
Random
CS 700 Stuff !

By An AI Researcher !

AI Experiments

Often require both experiment and proof.

Often involve stochastic (semi-random)
experiments.

Often involve comparing multiple
techniques over several objectives.

Often use simulations with large
numbers of parameters.

Experimental Issues
Common in AI

Good Experiments (randomness, open
source verification, replicability, honesty)

Reporting: LaTeX, gnuplot, R, good writing

Making Valid Claims (T-tests/ANOVAs,
nonparametric tests, multiobjective)

Proving Generality (multiple problem
domains, train/test methodologies)

Optimization and Experimental Design

Good Experimental
Methodology

Verification and
Replicability

Report more than enough information
necessary for others to replicate your
experiments or verify your proof.

What if your system is so large and
complex that no one can reasonably be
expected to replicate it just to verify
your crazy claim?

Open Source And Good
Experimental Claims
Make all your code available so others
can verify your claims.

Reasons not to:

You’re hiding something

Your code is embarassingly bad

You want to sell your code

Random Number
Generators

Absolutely critical for good stochastic
experimental work

If you have relied on java.util.Random or
C/C++’s rand() for your work, it’s time to
redo all of your experiments.

Random Number
Generators

Statistically Random

Long Period

Fast

Replicable (pseudorandom)

R1 ... Rn-1 cannot predict Rn (crypto)

Random Number
Generators

Horrifying: Linear Congruential

Rn = aRn-1 + b (mod m)

Used in Java, C, C++ alife.co.uk/nonrandom/

Better

Knuth Subtractive, Linear Feedback
Shift Register, Lagged Fibonacci

Mersenne Twister

Plagiarism and Faking
or Misreporting Results

Plagiarism and Faking
or Misreporting Results

Your career is over.

Ways to End Your
Career

Your technique did poorly in some tests.
Report only where it did well.

Your technique did poorly in all tests.
Modify the test results.

You find out that someone else already
invented the method. Don’t cite them.

Your results were due to an error. Don’t
report it.

Ways to End Your
Career

Plagiarize.

Use figures without permission.

Someone else said something better
than you can. Use his text instead.

This includes former co-authors.

Quote someone without making it
brutally clear that it’s a quote.

Example

Since most jobs have
small memory
requirements, relatively
fine-grain (or short-term)
time-slicing among
several memory-resident
jobs is distinctly possible.

Figure 1

Example

Since most jobs have
small memory
requirements, relatively
fine-grain (or short-term)
time-slicing among
several memory-resident
jobs is distinctly possible
[Setia et al, 1999]. Figure 1 from

[Setia et al, 1999]

Example

[Setia et al 1999]
argued that since most
jobs have small memory
requirements, relatively
fine-grain (or short-term)
time-slicing among
several memory-resident
jobs is distinctly possible. Figure 1 from

[Setia et al, 1999]

Example

[Setia et al 199] have
argued: “Since most jobs
have small memory
requirements, relatively
fine-grain (or short-term)
time-slicing among
several memory-resident
jobs is distinctly
possible.”

Figure 1 from
[Setia et al, 1999]

with permission

Example

Setia et al have argued
that the small size of
many memory-resident
jobs enables fine-grain
time-slicing. [Setia et al
1999]

(This is dangerous)
Figure 1 from

[Setia et al, 1999]
with permission

Reporting Tools

Do Not Use MS Word

Math looks horrible in Word

Word does not properly typeset
paragraphs of text

Word does not handle PDF/EPS files well

Word does not lend itself to long
documents or to customization

Word is not portable

LaTeX

Nearly all computer science,
mathematics, physics, and engineering
journals and conferences permit LaTeX

Many require LaTeX

Your dissertation should almost
certainly be in LaTeX

If you use Word, you will be noted as
someone unable to learn LaTeX

LaTeX has:

A huge open source community and
library of tools

The best math typesetting anywhere

The best bibliographic reference system

Excellent long-document handling
(macros, sophisticated style files, etc.)

Extensibility to presentations, reports...

LaTeX does not have...

Good unicode handling

(though XeTeX is great)

Good modern font handling

(though XeTeX is great)

A GUI

(it’s a programming language)

Do Not Use Excel

Excel is famous for math errors

Excel’s statistics are primitive

Use R

Excel’s chart facilities are very poor for
scientific publishing, and cannot output
to PDF

Use R, Mathematica, gnuplot

Official Style

A long time ago, scientists used to write
well.

Then the Victorian period occurred.

