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Bijective Deformations in Rn via Integral Curve
Coordinates

Lisa Huynh and Yotam Gingold

Abstract—We introduce Integral Curve Coordinates, which identify each point in a bounded domain with a parameter along an integral
curve of the gradient of a function f on that domain; suitable functions have exactly one critical point, a maximum, in the domain, and
the gradient of the function on the boundary points inward. Because every integral curve intersects the boundary exactly once, Integral
Curve Coordinates provide a natural bijective mapping from one domain to another given a bijection of the boundary. Our approach can
be applied to shapes in any dimension, provided that the boundary of the shape (or cage) is topologically equivalent to an n-sphere.
We present a simple algorithm for generating a suitable function space for f in any dimension. We demonstrate our approach in 2D
and describe a practical (simple and robust) algorithm for tracing integral curves on a (piecewise-linear) triangulated regular grid.

Index Terms—Deformation, bijection, homeomorphism, coordinates, integral curves
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1 INTRODUCTION

Shape deformation is a widely studied problem in com-
puter graphics, with applications in animation, finite
element simulation, parameterization, interactive model-
ing, and image editing. Deformations are useful for 2D
and 3D shapes, as well as higher-dimensional shapes.
Deforming the animation of a solid model is in fact a 4D
problem, as the animating 3D solid is itself a 4D shape.
Interpolating parameterized modeling spaces, such as
the space of human body shapes [1], can be an arbitrary
dimensional problem.

In the version of the problem that we study, a bound-
ary or “cage” is created around a shape. As this cage
is manipulated, the interior is also deformed. The cage
may be identical to the shape’s boundary, which has one
fewer dimension than the shape itself, and is typically
more convenient, as the cage may be simpler (fewer
vertices) or be free of undesirable properties (such as
a non-manifold mesh or high topological genus).

One important yet elusive property for deformations
is bijectivity. A bijective function is a one-to-one map-
ping such that every point in the undeformed figure is
mapped to a point in the deformed figure and vice-versa.
Bijectivity ensures that the shape never flips “inside-out”
as a result of deformation.

We propose a technique that creates a guaranteed
bijective deformation of the shape given a bijective de-
formation of its boundary or cage, in any dimension. To
do so, we introduce Integral Curve Coordinates, which
identify each point in the shape by its position along an
integral curve of the gradient of a suitable function f .
Suitable functions are Lipschitz continuous, have only
a single critical point, a maximum, in the interior, and
have gradients that point inward along the boundary of
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the domain (or cage). For such functions, integral curves
never meet unless they are identical, and every integral
curve can be uniquely identified with a point on the
boundary. Given a bijective deformation of the boundary
points, we construct a suitable function f and trace the
integral curves through the interior points to extend the
bijective deformation into the interior of the shape. Our
approach can be viewed as a generalization of Xia et al.
[2] from star-shaped domains to arbitrary contractible
domains.

Our contributions are:
• Integral Curve Coordinates which naturally pro-

duce a guaranteed bijective deformation between
two contractible domains in Rn, given a bijective
deformation of their boundaries.

• A simple algorithm to create a scalar function space
on a regularly discretized contractible domain in
Rn; functions in this space have exactly one critical
point, a maximum.

• A practical (simple and robust) algorithm for tracing
2D integral curves on a (piecewise linear) triangu-
lated regular grid.

We note that the bijections produced by Integral Curve
Coordinates, while correct, are not fair. The recent work
of Schüller et al. [3] and Aigerman and Lipman [4]
complements our own by improving the fairness of a
deformation in a manner that preserves bijectivity.

2 RELATED WORK

Deformation is a well-studied problem in computer
graphics. One approach to shape deformation warps
the entire ambient space, which induces a deformation
for the coordinates of the shape [5]–[7]. In contrast,
intrinsic shape deformation approaches operate in terms
of relative coordinates, without regard for the ambi-
ent space [8]–[10]. Cage-based deformations enclose the
shape in a sort of structural boundary (which may
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simply be the shape’s actual boundary). This boundary,
when deformed, induces a deformation of the interior
points [11]–[15]. Several approaches allow a combination
of cages, line segments, and sparse points while still
computing an intrinsic shape deformation [16], [17].

One approach to cage or boundary deformation in-
volves the generalization of barycentric coordinates [11],
[18]–[26]. Traditionally defined, barycentric coordinates
express points in the interior of a simplex (triangle in
2D, tetrahedron in 3D) as the weighted average of the
vertices of the simplex. The simplex can be thought of
as a simple cage around its interior; the deformations
induced by modifying vertices of the simplex are bijec-
tive (so long as the simplex remains non-degenerate).
Generalized barycentric coordinates extend this idea to
more complex polygons or polyhedra than triangles and
tetrahedra, but cannot guarantee bijectivity [27].

