% of total was used running these processes

 (.82+0.3)/1.32 = .848

time make osevent
gcc -O2 -Wall -g -march=i486 -c clock.c
gcc -O2 -Wall -g -march=i486 -c options.c
gcc -O2 -Wall -g -march=i486 -c load.c
gcc -O2 -Wall -g -march=i486 -o osevent osevent.c . . .
0.820u 0.300s 0:01.32 84.8% 0+0k 0+0io 4049pf+0w

 14

27

Accuracy of Interval Counting

 Worst Case Analysis
 Timer Interval = δ
 Single process segment measurement can be off by ±δ
 No bound on error for multiple segments

 Could consistently underestimate, or consistently
overestimate

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

• Computed time = 70ms
• Min Actual = 60 + ε
• Max Actual = 80 – ε

28

Accuracy of Int. Cntg. (cont.)

 Average Case Analysis
 Over/underestimates tend to balance out
 As long as total run time is sufficiently large

 Min run time ~1 second
 100 timer intervals

 Consistently miss 4% overhead due to timer interrupts

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

• Computed time = 70ms
• Min Actual = 60 + ε
• Max Actual = 80 – ε

 15

29

Cycle Counters

 Most modern systems have built in registers that are
incremented every clock cycle
 Very fine grained
 Maintained as part of process state

– In Linux, counts elapsed global time
 Special assembly code instruction to access
 On (recent model) Intel machines:

 64 bit counter.
 RDTSC instruction sets %edx to high order 32-

bits, %eax to low order 32-bits

30

Cycle Counter Period

 Wrap Around Times for 550 MHz machine
 Low order 32 bits wrap around every 232 / (550 * 106) =

7.8 seconds
 High order 64 bits wrap around every 264 / (550 * 106) =

33539534679 seconds
 1065 years

 For 2 GHz machine
 Low order 32-bits every 2.1 seconds
 High order 64 bits every 293 years

 16

31

Measuring with Cycle Counter
 Idea

 Get current value of cycle counter
 store as pair of unsigned’s cyc_hi and cyc_lo

 Compute something
 Get new value of cycle counter
 Perform double precision subtraction to get elapsed cycles

/* Keep track of most recent reading of cycle counter */
static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;

void start_counter()
{
 /* Get current value of cycle counter */
 access_counter(&cyc_hi, &cyc_lo);
}

32

Accessing the Cycle Cntr.
 GCC allows inline assembly code with mechanism for matching

registers with program variables
 Code only works on x86 machine compiling with GCC

 Emit assembly with rdtsc and two movl instructions

void access_counter(unsigned *hi, unsigned *lo)
{
 /* Get cycle counter */
 asm("rdtsc; movl %%edx,%0; movl %%eax,%1"
 : "=r" (*hi), "=r" (*lo)
 : /* No input */
 : "%edx", "%eax");
}

 17

33

Completing Measurement

 Get new value of cycle counter
 Perform double precision subtraction to get elapsed cycles
 Express as double to avoid overflow problems

double get_counter()
{
 unsigned ncyc_hi, ncyc_lo
 unsigned hi, lo, borrow;
 /* Get cycle counter */
 access_counter(&ncyc_hi, &ncyc_lo);
 /* Do double precision subtraction */
 lo = ncyc_lo - cyc_lo;
 borrow = lo > ncyc_lo;
 hi = ncyc_hi - cyc_hi - borrow;
 return (double) hi * (1 << 30) * 4 + lo;
}

34

Timing With Cycle Counter

 Determine Clock Rate of Processor
 Count number of cycles required for some fixed

number of seconds

 Time Function P
 First attempt: Simply count cycles for one

execution of P
 double tsecs;
 start_counter();
 P();
 tsecs = get_counter() / (MHZ * 1e6);

 double MHZ;
 int sleep_time = 10;
 start_counter();
 sleep(sleep_time);
 MHZ = get_counter()/(sleep_time * 1e6);

 18

35

Measurement Pitfalls

 Overhead
 Calling get_counter() incurs small amount of overhead
 Want to measure long enough code sequence to compensate

 Unexpected Cache Effects
 artificial hits or misses
 e.g., these measurements were taken with the Alpha cycle

counter:
foo1(array1, array2, array3); /* 68,829 cycles */
foo2(array1, array2, array3); /* 23,337 cycles */

vs.
foo2(array1, array2, array3); /* 70,513 cycles */
foo1(array1, array2, array3); /* 23,203 cycles */