Administrators and politicians
developed a unique style of writing
called “Official Style” which was
designed to obsfucate and avoid
responsibility.

Official Style

Use I and Me

Avoid passive voice unless it is awkward

Do not use a word if there exists a
shorter, more common word which
means the same thing

Utilize ! Use

Official Style

Four experiments were performed
utilizing the technique.

We utilized the technique in performing
four experiments.

I ran four experiments using the
technique.

Note to Foreign
Students

Regularly schedule ESL writing tutoring

writingcenter.gmu.edu/eslservices.html

Read all of Strunk and White

www.bartleby.com/141/

Making Valid Claims

Two Primary Goals

Demonstrating that my technique is best

Demonstrating why my technique is best

Comparisons

T-Test is the absolute minimum

Nonparametric tests are preferred
(data is rarely normally distributed)

Rank all data, do T-test on ranks

LARGE sample sizes: 50 is minimum

ANOVA for multiple comparisons

Bonferroni Correction: "’ = "/N

Good Tutorial

Statistics for EC

http://www.cis.uoguelph.ca/~wineberg/

Picking a Metric

Scenario: I want to show that the output
of my stochastic optimization technique
is better than existing technique A.

Average best result over N runs?

How often I found the optimum?

How often I got within ! of the optimum?

Multiobjective Tests

Example: Tree “Bloat” in Genetic
Programming

Technique must produce trees which are
both highly fit and very small

Technique A makes smaller trees

Technique B makes fitter trees

Which is better? What if N techniques?

Combining to a Single
Quality Value

s = tree size, f = tree fitness, q = quality

q = as + bf (linear)

q = safb (nonlinear)

Yuck: how do we know what the
experimenter wants?

Pareto Optimality

Solution A pareto-dominates Solution b
iff both are true:

1. for all criteria c, A(c) is not inferior
to B(c)

2. exists a criterion d for which A(d) is
superior to B(d)

Pareto Front: all pareto-nondominated
solutions in your collection

The Front

2-dimensional front shown

Comparing Pareto
Methods

Find the Pareto front

Identify “unacceptable” regions of each
criterion

Trim the Pareto front

How do we know front-technique A is
statistically significantly superior to
non-front-technique B? Not easy.

Proving Generality

Testing over multiple
test problems

Scenario: I wish to show that my new
constraint satisfaction system beats
branch-and-bound techniques.

Testing over multiple
problem domains

MANY test problems

STANDARDIZED test problems

At least ones that others have done in
the past so you can be relevant

REAL test problems

HIGHLY VARIANT test problems

Train/Test
Methodologies

Scenario: two machine learning
techniques A and B each generate rules
describing the world based on a limited
set of N samples from the world.

Neural networks, decision trees,
support vector machines, etc.

How do I verify that technique A has
figured out how the world works better
than technique B?

Train/Test
Methodologies

Gather a set U of uniformly distributed
samples.

Divide U into two sets, the training set
and the testing set.

Feed each technique the training set.

Verify the degree to which each
technique then got the testing set
correct.

Train/Test
Methodologies

Performance on the training set doesn’t
really matter.

All that matters is performance on the
testing set, demonstrating
generalization.

Optimization and
Experimental Design

Experimental Design

Scenario: a large multiagent simulation
with parameters with many possible
settings and likely significant nonlinear
parameter interaction.

The Scientist’s Goal: understanding and
verifying the model’s parameter space.

The Engineer’s Goal: optimizing the
parameter space.

Optimization

I need to optimize N parameters for my
method.

Local Optima?

Expensive to perform Experiments?

Experiments can be performed in
parallel?

Hill-climbing

S # random solution

1. S’ # tweak(copy(S))

2. If S’ better than S: S # S’

3. Go to 1

S # random solution, T # High Value

1. S’ # tweak(copy(S))

2. If S’ better than S
 or with P(T, Q(S), Q(S’)): S # S’

3. Decrease T

4. Unless T ! 0, Go to 1

Simulated Annealing

P (T, S′, S) = e
Q(S′)−Q(S)

T

Evolutionary
Computation Methods

P # { S1 ... Sn } random solutions

1. P’ # { }

2. Until P’ is filled,

3. P’ # P’ ∪ { tweak(copy(select(P))) }

4. P # P’

5. Go to 1

What does it mean to...

tweak?

copy?

select?

Assess the quality of a solution?

... how would you do this for multiple
objectives?