2.1 Bijectivity
Few deformation approaches guarantee bijectivity. Bijec-
tivity guarantees that the deformation does not invert
(flip inside-out) or collapse any part of a shape. In
two-dimensions, Weber et al. [24] introduced conformal
mappings based on complex coordinates. Xu et al. [28]
introduced a thorough solution to the challenging prob-
lem of determining vertex locations for the interior of
a triangular graph, so that no triangles flip inside-out.
This is akin to solving for a bijective deformation with
the additional constraint that mesh connectivity remains
unchanged.

While generalized barycentric coordinates cannot
guarantee bijectivity [27], Schneider et al. [29] recently
introduced a technique that splits a deformation into a
finite number of steps, each of which is implemented
via generalized barycentric coordinates. In practice, the
technique creates bijective mappings at pixel accuracy.
One limitation, however, is that a continuous non-self-
intersecting interpolation between the source and target
cages is required, which is an unsolved problem for
dimensions greater than two. A theoretical analysis of
this technique has not yet been performed in 3D (or
higher).

Lipman’s restricted functional space, introduced ini-
tially in 2D [30] and extended to 3D and higher by
Aigerman and Lipman [4] can be used to find bijective
deformations of piecewise linear meshes similar to a
desired one. The technique projects an input simplicial
map onto the space of bounded-distortion simplicial
maps. While they do not prove that their iterative al-
gorithm convergences in general, if it does converge, it
guarantees a bijective deformation.

The approach of Schüller et al. [3] prevents inverted
elements (i.e. guarantees local injectivity) by augmenting
any variational deformation approach with a non-linear
penalty term that goes to infinity as elements collapse.
The approach therefore requires a continuous deforma-
tion from an initial shape, and is incompatible with hard
constraints (such as a required target pose).

Several approaches have been presented for creating
bijective texture maps with positional constraints [31]–
[33].

The approaches of Weinkauf et al. [34] and Jacobson
et al. [35] both create restricted function spaces that
prevent undesirable extrema (maxima and minima), but
cannot control the placement of saddles. Jacobson et
al. applied their technique to shape deformation. Our
approach creates a restricted function space with exactly
one extrema and no saddles, in any dimension.

The goal of our work is to introduce a cage-based
deformation technique that guarantees bijectivity in any
dimension, and provide a practical piecewise linear im-
plementation in 2D.

3 BACKGROUND

Definition 1: A function h : X → Y is called bijective if
and only if it is one-to-one:

h(x1) = h(x2) ⇐⇒ x1 = x2

and onto:

∀y ∈ Y, ∃x ∈ X such that h(x) = y.

Bijective functions always have an inverse. In the
literature, the desired bijective deformations are actually
homeomorphisms, which are bijective functions h such
that both h and h−1 are continuous.

For deformations, the one-to-one property (injectivity)
is the most difficult to achieve. A lack of injectivity
manifests as regions of X that collapse or invert (flip
“inside-out”) when mapped via h. For piecewise linear
shapes, this corresponds to collapsed or inverted ele-
ments (triangles in 2D, tetrahedra in 3D, etc). Expressed
symbolically, a function h must have a Jacobian whose
determinant is everywhere positive to be injective:

det(Jh(x)) > 0 ∀x ∈ X (1)

Where the determinant is negative, h has locally flipped
X inside out (inverted). Where the determinant is zero,
h has locally collapsed X , though not inverted it. (In 2D,
a triangle collapses to a line or point.)

For piecewise linear shapes, the Jacobian is piecewise
constant within each element and can be constructed as
follows. Consider a k-dimensional simplex P (triangle
in 2D or tetrahedron in 3D). P has k + 1 vertices
v0, v1, . . . , vk. Ignoring the overall translation of h, the
mapping h(P ) can be expressed via matrix multipli-
cation. Choose a vertex of P arbitrarily (v0, without
loss of generality). The matrix we seek maps vi − v0
to h(vi) − h(v0). Assuming that P is non-degenerate,
v1 − v0, . . . , vk − v0 are linearly independent. The matrix
M such that M(vi − v0) = h(vi)− h(v0) is, therefore, the
product of two matrices whose columns are vertices:

M = [h(v1)− h(v0)|h(v2)− h(v0)| · · · |h(vk)− h(v0)]

× [v1 − v0|v2 − v0| · · · |vk − v0]
−1 (2)
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The determinant of M determines whether h is locally
injective within P . If the determinant is zero, h has
locally collapsed P to, in 2D, a line segment or point.
If the determinant is negative, h has inverted P .

4 OVERVIEW

Our goal is to deform the interior of a shape given a
deformation of its boundary or enclosing cage. Formally,
our approach takes as input

1) The boundary ∂D of a contractible domain D in
Rn.

2) A homeomorphism h deforming ∂D.
and extends h to the interior of D.

