
Hello everyone, I am Yotam Gingold from George Mason University, it’s my 
honor to present our work ‘Image vectorization and editing via linear gradient 
layer decomposition’.
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A key advantage of vector graphics over raster graphics is their editability and 
resolution independence.  They are widely used in font, logo, map design, etc.

2

Vector graphics are editable and 
resolution independent

• Widely used in illustrations, fonts, logos, and map design.

Font Logo Map



In this work, we focus on a specific type of vectorization i.e., multi-layer 
vectorization.  For a given raster image, multi-layer vectorization decompose it 
into a set of ordered semi-transparent layers.
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Multi-layer vectorization

• Multi-layer vectorization aims to decompose a raster image into 
multiple semi-transparent layers.

Input image
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Multi-layer vectorization

• Multi-layer vectorization aims to decompose a raster image into 
multiple semi-transparent layers.

Input image Decomposed semi-transparent layers



Meanwhile, these decomposed layers can accurately reconstruct the input by 
alpha blending.
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Multi-layer vectorization

• The decomposed layers reconstruct the input raster image by 
alpha blending.

Input image Reconstruction



After decomposition, we can perform recoloring or object insert-remove-replace 
edits using these linear gradient layers in illustrator software.
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Multi-layer vectorization

• Applications: recoloring, insert-remove-replace edits, etc. 

Input image Recoloring inserting objectsReconstruction



The most similar works to ours are [Richardt et al. 2014] and [Favreau et al. 2017]. 
Richardt et al’s work proposed to have users select image regions one-at-a-time 
to decompose into linear or radial gradient layers. Photo2ClipArt proposed a 
Monte Carlo Tree Search algorithm for multi-layer decomposition.

Both methods require more or less user interaction. Photo2ClipArt may get 
stuck in local minima.
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Related work: Multi-layer vectorization

• Vectorizing Bitmaps into Semi-
Transparent Gradient Layers 
Richardt et al. EGSR 2014

These methods require user interaction and may get stuck in local minima.

• Photo2ClipArt: Image Abstraction 
and Vectorization Using Layered 
Linear Gradients       
Favreau et al. SIGGRAPH Asia 2017



To address this problem, we propose a fully automatic approach to gradient 
layer decomposition that finds globally optimal layers given a segmented input 
image.  We drastically reduce the search space with perceptually-motivated 
constraints, resulting in a small space that can be exhaustively enumerated 
quickly.
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Our contributions

• A fully automatic approach to layer decomposition from a 

segmented input image. 

• A drastically reduced search space via perceptually-motivated 

constraints.



Our method takes a raster image and its segmentation mask as input, outputs a 
set of ordered semi-transparent layers.
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Our approach

• Input: a segmented raster image.
• Output: a set of semi-transparent layers 𝐿 = {𝐿! , 𝐿" , … , 𝐿#}.

Input image & its segmentation Output ordered semi-transparent layers (bottom to top)



Multi-layer vectorization is a severely under-constrained problem, for a given 
raster image, there are infinite number of possibilities.

Assuming there are l layers and all n pixels in the input image are independent, 
so there are  2#$ possible decompositions.

If we segment the input into m regions and force pixels in a region to share the 
same layers, then there are still 2%$ possible decompostions.
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Main challenge

• Multi-layer vectorization is severely under-constrained.

Given #layer = 𝑙，#pixel = 𝑛，  #decomposition = 2#$.
Given #layer = 𝑙，#region = 𝑚， #decomposition = 2%$.

Input image Some possible decompositions

…



For a specific decomposition, two types of parameters need to be determined. 

One type is the discrete parameters: the number of layers, their masks, and stack 
order, which we refer to as the layer configuration. 

The other type is the continuous parameters: the linear gradient parameters for 
each layer, which we refer to as the layer parameters.

It is difficult to optimize both types of parameters simultaneously.
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Main challenge

• For a decomposition, two types of parameters are difficult to solve
• Layer configuration: the number of layers, their masks, and stack order.
• Layer parameters: linear gradient parameters of each layer.  