36

Dealing with Overhead & Cache Effects

 Always execute function once to “warm up” cache
 Keep doubling number of times execute P() until reach some

threshold
 Used CMIN = 50000

 int cnt = 1;
 double cmeas = 0;
 double cycles;
 do {
 int c = cnt;
 P(); /* Warm up cache */
 get_counter();
 while (c-- > 0)
 P();
 cmeas = get_counter();
 cycles = cmeas / cnt;
 cnt += cnt;
 } while (cmeas < CMIN); /* Make sure have enough */
 return cycles / (1e6 * MHZ);

 19

37

Multitasking Effects

 Cycle Counter Measures Elapsed Time
 Keeps accumulating during periods of inactivity

 System activity
 Running other processes

 Key Observation
 Cycle counter never underestimates program run time
 Possibly overestimates by large amount

 K-Best Measurement Scheme
 Perform up to N (e.g., 20) measurements of function
 See if fastest K (e.g., 3) within some relative factor ε (e.g.,

0.001)

K

38

K-Best
Validation

 Very good accuracy for <
8ms
 Within one timer interval
 Even when heavily loaded

 Less accurate of > 10ms
 Light load: ~4% error

 Interval clock interrupt
handling

 Heavy load: Very high error

Intel Pentium III, Linux

0.001

0.01

0.1

1

10

100

0 10 20 30 40 50

Expected CPU Time (ms)

M
e
a
s
u

re
d

:E
x
p

e
c
te

d
 E

rr
o

r

Load 1

Load 2

Load 11

K = 3, ε = 0.001

 20

39

How are “actual” run times of programs
determined?
 Write a procedure that repeatedly writes

values to an array of 2048 integer and then
reads them back

 Let r be the number of repetitions
 Determine expected run time T(r) of

procedure as a function of r by timing it
for r = 1…10 and performing a least squares
fit to T(r) = mr + b
 Linear regression (will discuss later this

semester)

40

Compensate
For Timer
Overhead

 Subtract Timer Overhead
 Estimate overhead of single

interrupt by measuring periods of
inactivity

 Call interval timer to determine
number of interrupts that have
occurred

 Better Accuracy for > 10ms
 Light load: 0.2% error
 Heavy load: Still very high error

K = 3, ε = 0.001

Intel Pentium III, Linux

Compensate for Timer Interrupt Handling

0.001

0.01

0.1

1

10

100

0 10 20 30 40 50

Expected CPU Time (ms)

M
e
a
s
u

re
d

:E
x
p

e
c
te

d
 E

rr
o

r

Load 1

Load 2

Load 11

 21

41

K-Best
on NT

 Acceptable accuracy for <
50ms
 Scheduler allows process

to run multiple intervals

 Less accurate of > 10ms
 Light load: 2% error
 Heavy load: Generally very

high error

K = 3, ε = 0.001

Pentium II, Windows-NT

0.001

0.01

0.1

1

10

100

0 50 100 150 200 250 300

Expected CPU Time (ms)

M
e
a
s
u

re
d

:E
x
p

e
c
te

d
 E

rr
o

r

Load 1

Load 2

Load 11

42

Time of Day Clock
 Unix gettimeofday() function
 Return elapsed time since reference time (Jan 1, 1970)
 Implementation

 Uses interval counting on some machines
– Coarse grained

 Uses cycle counter on others
– Fine grained, but significant overhead and only 1 microsecond resolution

#include <sys/time.h>
#include <unistd.h>

 struct timeval tstart, tfinish;
 double tsecs;
 gettimeofday(&tstart, NULL);
 P();
 gettimeofday(&tfinish, NULL);
 tsecs = (tfinish.tv_sec - tstart.tv_sec) +
 1e6 * (tfinish.tv_usec - tstart.tv_usec);

 22

43

K-Best Using gettimeofday

 Linux
 As good as using cycle counter
 For times > 10 microseconds

 Windows
 Implemented by interval

counting
 Too coarse-grained

Using gettimeofday

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250 300

Expected CPU Time (ms)

M
e
a
s
u

re
d

:E
x
p

e
c
te

d
 E

rr
o

r

Win-NT

Linux

Linux-comp

44

Measurement Summary

 Timing is highly case and system dependent
 What is overall duration being measured?