To accomplish this, we introduce Integral Curve Co-
ordinates (formally defined below) that identify a point
p in the domain D with an integral curve x(t) and a
parameter tp such that x(tp) = p. The integral curves
follow the gradient of a special function fD: d

dtx(t) =
∇fD(x(t)). The function fD is constructed such that fD
has exactly one critical point in D, a maximum, and
its gradient on the boundary points inward. Integral
curves of the gradient of a function are sometimes called
integral lines [36]. The integral curves of a Lipschitz
continuous function are well-defined everywhere except
critical points, and two integral curves never meet unless
they are identical. Because every integral curve of ∇fD
traces a path from a point on the boundary of the domain
to the maximum, we can uniquely identify every integral
curve with the boundary point it passes through. We
denote the integral curve passing through boundary
point bm as xbm(t). The Integral Curve Coordinate of
a point p is

IfD (p) =
{

(bm, t) if p 6= p0

∅ if p = p0
(3)

where xbm(t) = p and p0 is the maximum point of fD.
Since distinct integral curves never meet, I is a bi-

jection from points in the domain to Integral Curve
Coordinates. Given a bijective deformation h of the
boundary of D, h(∂D) = ∂D′, we can similarly construct
a special function fD′ on D′ to create IfD′ . Transforming
from IfD to IfD′ can therefore be achieved by mapping
the bm to h(bm).

To summarize, the steps to extend h to a point p in
the interior of D are as follows (Figure 1):

1) Create a function fD : D → R with a single critical
point, a maximum, and whose gradients on the
boundary point inward.

2) Create a similar function f ′D for D′.
3) Compute the Integral Curve Coordinate Ip =
IfD (p) by tracing the integral curve of ∇fD in both
directions from p.

4) Transform Ip to I ′p′ by mapping the boundary point
bm of the Integral Curve Coordinate with h (or, if
p = p0, identifying the unique maximum p0 of fD
with the unique maximum p′0 of f ′D).

D D

h(∂D)

D’ D’D’ D D’

h(∂D)

Input OutputFunction Creation Integral Curve Tracing

Fig. 1. An overview of our approach. Given a shape D
and a homeomorphism of its boundary h : ∂D → ∂D′, we
first create two functions, one inside ∂D and one inside
∂D′, each with only a single critical point, a maximum.
To find the new position of a point p ∈ D, we trace
the integral curve passing through p up to the maximum
and down to a boundary point bm. We then trace the
integral curve from h(bm) on the boundary of D′ to the
maximum. The new position of p is the point located the
same fraction along the integral curve in D′. Repeating
this process everywhere allows us to extend the boundary
homeomorphism h to the interior of ∂D′.

5) Compute I−1fD′ (I
′
p′) by tracing the integral curve of

∇fD′ from the boundary point to the maximum.
(To warp points backwards from D′ to points in D, swap
D with D′ and h with h−1 in the above steps.)

Our implementation of this approach, described in the
following sections, creates functions on a regular grid
discretization of the domain. We trace integral curves on
a piecewise linear interpolation of the function values. In
the piecewise linear setting, gradients are piecewise con-
stant and discontinuous across piece boundaries. This
guarantees monotonic interpolation (no spurious critical
points within an element) and greatly reduces numerical
issues in tracing integral lines. However, it violates the
assumption that integral lines never meet, and can result
in regions of the shape collapsing (though not inverting).
In R2, any of a number of C1-continuous monotonic
interpolation techniques would eliminate this problem
[37]–[40].

5 FUNCTION CREATION

The first step in our deformation approach is the cre-
ation of a suitable function upon which to trace inte-
gral curves. Namely, we require functions with a single
critical point, a maximum, and whose gradients on the
boundary point inward. Our discrete implementation
creates a function space satisfying the above require-
ments. The function space takes the form of a set of in-
equality relationships on edges of a regular grid enclos-
ing the shape boundary or cage. We note that harmonic
functions, which obey the strong maximum principle,
are suitable in 2D, but not in higher dimensions as they
may contain spurious saddle points.

Our approach first chooses a grid vertex to be the
maximum (Section 5.1) and then generates inequality
relationships and vertex values such that all other points
are regular (Section 5.2). We then trace integral lines on
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a piecewise linear interpolation of the function values
(Section 6).

5.1 Maximum Selection
Any grid vertex can be selected to be the maximum.
However, because integral lines converge towards a
maximum, we wish to choose a maximum vertex in
the center of the shape. We find such a point with
the grassfire transform [41] To do so, we construct a
regular grid covering the mesh. The grassfire transform
iteratively “burns away” the boundary of a shape; we
use it to find the farthest point from the boundary. Any
vertex in the final iteration can be chosen arbitrarily.

5.2 Assigning Function Values
Once the maximum is chosen, we assign function values
to all grid vertices inside and just enclosing the shape
boundary or cage. To do so, we build a function space
containing functions that have a single critical point, a
maximum, and gradients on the boundary that point
inward. The function space takes the form of a cousin
tree of inequality relationships on edges of the regular
grid.