EC Methods

Genetic Algorithms

Genetic Programming

Evolution Strategies

Friends of the family:

Particle Swarm Optimization

Ant Colony Optimization

Parameter Search

Situation: I have a simulation with a
real-valued parameter space for which
there are complex interactions among
the parameters. Testing is costly.

I wish to test N times to get a feel for
what the parameter space looks like.

How do I focus tests on areas of the
space mostly like to be “interesting”?

What is Interesting?

Interesting is: a steep
slope in parameter space

Differentiate the space?

Take M samples, fit a model,
sample more where the model is steep?

Iteratively sample along a line
between two very different quality
samples?

A

B

C

D

Figure 1: Four different “bracketing lines” travers-
ing a hilly region in the search space.

those samples (known in statistics as the model’s response
surface). We might develop this curve using a neural net-
work, a regression technique, or a mixture of gaussians, for
example. Assuming the curve was differentiable, we could
then select new points under the magnitude of its gradi-
ent similar to the sampling method from the previous para-
graph. Unfortunately, constructing this curve requires us
to make fairly strong assumptions about the model in order
to pick a response surface technique with the appropriate
learning bias.

We propose instead a novel approach which performs this
adaptive sampling without the need for fitting a curve to the
model. Instead, we iteratively pick pairs of samples from a
preexisting sample set such that the samples’ model outputs
are very different from one another, and secondarily, such
that the two samples are fairly close to one another. We then
generate a new sample along the line between the two, using
the heuristic that there is very likely a strong slope transition
somewhere in-between them. We then add this new sample
to the set. We may augment this with a local optimization
procedure, repeating the sample-generation along this line
some N times in a bracketing fashion, each time using the
child to replace the parent closest and most similar in fitness
to the child.

The method is population-oriented and bears important
relationships with evolutionary computation (EC), so we de-
scribe it roughly in EC terms. An evaluated sample in the
search space is an individual and the collective samples pro-
duced so far may be viewed as a population. The output
of the system at a given sample is equivalent to the fitness
of an individual, and the procedure we will use to generate
new individuals applies certain kinds of tournament selection
and crossover to the population. The algorithm is roughly a
steady-state procedure, except that no individuals are ever
deleted from the population: it just continues to grow. We
will use EC terminology in the remainder of the paper.

2. THE ALGORITHM
Let us assume, for the time being, that our search space

is real-valued and multidimensional. Our algorithm repeat-
edly selects pairs of individuals from the population, crosses
them over in a certain fashion to produce a child, and then

adds the child to the population. The objective is to pro-
duce children which are closer to steep-slope transitions in
the search space. The search heuristic is very simple: if two
individuals in the population have wildly different fitnesses,
then some kind of fitness transition exists in the region be-
tween them. Figure 1, line A, shows this situation. Line
B shows a related situation where multiple transitions may
appear between the two individuals. In either case, at least
one transition exists somewhere between the two points. By
contrast, if the individuals’ fitness is similar to one another,
then either there is no transition between them (Figure 1,
line D) or there exists an entire hill or valley between them
(line C). We have no evidence if the hill or valley exists, and
so will ignore this possibility except to include some ran-
dom exploration to allow for its discovery. Our secondary
heuristic is also simple: the closer the individuals are to one
another, the more likely that this transition is steep in slope.

Parents are selected as follows. We select the first parent
at random from the existing population. We then use a dou-
ble tournament selection procedure to select the second par-
ent. Specifically, we perform several tournament-selection
tournaments, preferring individuals near to the first parent.
The winners of these tournaments then compete together in
a final tournament preferring the individual which is most
different from the first parent in fitness. The winner of this
final tournament becomes the second parent.

Once we have selected parents, we then produce a child
lying somewhere on the line segment between them. The
child is then added to the population. We may then per-
form a local optimization procedure in the form of iterated
bracketing to focus more closely on the steep transitions:
given the parents p1 and p2 and child c, we replace with c
the parent pi whose difference in fitness with c, divided by
the distance between them, is highest. Along the line seg-
ment between the revised parents pj and pi = c we produce
yet another child, add c to the population, and repeat the
process.

Iterated bracketing is highly exploitative, and our
crossover procedure cannot create children outside the con-
vex hull of the current population. To add some exploration
into the procedure we add random individuals to the popu-
lation in two ways. First, instead of selecting the first parent
from the population, occasionally we generate a parent at
random from the space, evaluate it, insert it into the popu-
lation, and select it. Second, we seed the initial population
with randomly-generated and evaluated individuals.

The algorithm used is described in pseudocode below. It
requires the user to provide several items:

• A Crossover procedure, ideally one which produces
a child along the line between two individuals.