Input image Layers 

Layers: [𝐿!, 𝐿", 𝐿#, 𝐿$]
Layer masks
Stack order: 𝐿! → 𝐿" → 𝐿$, 𝐿! → 𝐿# → 𝐿$

𝐿!

𝐿" 𝐿#

𝐿$

𝐶'()* p = c+ + (p + n) + c,

Layer configuration & layer parameters



In general, our proposed method contains two steps. Firstly, we determine the 
layer configuration from the input image and its segmentation. Secondly, we 
optimize the layer parameters from the layer configuration. 

Next, before introducing our method, we first give two basic concepts used 
throughout our paper.
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Our approach

• We propose a two-step solution to multi-layer vectorization
1. Determine the layer configuration.
2. Estimate the layer parameters.

Input seg. image Layer configuration Output parameterized layers

𝑅!

𝑅"

𝑅#

𝑅$
𝑅%

𝑅&

1 2



The first concept is layer support.

We say that a lower layer 𝐿- supports a higher layer 𝐿. if they satisfy two 
conditions: 
1) the two layers overlap; 
2) one or more overlapping regions are not covered by any in-between layer 

The overlapping regions satisfying condition 2) are referred to as the supporting 
region(s) 

In this example, 𝐿! → 𝐿" via supporting region 𝑅" , 𝐿! → 𝐿/ via supporting 
region 𝑅/.
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Basic concepts

• Layer support: A lower layer 𝐿- supports (→) a higher layer 𝐿.  if 
1) 𝐿- and 𝐿. overlap.
2) No regions in their overlap are covered by a layer in-between.

𝐿!

𝐿" 𝐿#

𝐿$

𝐿! → 𝐿" via 𝑅" ,   𝐿! → 𝐿# via 𝑅# 

𝐿" → 𝐿$ via 𝑅$ ,   𝐿# → 𝐿$ via 𝑅%

Layers Layer supporting relationships

𝑅!

𝑅"

𝑅#

𝑅$
𝑅%

𝑅&

Input seg. image



The second concept is the region supporting.

We say that region  𝑅- supports region 𝑅. if
1) they are adjacent regions.
2) R2’s top (covered) layer L2 supports R3’s top (covered) layer L3.
3) R3 is one of the supporting regions from L2 to L3.

In this example, 𝑅! → 𝑅" , 𝑅" → 𝑅4

Is 3 the same as “Rⱼ is in the overlap of Lᵢ and Lⱼ”?
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Basic concepts

• Region support: Region	𝑅- supports (→) region 𝑅.  if
1) 𝑅-	and 𝑅.	are adjacent.
2) 𝑅-’s top layer 𝐿- supports 𝑅.’s top layer 𝐿..
3) 𝑅. is in the overlap of 𝐿- and 𝐿..

𝑅! → 𝑅" , 𝑅! → 𝑅# , 𝑅! → 𝑅& ,  

𝑅" → 𝑅$ ,  𝑅# → 𝑅%   

𝑅!

𝑅"

𝑅#

𝑅$
𝑅%

𝑅&

Input seg. image Region supporting relationships

𝐿!

𝐿" 𝐿#

𝐿$

Layers 



With the concepts, we find that the region supporting relationships in a layer 
configuration can be expressed as a tree, we call it region supporting tree, and 
which can be enumerated from a region adjacency graph.
The region adjacency graph has edges for every possible valid supporting 
relationship.
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Determining the layer configuration

• Key observation
• A layer configuration can be expressed as a region supporting tree, 

which can be enumerated from the region adjacency graph.

𝐿!

𝐿" 𝐿#

𝐿$

Layer configuration Region supporting tree Region adj. graph

𝑅'

𝑅!

𝑅#𝑅" 𝑅&

𝑅$ 𝑅%

canvas

𝑅%
𝑅$ 𝑅&

𝑅!𝑅"

𝑅#

𝑅' canvas

Input seg. image

𝑅!

𝑅"

𝑅#

𝑅$
𝑅%

𝑅&



So we propose a graph-based method to determine the layer configuration, 
specifically our pipeline contains three steps:
1) Building the region adjacency graph from the input, which essentially defines 

the space of all region supporting trees
2) Enumerating the spanning tree from the region adjacency graph as the 

region supporting tree
3) Merging layers with X-junction hints and derive the layer configuration

Next, we first introduce the region adjacency graph construction.
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Determining the layer configuration

• Pipeline

𝑅'

𝑅!