Definition 2: Let T be a tree defined on a subset of a
regular grid. We call T a cousin tree if every pair of axis-
aligned neighbor vertices in the tree are related to each
other as parent-child or as tree cousins (Figure 2). Two
vertices are tree cousins if they are neighbors in the grid
and their tree parents are also neighbors in the grid.

tree cousinstree child

tree parent

v uu

v

Fig. 2. Cousin tree vertex relationships: Two vertices u, v
that are axis-aligned neighbors in the grid must be either
parent-child (left) or tree cousins (right). Tree cousins’
parent vertices must also be axis-aligned neighbors in the
grid.

Our algorithm for creating a cousin tree, illustrated
in Figure 3, is a form of breadth-first search (BFS) that,
for all vertices on the frontier in a given iteration, always
expands first along the first coordinate axis, second along
the second coordinate axis, and so on. (The order of
coordinate axes is not important so long as it is consistent
across all iterations.) Pseudocode is as follows:

1: procedure CREATECOUSINTREE(maximumVertex )
2: B Store the tree as a set of directed edges:
3: edges ← {}
4: frontier ← {maximumVertex}
5: functionValue ← empty dictionary
6: functionValue[maximumVertex ]← 1
7: while frontier is not empty do
8: frontierNext ← {}

9: for dimension in fixed dimension order do
10: for v in frontier do
11: candidates ← { unvisited neighbors of v along

dimension direction }
12: edges ← edges ∪ {(v, n) | n ∈ candidates}
13: filtered ← {n ∈ candidates if n within boundary}
14: frontierNext ← frontierNext ∪ filtered
15: B Optional: directly assign function values:
16: functionValue[filtered ]← functionValue[v]− 1
17: end for
18: end for
19: frontier ← frontierNext
20: end while
21: return edges , functionValue
22: end procedure

When a vertex expands, it becomes the tree parent
of the vertices it expands into. In 2D, this means that
all potential children along the x-axis are connected to
the tree in one round. The next round, all potential
children along the y-axis are connected to the tree, if
they have not already been included. While vertices
outside the boundary are not added to the frontier of
the breadth-first search, they are added to the tree and
considered children of all adjacent vertices within the
domain; this ensures that vertices outside the boundary
have smaller values than vertices inside, which cre-
ates inward-pointing gradients at the boundary. See the
supplemental materials for a proof that this algorithm
indeed creates a cousin tree.

Fig. 3. A cousin tree is created via breadth-first search
expanding outwards from a maximum (red circle).

The cousin tree represents our function space; the edge
from a parent to a child vertex represents the inequality
f(parent) > f(child). Note that the Manhattan distance
lies within this function space, as breadth-first search
can be used to directly compute the graph distance to
a given node. See the appendix for a proof that this
function space contains no critical points other than the
maximum.

One the cousin tree is created, we can assign values
to grid vertices such that the tree parent always has
greater value than the tree child. We have experimented
with various approaches to assigning function values:
directly assigning the L1 (tree) distance, and solutions
to the Laplace and bi-Laplace equations subject to vari-
ous boundary conditions and the cousin tree inequality
constraints. These approaches are evaluated in Section 7.

6 TRACING INTEGRAL LINES

With a suitable function fD in hand, we are ready to trace
integral lines to convert a point p in the interior of the
shape to its Integral Curve Coordinate IfD (p) = (bm, t),
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where bm is the point on the boundary reached by
tracing the integral line through p in the decreasing
direction (gradient descent), and t is the fraction of arc-
length along the integral line from bm to the maximum,
reached by gradient ascent from either p or bm. (Note
that given a piecewise linear boundary or cage, we
store bm in barycentric coordinates with respect to the
boundary piece it belongs to.)

Since our function values are provided on a regular
grid, we require monotonic interpolation of the values
within grid cells, so that spurious critical points are
not introduced by the interpolation. For our 2D imple-
mentation, we perform piecewise linear interpolation via
a regular triangulation that divides each grid cell into
two triangles. Notably, piecewise linear interpolation is
monotonic and has constant gradient, which mitigates
problems resulting from numerical accuracy when trac-
ing integral lines and simplifies arc-length parameteri-
zation.