 > 1 second: interval counting is OK
 << 1 second: must use cycle counters

 On what hardware / OS / OS version?
 Accessing counters

– How gettimeofday is implemented
 Timer interrupt overhead
 Scheduling policy

 Devising a Measurement Method
 Long durations: use Unix timing functions
 Short durations

 If possible, use gettimeofday
 Otherwise must work with cycle counters
 K-best scheme most successful

 23

45

Approximate Measures of Short
Intervals
 Suppose no access to cycle counters
 How to measure an event that is shorter

than the resolution of the clock?
 Cannot directly measure events with

Te < Tc

 Overhead makes it hard to measure even
when Te > nTc,
 n is small integer

46

Approximate Measures of Short
Intervals

Tc

Te

Te

Case 1:
Count+1

Case 2:
Count+0

 24

47

Approximate Measures of Short
Intervals
 Bernoulli experiment

 Outcome = +1 with probability p
 Outcome = +0 with probability (1-p)
 Equivalent to flipping a biased coin

 Repeat n times
 Approximates a binomial distribution
 Only approximate since each measurement

cannot be guaranteed to be independent
 Usually close enough in practice

48

Approximate Measures of Short
Intervals
 m = number of times Case 1 occurs

 Count+1
 n = total number of measurements
 Average duration is ratio of m/n
 Use confidence interval for proportions

ce
T
n

m
T =

 25

49

Example

 Clock resolution = 10 us
 n = 8764 measurements
 m = 467 clock ticks counted
 95% confidence interval

10 us

?

?

Case 1:
467

Case 2:
8297

50

Example

)0580.0,0486.0(

8764

8764

467
1

8764

467

96.1
8764

467
),(21

=

!
"

#
$
%

&
'

= mcc

 Scale by clock period = 10 us
 95% chance that measured event is

 (0.49, 0.58) us

 26

51

Important Aside

 Confidence interval calculation for
proportions discussed in last class (and
textbooks) is controversial
 Recently, statisticians have shown that it is

problematic
 The approach used on the previous slide + in the

textbooks (Lilja, Jain, others) is somewhat
discredited

 Link on class web page

52

Profiling

 Overall view of program’s execution-time
behavior

 Fraction of total time spent in specific
states
 Fraction of time in each subroutine
 Fraction of time in OS kernel
 Fraction of time doing I/O

 Find bottlenecks, code hot-spots
 Optimize those sections first

 27

53

Statistical Sampling

 Select a random
subset of a population

 Gather information on
only this subset

 Extrapolate this
information to overall
population

 Results are a
statistical summary
with corresponding
error probabilities

54

PC Sampling

 Periodically interrupt program at fixed intervals
 Record appropriate state information in interrupt

service routine
 Post-process to obtain overall profile

+1 +1 +1

 28

55

PC Sampling

 At each interrupt
 Examine PC on return address stack
 Use address map to translate this PC to

subroutine i
 Increment array element H[i]

Addr map
0-1298: Subr 1
1299-3455: Subr 2
3456-5567: Subr 3
5568-9943: Subr 4

PC: 4582 Histogram
counters:
H[3]=H[3]+1

56

PC Sampling

 29

57

PC Sampling

 n total interrupts
 Post-processing step

 H[i]/n = fraction of time executing in
subroutine i

 (H[i]/n) * (interrupt period) = time in each
subroutine

58

PC Sampling

 This is a statistical process
 Different counts each time the experiment is

performed
 Infer behavior of entire program from

small sample
 Apply confidence intervals to quantify

precision of results

 30

59

Example

 40 us interrupt
 36,128 interrupts in subroutine A
 Program runs for 10 seconds
 Time in this subroutine?

 90% confidence interval

 m = 36,128
 n = 10 sec / 40 us = 250,000
 p = m/n = 0.144

60

Example

)146.0,144.0(

250000

)855488.0(144512.0
645.1144512.0),(21

=

= mcc

 90% chance that the program spent 14.4-14.6% of
its time in subroutine A

 31

61

Example

 10 ms interrupt
 12 interrupts in subroutine A
 n = 800 samples

 8 seconds total execution time
 Time in this subroutine?

 99% confidence interval

 p = m/n = 0.015

62

Example

)0261.0,0039.0(

800

)015.01(015.0
576.2015.0),(21

=

!
= mcc

 99% chance that the program spent 31-210 ms in
subroutine A

 A pretty wide range!
 But only <3% of total execution time
 Start optimizing somewhere else first

 32

63

Reducing the Interval Size

 Use a lower confidence level
 Obtain more samples

 Run program longer
 May not be possible

 Increase sample rate
 May be fixed by system
 Will increase overhead and perturbation

 Run multiple times and add samples from each
run

64

PC Sampling

 Interrupts must occur asynchronously w.r.t. any program events
 Samples must be independent of each other
 Else over/under-sample events synchronous with interrupt