𝑅#𝑅" 𝑅&

𝑅$ 𝑅%
𝑅%

𝑅$ 𝑅&

𝑅!𝑅"

𝑅#

𝑅'
𝐿!

𝐿" 𝐿#

𝐿$

Build the region 
adjacency graph

Enumerate region 
supporting trees

Merge layers with 
X-junction hints

Input seg. image

𝑅!

𝑅"

𝑅#

𝑅$
𝑅%

𝑅&

The region adjacency graph implies the space of region supporting trees.



In a region adjacency graph, a node corresponds to a region in the input 
segmentation, a directed edge corresponds to a region supporting relationship. 
We add a virtual node 𝑅+ as the default canvas. We add directed edges from it 
to all other regions.

Directly enumerating over all region supporting trees from the initial region 
adjacency graph is rather expensive. The region adjacency graph implies the 
space of region supporting trees. Motivated by figure ground and part 
perception of shapes , we propose three rules to remove very unlikely supporting 
edges from the graph to reduce the search space.
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Building the region adjacency graph 

• Directly enumerating over all region supporting trees from the 
initial region adjacency graph is rather expensive.

𝑅!
𝑅" 𝑅#

𝑅$𝑅&
𝑅%

Many region supporting trees

…

Input seg. image Initial region adj. graph

𝑅!

𝑅$

𝑅#

𝑅"
𝑅'

𝑅%

𝑅&

How to reduce the search space of region supporting trees?

𝑅!

𝑅$

𝑅#

𝑅"
𝑅'

𝑅%

𝑅&



The first one is the size rule. For two adjacent regions, if one’s size is much larger 
another one, then the small-sized region are not allowed to support another one.

As shown in the figure, the decomposition results violating and obeying this rule 
are shown in the middle and right, respectively. 

In contrast, the decomposition result on the right is more consistent with the 
figure ground perception.
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Simplifying the region adjacency graph

• Size rule: very small regions can’t support large ones.

Decomposition with rule
(𝑅!à 𝑅")

𝑅!

Decomposition without rule 
(𝑅"à 𝑅!)

𝑅"

Input



The second one is the surrounding rule.  If one region is surrounded by another 
one, then the surrounded region is not allowed to support the surrounding one.

The decomposition results violating and obeying this rule are shown in the 
middle and right, respectively.

We can see that the right one is more conform to the figure ground perception, 
while the middle one is less intuitive because some layer contain hole.
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Simplifying the region adjacency graph

• Surrounding rule: surrounded regions (islands) can’t support their 
surroundings.

𝑅! 𝑅"

Decomposition with rule
(𝑅!à 𝑅")

Decomposition without rule 
(𝑅"à 𝑅!)

Input



The last one is the adjacent strength rule. If  two regions share very short 
boundary, then they are not allowed to support each other.

As shown in the figure, the decomposition results violating and obeying this rule 
are shown in the middle and right, respectively. 

Compared to the middle one, the right one that decompose the input into two 
isolated rectangular layers is more consistent with the part perception of shapes.
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Simplifying the region adjacency graph

• Adjacent strength rule: Two regions sharing a very short boundary 
can’t support each other.

𝑅!

𝑅"

Decomposition without rule
(𝑅! and 𝑅" are independent)

Input Decomposition without rule 
(𝑅"à 𝑅!)



Here we provide an example to show the these three rules in region adjacency 
graph simplification.

For this example, the initial region adjacency graph contains 6 nodes and 20 
directed edges.  Next, we simplify it with these aforementioned 3 rules.
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An example

𝑅!
𝑅" 𝑅#

𝑅$𝑅&
𝑅%

Input seg. image Initial region adjacency graph

𝑅!

𝑅$

𝑅#

𝑅"
𝑅'

𝑅%

𝑅&



Firstly, we remove edges that violate the size rule.
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An example

𝑅!
𝑅" 𝑅#

𝑅$𝑅&
𝑅%

Input seg. image Simplified with the size rule

𝑅!