Because the gradient is constant within each triangle,
one could trace the integral line from a given starting
point by simply computing the intersection of the ray
from the starting point in the gradient direction with the
boundary of the triangle. However, naive implementa-
tion of this numerical approach may create discrepancies
and inconsistencies such as loops due to limitations in
floating point precision. In order to obviate numerical
precision issues, we separate the topological calculation
(which edge of the triangle the integral line passes
through) from the geometric calculation (the coordinates
of the point on the edge). Our topological calculations
are based on comparing values and computing the signs
of cross products, which are amenable to symbolic per-
turbation schemes [42]–[44] for robust, exact evaluation.1

Our algorithm traces an integral line by iteratively
computing the sequence of triangle edges it intersects
(and points on those edges). As a special, initial case,
the integral line may originate from a point inside a
triangle, but thereafter will be tracked via the triangle
edges it intersects. Our algorithm proceeds as follows,
and is illustrated in Figure 4. Given a point p1 located
on the edge eB3

of a triangle B, we determine the
next edge by computing the sign of the cross product
between (a) the gradient of the function within B and
(b) the vector from p1 towards the vertex of the triangle
opposite the edge eB3 (the dotted red line in Figure 4,
right). The sign of the cross product of these two vectors
determines the outgoing edge of the integral line (Table 1
with edge labeling given by Figure 5). This robustly and
stably computes the outgoing edge. The point on the
outgoing edge (p2 in Figure 4, right) is then determined
via standard line/line intersection computation (which
is made simple since triangles edges are aligned with
grid edges or diagonal). Tracing proceeds in the triangle
on the other side of the outgoing edge.

1. We did not implement such a scheme, as we did not encounter
numerical issues with our floating point implementation.

In the special, initial case of an integral line originating
at a point p0 inside a triangle A, the sign of the cross
product of the gradient is computed with each of the
three vectors from the point to the triangle’s vertices
(Figure 4, left). The sign of the cross products determines
which vectors the gradient is to the left and right of,
which indicates the outgoing edge accordingly. The point
on the edge can then be computed numerically, and the
general case of the algorithm proceeds.

p0

p1

A

eA1

eB2

eA2 eB3
eA3 eB1

B

p0

A

eA1

eB2

eA2 eB3
eA3 eB1

Bp1

p2

Fig. 4. An integral line is traced (left) from p0 inside
triangle A. The gradient direction (the purple arrow) is
compared to the red dotted lines, indicating which edge
of A is intersected. Line/line intersection tells us the
numerical location of the next point p1 lying on a triangle
edge, which is the general case. Tracing then proceeds
inside the opposite triangle B (right), and the gradient
direction only needs to be compared to one dotted red
line.

1

2

3

1

3
12 3

1

2 3

2

Fig. 5. The edge labeling for triangles in the regular grid,
such that the lookup table in Table 1 can be used to
compute the outgoing edge when tracing integral curves.

Finally, because our piecewise linear domain is not
C1, integral lines may meet. This manifests in our inte-
gral line tracing algorithm as a triangle whose gradient
points backwards against the incoming edge. We call
such edges compression edges. Without special care, the
integral line would zig-zag or staircase between the two
triangles. We detect this by testing whether the triangle’s
gradient points towards the incoming edge (e.g. right
back out of the triangle). If so, then tracing return to the
face opposite the incoming edge, and the next point on
the integral line is the endpoint of the edge pointed to-
wards by the gradient. Because our triangles triangulate
a regular grid, the dot product of the gradient with the
edge itself is a simple sign test or comparison between
components of the gradient. This procedure simulates
the integral curve bouncing between the two triangles as
their gradients merge, skipping the intermediate steps.
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Edge Sign Next Edge

1 + 3
1 - 2
2 + 1
2 - 3
3 + 2
3 - 1

TABLE 1
Our algorithm for tracing integral lines jumps from one
triangle edge to the next (Figure 4, right). With edges

labeled according to Figure 5, the next edge is
determined by the sign of the cross product between the

function gradient and the vector towards the triangle’s
opposite corner.

7 EVALUATION

We experimented with various functions for Integral
Curve Coordinates. Figure 6 depicts the computed func-
tion, integral lines, and deformations for the following
functions subject to cousin tree constraints: L1 (tree)
distance and solutions to the Laplace and bi-Laplace
equation with boundaries equal to zero; and solutions
to the Laplace equation with boundaries equal to zero,
without constraints imposed by the cousin tree. We wish
for integral curves to be maximally separated. Solutions
to the Laplace equation when boundary values are
fixed to zero result in integral curves that intersect the
boundary orthogonally, resulting in the most separation
between integral lines. There is little difference between
solutions to the Laplace equation with and without the
cousin tree constraints.

Figures 7–9 compare the results of our deformation
approach to Complex Barycentric Coordinates [24], Con-
trollable Conformal Maps [14], Composite Mean Value
Mappings [29], and Locally Injective Mappings [3]. Our
deformation, while less fair, can be generalized to any
dimension. Although some integral lines do flatten out
as a result of deformation, no inverted elements are
created by our approach. Our deformation can be used
to compute a correct starting configuration for recent
techniques which improve the fairness of deformations
while preserving bijectivity [3], [4].