 Periodic versus random sampling

+1 +1 +1

 33

65

Basic Block Counting

 Basic block
 Sequence of instructions with no branches into

or out of the block
 When first instruction is executed, guaranteed

that all instructions in block will be executed
 Single entry, single exit

66

Basic Block Counting

 Generate a program profile by inserting
additional instructions in each block
 Increment a unique counter each time a block is

entered
 Produces a histogram of program execution
 Can post-process to find instruction

execution frequencies

 34

67

Comparison

PerfectWithin statistical
varianceRepeatability

HighRandomly
distributedPerturbation

Extra
instructions per

block

Interrupt service
routineOverhead

Exact countStatistical
estimateOutput

Basic block
countingPC sampling

68

Profiling Tools

 UNIX gprof
 Uses PC-sampling

 Intel VTUNE
 Apple Shark
 Many others…

 35

69

Event Tracing

 Profile shows overall frequency-of-
execution behavior
 Ignores time-ordering of events

 Program trace
 Dynamic list of events generated by program
 Events = anything you want to instrument

 Sequence of memory addresses
 I/O blocks accessed

 Typically used to drive a simulator

70

Trace Generation

Application
program

Compress

Uncompress

Trace
consumer

Modify to generate trace

 36

71

Trace Generation

Application
program

Compress

Uncompress

Trace
consumer

Online trace
consumption

Modify to generate trace

72

Trace Generation

 Source-code modification
 Allows precise control of what events are

traced and what data is recorded
 Typically a manual process

Source
code

Object
code Proc TraceCompiler

 37

73

Trace Generation

 Software exceptions
 HW forces an exception before each

instruction
 Exception routine decodes instruction

 Store instr type, PC, operand addresses, etc.
 “Trace” bit in many processors
 Tremendous slowdown

Source
code

Object
code Proc TraceCompiler

74

Trace Generation

 Emulation
 Make a system appear to

be something else
 Modify emulator to

generate trace
 E.g. Java Virtual Machine

Source
code

Object
code Proc TraceCompiler

 38

75

 Microcode modification
 Modify instruction execution directly
 Allows tracing of all instructions

 Including operating system
 Depends on access to lower levels of the

processor
 E.g. Transmeta Crusoe processor

Trace Generation

Source
code

Object
code Proc TraceCompiler

76

Trace Generation

 Compiler modification
 Insert trace code directly in object file
 Requires access to the compiler itself

Source
code

Object
code Proc TraceCompiler

 39

77

Trace Generation

 Compiler modification
 Insert trace code directly in object file
 Requires access to the compiler itself
 Write post-compilation binary editor/rewrite

tool

Source
code

Object
code Proc TraceCompiler

78

Trace Data Compression

 Standard compression
algorithms as trace is
written to disk

 Uncompress when
reading

 Typical reduction
 20-70%

 Tradeoff is compress-
uncompress time

Application
program

Compress

Uncompress

Trace
consumer

Modify to generate trace

 40

79

Online Trace Consumption

 Use trace data as it is
generated

 Never stored on disk
 Multitasking may lead to

non-deterministic behavior
 Repeatability issue

 Before-and-after
comparison tests
 Difference due to change

in system or change in
trace?

 Becomes statistical
comparison with n runs

Application
program

Trace
consumer

Online trace
consumption

Modify to generate trace

80

Trace Data

 Tracing generates a tremendous volume of
data

 Trace 100,000,000 instrs/sec
 16 bits of data per event
 190 Mbytes of data per second

 11 Gbytes per minute
 Huge perturbations

 Due to tracing code
 Time to store trace data

 41

81

Advanced Techniques

 Researchers have developed many
approaches to dealing with voluminous
trace data
 Abstract Execution
 Trace Sampling
 …..

 See Lilja

82

Trace Sampling

 Save only subsequences of overall trace
 Drive simulator with samples
 Results should be statistically similar to

driving with complete trace
 One sample = k consecutive events
 Sampling interval = P (period)

k k

P

 42

83

Indirect Ad Hoc Techniques

 Sometimes the desired metric cannot be
measured directly

 Use your creativity to measure one thing
and then derive/infer the desired value

84

Example 1 – System Load

 What is system load?
 Number of jobs in run queue?
 Number of jobs actively time-sharing?
 Fraction of time processor is not in idle loop?
 Others?

 How to measure it?
 Modify OS
 PC sampling
 Indirect?

 43

85

Example

 Let system run for fixed time T
 Note value of counter

Monitor

Count

n

T

86

Example

 Let system run for fixed time T
 Compare value of loaded system monitor

counter to unloaded system count value

Monitor

Monitor
App 1

Count

n

n/2

T

 44

87

Example

 Let system run for fixed time T
 Compare value of loaded system monitor

counter to unloaded system count value

Monitor

Monitor
App 1

App 1

App 2

Monitor

Count

n

n/2

n/3

T

88

Example 2: The Memory Mountain

 Read throughput (read bandwidth)
 Number of bytes read from memory per second

(MB/s)
 Memory mountain

 Measured read throughput as a function of
spatial and temporal locality.