𝑅$

𝑅#

𝑅"
𝑅'

𝑅%

𝑅&



secondly, we remove edges that violate the surrounding rule.
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An example

𝑅!
𝑅" 𝑅#

𝑅$𝑅&
𝑅%

Input seg. image

𝑅!

𝑅$

𝑅#

𝑅"
𝑅'

𝑅%

𝑅&

Simplified with the size rule
surrounding rule



At last, we remove edges that violate the adjacent strength rule.

As a result, there are 7 edges in the simplified region adjacency graph, which 
greatly reduce the search space.
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An example

𝑅!
𝑅" 𝑅#

𝑅$𝑅&
𝑅%

Input seg. image

𝑅!

𝑅$

𝑅#

𝑅"
𝑅'

𝑅%

𝑅&

Simplified with the size rule
surrounding rule

adjacent strength rule



After simplifying the region adjacency graph, next we  enumerate all spanning 
trees from the region adjacency graph and regard them as the region supporting 
trees.
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Enumerating region support trees

• Enumerating the spanning trees (region support trees) from the 
simplified region adjacency graph.

𝑅!
𝑅" 𝑅#

𝑅$𝑅&
𝑅%

Input seg. image

𝑅!

𝑅$

𝑅#

𝑅"

𝑅' 𝑅%

𝑅&

𝑅!

𝑅$

𝑅#

𝑅"

𝑅'
𝑅%

𝑅&

𝑅!

𝑅$

𝑅#

𝑅"

𝑅' 𝑅%

𝑅&
Simplified region adj. graph

Region supporting trees

…
Region supporting trees

…



For each region supporting tree, we first convert it into a layer representation 
and then try to merge some of them according to the X-junction assumption.

As shown in the figure, an X-junction denotes 4 regions with a 2 × 2 grid-like 
layout, an x-junction occurs when a semi-transparent layer runs across 2 other 
layers. 

According to the X-junction assumption, there are only 4 allowed configurations 
of supporting relationships as shown on the right.
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Merging layers with X-junction hints

• An X-junction occurs when a semi-transparent layer runs across 2 
other layers [Meteli 1974, 1985].

Regions’ supporting relationships and layer configurations

Ra Rb

RcRd

Ra Rb

RcRd

Ra Rb

RcRd

Ra Rb

RcRd

Ra Rb

RcRdAn X-junction



Here for the region supporting tree, the derived layer configuration as shown in 
the right. 

As we can see, the purple circular layer covering 𝑅7 and 𝑅8 splits into two layers. 
Next we merge the top layers of 𝑅7 and 𝑅8 according to the x-junction 
assumption.
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𝑅!
𝑅" 𝑅#

𝑅$𝑅&
𝑅%

𝑅!

𝑅$

𝑅#

𝑅"

𝑅' 𝑅%

𝑅&

Input seg. image
& an X-junction

A region supporting tree Layer configuration before layer merging

R1 R6

R5R2

Merging layers with X-junction hints



After layer merging, we obtain a complete circular purple layer on the top. 

As a result, we get 5 layers, the layer configuration is shown on the right.

Once we have obtained a layer configuration, the next step is to estimate the 
layer parameters.
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𝑅!
𝑅" 𝑅#

𝑅$𝑅&
𝑅%

Merging the top layers of 
𝑅& & 𝑅% 

Layer configuration after layer mergingInput seg. image
& an X-junction

R1 R6

R5R2

𝑅!

𝑅$

𝑅#

𝑅"

𝑅'

𝑅%
𝑅&

Merging layers with X-junction hints



We define an energy function to assess the layer quality. Our energy function is 
defined as the weighted sum of a reconstruction term, a gamut term, and a 
compactness term.