The long and narrow shape in Figure 9 emphasizes
the degree to which the location of the maximum affects
the overall deformation. We believe that replacing the
single maximum point by a skeleton or medial axis is a
fruitful direction for future research.
Performance Our experiments were written in unop-
timized Python and executed on a 2 Ghz Intel Core
i7. In all examples, we compute function values on a
50-by-50 discrete grid. Performance is dominated by
per-pixel integral curves tracing. Our examples contain,
on average, 38,850 pixels, and took approximately 30
minutes each. There are large performance improve-
ments to be obtained by implementing integral curve
tracing in a compiled language and by parallelization.
Further performance improvements could be obtained

undeformed
L1 (tree)
distance

bi-Laplace
equation
with
cousin tree
constraints

Laplace
equation
with
cousin tree
constraints

Laplace
equation
without
cousin tree
constraints

Fig. 6. Integral Curve Coordinates computed using var-
ious functions. For each object, the first row depicts the
uv deformation map in the red and green channels; the
second row warps a checkerboard pattern; and the third
row displays the function values (background lightness),
maximum location (red circle) integral lines (blue), the
cousin tree, and expansion edges (purple, Section 8).

by deforming all points along an integral curve at once,
rather than wastefully re-tracing integral curves for each
point along it. Finally, an approach based on advecting
the boundary could efficiently trace all integral curves
at once.

8 LIMITATIONS

In our piecewise linear implementation, compression
edges (Section 6) occur when the gradients on either side
of an edge point towards the edge. Similarly, we call an
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Fig. 7. An extreme deformation of a square, a counter-
example to the bijectivity of generalized barycentric sys-
tems [45]. Left column: A square shape with a checker-
board pattern, Integral Curve Coordinates with a Laplace
equation not subject to cousin tree constraints. Middle col-
umn: Harmonic coordinates [46], Controllable Conformal
Maps [14]. Right column: Locally Injective Mapping using
Dirichlet and Laplacian energy [3]. Only Integral Curve
Coordinates and Controllable Conformal Maps generate
a bijective deformation.

Fig. 8. Left: The undeformed shape. Center: A de-
formation computed using Complex Barycentric Coordi-
nates [24]. Right: A deformation computed using Integral
Curve Coordinates; the function is the solution to the
Laplace equation with the boundary values constrained
to zero, subject to the cousin tree constraints. Complex
Barycentric Coordinates produce very smooth deforma-
tions, but are limited to 2D.

edge an expansion edge when the gradients on either side
point away from it. When tracing integral lines downhill,
multiple integral lines converge at an expansion edge.
This leads to multiple integral lines intersecting the same
boundary point; the points along these integral lines
will “collapse” as a result of the deformation. Expansion
edges rarely occur for the L1 function values or the
Laplace equation, except near small concavities on the
boundary. Expansion edges are visualized in Figure 6 as
purple edges, and typically only occur near concavities
of the boundary. With C1 or G1 function interpolation,
expansion edges (and compression edges) would no
longer occur. A looser requirement than continuity is
simply that the gradients on either side of an edge never
point away from each other; a tangible solution for this
relaxed condition is unclear.

Our grid discretization of the boundary or cage may

Fig. 9. From left to right: The undeformed shape, a defor-
mation computed using Integral Curve Coordinates with
a Laplace equation not subject to cousin tree constraints,
and the deformation computed using Composite Mean
Value Mapping [29].

lead to problematic boundary gradients near sharp an-
gles (< 45◦). One solution is to warp space with a
simple “plaid deformation” such that (a) grid vertices
are positioned exactly at boundary vertices and (b) sharp
angles are non-uniformly scaled and eliminated.

9 CONCLUSIONS AND FUTURE WORK

Integral Curve Coordinates provide a new approach
for bijective shape deformation based on tracing the
integral curves of functions with one critical point, a
maximum. While the deformations produced by our
approach are not as fair as, for example, Controllable
Conformal Maps [14], they are bijective in all dimen-
sions. The fairness of our deformations can be improved
in a bijectivity-preserving manner via the recent, com-
plementary work of Schüller et al. [3] and Aigerman
and Lipman [4]. We believe that fairer functions may
be found in our function space. One approach may be
to compute a compatible skeleton for the deformed and
undeformed shapes and treat the entire skeleton as the
maximum.

Our approach is restricted to cage-based or boundary
deformations. In the future, we would like to extend our
approach to other control structures, such as points and
bone skeletons, which are intuitive to manipulate and
can have far fewer vertices than a cage. One could trace
integral curves of a smoothed distance functions from
the control geometry [47].

Our piecewise linear implementation, while prevent-
ing inverted elements (det(M) < 0 in Equation 2), does
not prevent collapsed elements (det(M) = 0), which are
caused by compression edges. We would like to address
this in the future with C1 or G1 monotonic interpolation
of functions values, or by simulating the infinitessimal
separation of integral curves [48] and then perturbing
the resulting deformation to correct collapsed elements.