• A procedure to Create a random individual.

• A procedure to Assess the fitness of an individual.

• A procedure Dist to compute the metric distance be-
tween two individuals.

• The value initializationSize, specifying the initial num-
ber of randomly-generated individuals to seed the pop-
ulation.

• The value exploreProbability, specifying the likelihood
that the first parent will be generated at random rather
than chosen from the population.

Algorithm
Generate P = { S1 ... Sm } random samples

1. S # pick at random from P

2. S’ # select(P), which is close to S
 and very different in quality from S

3. Generate S’’ along line segment
 between S and S’

4. P # P ∪ {S’’}

5. Go to 1

Iterated Bracketing
(replaces steps 3 and 4)

Given S and S’, iterate W times:

Generate S’’ along line segment
between S and S’

P # P ∪ {S’’}

If "(S,S’’) > "(S’,S’’) then S’ = S’’ else S = S’’

∆(S1, S2) =
|Q(S1)−Q(S2)|

||S1 − S2||

Results

!4

!2

0

2

4

!4
!2

0

2

4

0

0.5

1

1.5

2

!4

!2

0

2

4

0

5

!4

!2

0

2

4

!4
!2

0

2

4

0

0.5

1

1.5

2

!4

!2

0

2

4

0

5

(a) Function Circ(x, y) (b) Slope: ||∇Circ(x, y)|| (c) 10000 Iterations,
numBrackets = 1

0 0.2 0.4 0.6 0.8 1.0 1.2

Slope !Magnitude of Gradient"
0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
o
v
e
ra
g
e
S
c
o
re

0 0.2 0.4 0.6 0.8 1.0 1.2

(d) Coverage Score by Slope, 10000 iterations, numBrackets = 1, average of 50 runs (e) 2000 Iterations,
numBrackets = 5

Figure 4: Description of and Experimental Results for the Two-Circle Function (Circ).

tive fashion. One possible future approach is to perform
dimensionality reduction techniques (Principal Components
Analysis for example) to help reduce the sparsity of the en-
vironment and thus, ideally, the number of points to sample.
Related to this is another problem: the method takes a while
to build up enough samples to effectively adapt the sampling
method. The technique seems to work well, but it does so
more slowly than we’d like.

The algorithm tends to ignore points along the edges of
the space. In our initial experiments we had swapped the
order of the tournament selections (doing fitness first); and
this produced a very strong tendency to avoid edges. Per-
forming tournament selection on distance first helped alle-
viate this, but ultimately we will need to use another pro-
cedure for selecting parent pairs. For example, if the first
chosen point is close to an edge, we might increase the prob-
ability that another point along that edge will also be se-
lected.

If a space has a consistent slope (such as in the Rot func-
tion), we note that the algorithm essentially ignores the mild
constant slope permeating the search space. This is due to
the use of tournament selection, which ignores candidate
pairs’ actual fitness differences and instead focuses on their
relative ordering. But is this appropriate? Such a slope
indicates that something is changing, after all. It appears
that the algorithm focuses samples not proportional to slope
values but instead on those regions which have higher slope
relative to their peers. This may or may not be desirable to
the experimenter.

The algorithm also works well when there are large “un-
interesting” spaces, but not necessarily when there are
large numbers of “interesting” ones. In informal analy-
sis, the algorithm appears to produce unfocused samples
on functions such as two-dimensional sine-waves, f(x, y) =
sin(2πx) + sin(2πy), or similar functions such as Rastri-
gin f(x, y) = x2 + y2 + a(1 − cos(2πx)) + a(1 − cos(2πy)).
Of course, these areas have few “uninteresting” areas to
skip. The function complexity is high enough, and spread
so widely throughout the space, that it’s not clear if there
really is an area that should be sampled less than others.

Last, this algorithm has not been compared against oth-
ers: largely because we have failed to find any other algo-
rithms which search for slopes in a multidimensional space.
The only real competitor we have found is our own pro-
posal to perform curve fitting in some fashion to the response
surface of the function, and then sampling proportional to
the slope of the surface. But one of the attractions our
population-based method held was that it was essentially
model-free, requiring no a priori knowledge of the space like
curve-fitting would. Even so, comparing against a curve-
fitting function would be useful in future work.

6. CONCLUSIONS AND FUTURE WORK
We introduced a novel solution to a heretofore little-

studied problem: how to adaptively sample the space so
as to focus on places in the space where the function output
is changing. Our approach, a form of population-oriented it-