The reconstruction term prefers the reconstructed image to be as close to the 
input image as possible. 
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Estimating layer parameters

• Energy

𝐸 = 	𝑤9𝐸:;<=> + 𝑤?𝐸,@ABC + 𝑤D𝐸<=AE@<C

Input Recon. image

Reconstruction loss: 𝐸:;<=> =
!
F
∑E 𝐼'()# p − 𝐼'() p "



We define a gamut term to 
penalize layers with color outside 
the RGB cube or large opacity . Its 
purpose is to generate layers with 
valid color and opacity values, and 
encourage more semi-transparent 
layers to achieve good editability
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Estimating layer parameters

• Energy

𝐸 = 	𝑤9𝐸:;<=> + 𝑤?𝐸,@ABC + 𝑤D𝐸<=AE@<C

Gamut loss:  𝐸,@ABC =
!
G∑-H!

# ∑E∈J, 𝐶'()
- p −𝐶'() p

"+ 𝐶*- p −𝐶* p
"



We define a compactness term to encourages 
smaller-sized layers to be on top of larger-size 
layers. 
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Estimating layer parameters

• Energy

𝐸 = 	𝑤9𝐸:;<=> + 𝑤?𝐸,@ABC + 𝑤D𝐸<=AE@<C

Compactness loss:  𝐸KC@K<L = ∑!M-N.M#,	J,∩	J-R∅1( 	𝐿- − 	𝐿. )"



For each layer configuration, we employ the L-BFGS-B algorithm via the NLopt 
library to optimize the layer parameters. In all of our examples, we set 𝑤9 =
20,𝑤? = 10,𝑤D = 0.02 to achieve better results.

Finally, when all these candidate layer configurations along with layer parameters 
are obtained, we select the one with minimal energy loss to generate the 
resulting vector graph with the Potrace library.
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Estimating layer parameters

• Energy

Input Layer configuration Resulting layers (from low to high)

We set 𝑤9 = 20,𝑤? = 10,𝑤D = 0.02 in all our examples.

𝐸 = 	𝑤9𝐸:;<=> + 𝑤?𝐸,@ABC + 𝑤D𝐸<=AE@<C



Here we provide 3 decomposition results. We have consistently achieved high-
quality decomposition results in all examples. 

Notice how the highlight regions in TV and coffee cup are all successfully 
extracted as transparent layers.

Besides, all these 3 examples have x-junctions, our method perfectly recovers the 
layer stack and achieves reconstruction results with high accuracy.
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Results

Input image & segmentation Decomposed layersReconstruction



Here we provide 2 results compared to Photo2ClipArt.  In general, our method 
successfully recovers the layer order at each X-junction, and the layers do not 
contain holes. In contrast, Photo2ClipArt fails to obtain complete semi-
transparent layers at x-junction and tends to generate some unnatural layers 
with holes.
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Comparison

[Favreau et al. 2016] OursInput image & segmentation



In conclusion, we proposed a fully automatic approach to multi-layer 
vectorization without any user interaction, and we introduced perceptually-
motivated rules to drastically reduce the search space, allowing us to find 
globally optimal layer decompositions.  For the decomposition results, the 
layers better reflect the shape and hierarchical structure of the input than 
SOAT methods.
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Conclusion

• We presented a fully automatic method for multi-layer vectorization 

from a segmented raster image.

• Perceptually-motivated rules reduce the search space, allowing us to 

find the globally optimal layer decomposition.

• The decomposed layers better reflect the shape and hierarchical 

structure of the input than previous methods.



Thanks for you attention. 
Please feel free to contact us if you have any questions.
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Here we provide an example to illustrate the effectiveness of the perceptually-
motivate rules in region adjacency graph simplification. 

In the truck example, there are 45 nodes and 171 directed edges in the initial 
region adjacency graph.

It generates 672, 1,152 and 10,814 region supporting trees when the 
surrounding rule, the size rule or the adjacent strength rule is disabled.

And it generates only 112 region supporting trees when all rules are enabled.  

Notice that in all our examples, the result quality (i.e., the energy loss 𝐸) is almost 
unchanged after enabling the rules. 
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Effectiveness of the rules

#region: 45，#edge: 171 

in the initial region adjacency graph

• The effectiveness of these rules in reducing search space.

Condition #tree

w/o the surrounding rule 672

w/o the size rule 1,152

w/o the adj. strength rule 10,814

with all rules 112