 Compact way to characterize memory system
performance.

 45

89

Memory Mountain Test Function

/* The test function */
void test(int elems, int stride) {
 int i, result = 0;
 volatile int sink;

 for (i = 0; i < elems; i += stride)
result += data[i];

 sink = result; /* So compiler doesn't optimize away the loop */
}

/* Run test(elems, stride) and return read throughput (MB/s) */
double run(int size, int stride, double Mhz)
{
 double cycles;
 int elems = size / sizeof(int);

 test(elems, stride); /* warm up the cache */
 cycles = fcyc2(test, elems, stride, 0); /* call test(elems,stride) */
 return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */
}

90

Memory Mountain Main Routine
/* mountain.c - Generate the memory mountain. */
#define MINBYTES (1 << 10) /* Working set size ranges from 1 KB */
#define MAXBYTES (1 << 23) /* ... up to 8 MB */
#define MAXSTRIDE 16 /* Strides range from 1 to 16 */
#define MAXELEMS MAXBYTES/sizeof(int)

int data[MAXELEMS]; /* The array we'll be traversing */

int main()
{
 int size; /* Working set size (in bytes) */
 int stride; /* Stride (in array elements) */
 double Mhz; /* Clock frequency */

 init_data(data, MAXELEMS); /* Initialize each element in data to 1 */
 Mhz = mhz(0); /* Estimate the clock frequency */
 for (size = MAXBYTES; size >= MINBYTES; size >>= 1) {

for (stride = 1; stride <= MAXSTRIDE; stride++)
 printf("%.1f\t", run(size, stride, Mhz));
printf("\n");

 }
 exit(0);
}

 46

91

The Memory Mountain

s
1

s
3

s
5

s
7

s
9

s
1
1

s
1
3

s
1
5

8
m 2

m 5
1

2
k

1
2

8
k 3
2

k 8
k 2

k

0

200

400

600

800

1000

1200

re
a
d

 t
h

ro
u

g
h

p
u

t
(M

B
/s

)

stride (words)
working set size (bytes)

Pentium III Xeon

550 MHz

16 KB on-chip L1 d-cache

16 KB on-chip L1 i-cache

512 KB off-chip unified

L2 cache

Ridges of

Temporal

Locality

L1

L2

mem

Slopes of

Spatial

Locality

xe

92

Ridges of Temporal Locality
 Slice through the memory mountain with stride=1

 illuminates read throughputs of different caches and
memory

0

200

400

600

800

1000

1200

8
m

4
m

2
m

1
0
2
4
k

5
1
2
k

2
5
6
k

1
2
8
k

6
4
k

3
2
k

1
6
k

8
k

4
k

2
k

1
k

working set size (bytes)

re
a
d

 t
h

ro
u

g
p

u
t

(M
B

/s
)

L1 cache

region

L2 cache

region

main memory

region

 47

93

A Slope of Spatial Locality

 Slice through memory mountain with size=256KB
 shows cache block size.

0

100

200

300

400

500

600

700

800

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16

stride (words)

re
a
d

 t
h

ro
u

g
h

p
u

t
(M

B
/s

)

one access per cache line

94

Perturbation

 To obtain more information (higher
resolution)
 → Use more instrumentation points

 More instrumentation points
 → Greater perturbation

 48

95

Perturbation

 Computer performance measurement
uncertainty principle
 Accuracy is inversely proportional to

resolution.

Resolution

A
cc

ur
ac

y

Low

High

High

96

Perturbation

 Superposition does not work here
 Non-linear
 Non-additive

 Double instrumentation ≠ double impact on
performance
 Some instrumentation cancels out
 Some multiplies impact

 No way to predict!

 49

97

Instrumentation Code

 Changes memory access patterns
 Affects memory banking optimizations

 Generates additional load/store
instructions
 More frequent cache flushes and replacements
 But may reduce set associativity conflicts

 Generates more I/O operations
 Will increase overall execution time

 More time-sharing context switches
 Alters virtual memory paging behavior

98

Summary

 Measurement strategies
 Event-driven
 Tracing
 Sampling

 Measuring program time
 Profiling
 Trace generation
 Indirect measurements when all else fails

 System load example
 Perturbations

 Have to be careful to minimize perturbations due to
instrumentation