We would also like to explore modifications to the
cousin tree constraints. The constraints we compute,
while correct, are not unique. Thus, we envisage an
iterative procedure that updates the constraints and the
function values. Jacobson [27] explored such an iterative
constraint modification scheme in an analogous setting
to good effect. A similar iterative scheme may also
remove expansion edges.
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Finally, we would like to implement our approach in
higher dimensions, applying it to problems such as the
animation of volumetric models.
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APPENDIX

In the following, the domain is a regular n-dimensional
grid with edges parallel to the x1, x2, x3, . . . , xn axes. We
call a subdomain ball-like if the volume enclosed by its
cells is contractible.

Theorem 1: Let D be a subdomain that is ball-like.
Let T be an associated cousin tree. Assume all nodes
on the boundary of the subdomain have value greater
than all grid neighbors outside the ball (including along
imaginary diagonal grid edges). Then by rooting T at
the maximum and assigning monotonically decreasing
(unique) values to internal nodes of T along the path
from the root (preserving the values at the root and
the leaf), there can be no grid maximum, minimum,
or saddles at any tree node with 4- or 8-connectivity.
(In dimensions > 2, we assume monotonic interpolation
within a hypercube; i.e. 2n-connectivity.)

Lemma 1: A node v of cousin tree T on subdomain D
with parent in the +xi grid direction has a child in the
−xi grid direction, unless the neighbor in the −xi grid
direction is outside D.

Proof: Without loss of generality, assume node v has
its tree parent u in the +x2 grid direction. Let w be the
node in the −x1 grid direction. Assume v is not w’s tree
parent.

v

w

u

The cousin rule tells us that v’s tree parent u and w’s
tree parent must be grid neighbors. Yet the only grid
neighbor of w within 1 grid edge of v’s parent of u is
v. Thus we have reached a contradiction, and v must be
w’s parent.

Lemma 2: For any non-boundary tree node v, its grid
neighbors (even with the addition of diagonal edges on
the hypercube face planes) with greater value all belong
to the same connected component (partitioned according
to greater/less than v’s value) and its grid neighbors
(even with the addition of diagonal edges) with lesser
value all belong to a second connected component.

Proof: Without loss of generality, assume v has par-
ent u in the +x2 direction. We now consider two cases,
v is on the boundary of D and v is not on the boundary
of D.
Case v is not on the boundary of D:

It follows from Lemma 1 that v has a child w in
the −x2 direction. As paths are monotonic, V alue(u) >
V alue(v) > V alue(w). Since we wish to prove that v
will have exactly two connected components partitioned
according to greater/less than v’s value, we can restrict
our examination to grid neighbors of u, v, w in the +x1

direction, again without loss of generality; the greater
value connected component will have to include u and
the lesser value connected component will have to in-
clude w. We now consider two subcases, v is not the
tree parent of its x1-direction grid neighbor b and v is the
tree parent of b. To clarify, when determining connected
components, neighbors along diagonal edges may be
considered; however, tree edges are always grid edges,
and neighbors in any sense except when computing
connected components are only along grid edges.

v

u

w

b

a

c

>

<

>

>

>

v

u

w

b

a

c

>

<

>

>

<

v

u
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a

c

>

<

>

<

<

v

u

w

b

a

c

>

<

<

<

<

Because of the cousin rule, b’s parent must be a, since
a is the only grid neighbor of b within 1 grid edge of
v’s parent of v. Lemma 1 tells us that c must be the tree
child of b. Due to the monotonicity of values along tree
paths, V alue(u) > V alue(v) > V alue(w) and V alue(a) >
V alue(b) > V alue(c). The following diagram depicts all
possible greater/less than relationships between a, b, c
and v.

v

u

w

b

a

c

As we can see, in all possibilities, there are exactly
two connected components partitioned according to
greater/less than v’s value. The component with values
greater obviously contains v’s tree parent u, and the
component with values lesser obviously contains v’s tree
child w.

Subcase: v is the tree parent of b.

v

u

w

b

a

c

The cousin tree imposes the following restrictions on
a and c. a cannot be the tree child of b as u and a would
not be tree cousins. Since b cannot be a’s tree parent or
its tree child, b and a must be tree cousins. Therefore
a’s tree parent must be a grid neighbor of v. The only
possibility is u. Since c cannot be the tree parent of b
(resp. w), it must be the tree child or cousin of b (resp.
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w). Therefore c must be the tree child of one and the
tree cousin of the other. In either case, the monotonicity
of values along tree paths implies V alue(v) > V alue(c)
as well as V alue(v) > V alue(b), V alue(v) > V alue(w),
and V alue(u) > V alue(v). The value of a may be greater
than or less than v, but in both cases there are exactly
two connected components (partitioned according to
greater/less than v’s value). As in the earlier subcase,
the component with values greater obviously contains
v’s tree parent u, and the component with values lesser
obviously contains v’s tree child w.
Case v is on the boundary of D:

If v’s grid neighbor w in the −x2 direction is in D,
then Lemma 1 applies and v must be the tree parent of
w and hence V alue(v) > V alue(w). Otherwise, w is not
in D, but by assumption V alue(v) > V alue(w). Thus v’s
neighbor in the +x2 direction has value greater than v,
and v’s neighbor in the −x2 direction has value less than
v. Following the same argument as in Case v is not on the
boundary of D, we can again restrict our examination to
grid neighbors of u, v, w in the +x2 direction (without
loss of generality).

v

u

w

b

a

c

There are 33 valid cousin tree configurations among
the 24 possible boundary conditions given a, b, c, w can
each be outside D. They are presented in Figure 10.

In every case there are exactly two connected com-
ponents partitioned according to greater/less than v’s
value. The component with values greater obviously
contains v’s tree parent u, and the component with
values lesser obviously w.

Proof: Lemma 2 tells us that any internal tree node
v has one connected component of nodes with value
greater than v’s and another connected component with
values lesser (0 “folds”). It follows directly then that v
cannot be a minimum, maximum, or saddle.

Theorem 2: A breadth-first search (BFS) in a ball-like
domain D where at each BFS generation all x1, then all
x2, then all x3, and so on, grid edges are explored in
order constructs a cousin tree.

Proof: By induction. Let n represent the number of
BFS generations of growth from the root node. After step
n, nodes reached at BFS generation n − 1 have all of
their grid neighbors in the BFS tree or outside D; grid
neighbors in the BFS tree will be shown to satisfy the
cousin tree definition.

After step n = 1, the root node has become the parent
of all grid neighbors. The root node satisfies the cousin
tree constraints by being the BFS parent of all grid
neighbors.

Assume true for n = k. Nodes reached at BFS gener-
ation k − 1 have all grid neighbors also in the BFS tree

with cousin tree definition satisfied or outside D for BFS
generation ≤ k − 1 nodes.

We wish to show that after step n = k + 1 all nodes
reached at BFS generation k now also have all their
grid neighbors in the BFS tree satisfying the cousin tree
definition or outside D.

Consider a grid node v reached at BFS generation k.
Let u be the BFS parent of v. u was thus reached at BFS
generation k − 1. Consider the following arbitrary axis-
aligned figure of v:

vu w

a

c

kk-1 ?

?

?

After step n = k + 1 nodes a, c, w are also in the
BFS tree. We aim to show that a, c, w are either the BFS
children of v, tree cousins of v in the BFS tree, or outside
D.

If w (or a, c) is outside D, then it is of no concern to us.
If w (or a, c) is inside D, then it must have been reached
at step k − 1, k, or k + 1. w (or a, c) cannot have been
reached before step k − 1 since it would have been able
to reach v at step k−1. w (or a, c) must be reached before
step k + 2 since v can reach it at step k + 1.

Suppose node w was reached at generation k − 1.
vu w

kk-1 k-1

The inductive hypothesis tells us that w has cousin
tree relationships to all its grid neighbors, including v.
Yet w is not the BFS parent, BFS child, or BFS cousin of
v (since the BFS parent of w cannot be a grid neighbor
of u). This contradicts w having been reached at BFS
generation k − 1.

Suppose node w was reached at generation k.
vu w

kk-1 k

This too is impossible since v, w are neighbors and
cannot have the same taxicab distance to the BFS root in
our ball-like domain D.

This leaves us with w reached at generation k + 1.

vu w
kk-1 k+1

p

q

r

a

We first consider p as the BFS parent of w. Then p must
have been reached at BFS generation k. Furthermore, if
p, v were both reached at BFS generation k and w was
reached at BFS generation k+1, then a must be in D and
have generation k − 1, since D is ball-like and distance
is taxicab. But p as the BFS parent of w contradicts the
BFS x1, x2, x3, . . . growth ordering implied by u as the
BFS parent of v, since u is the BFS parent of v instead
of a. The same argument prevents r as the BFS parent
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of w. Consider q as the BFS parent of w. Then q and
v were reached at the same BFS generation while w
between them was reached at a later BFS generation.
This is impossible in our ball-like domain D since BFS
generations correspond to minimal taxicab distance. The
only remaining possibility is v as the BFS parent of w.
This is a valid cousin tree relationship.

Suppose node a was reached at generation k − 1.

vu w

a

kk-1

b p

c

k-1

The inductive hypothesis tells us that a has cousin tree
relationships to all its grid neighbors, including v.

Suppose node a was reached at generation k.

vu w

a

kk-1

b p

c

k

This too is impossible since v, a are neighbors and
cannot have the same taxicab distance to the BFS root
in our ball-like domain D.

Suppose node a was reached at generation k + 1.

vu w

a

kk-1

b p

c

k+1

If node p is the BFS parent of a, then p was reached at
BFS generation k. We then have the following diagram.

vu w

a

kk-1

b p

e

k+1 k

But nodes v and p cannot have the same taxicab
distance (as evidenced by their BFS generations) to the
BFS root in ball-like D if nodes a and u differ in taxicab
distance to the BFS root by 2. The same argument
prevents e from being the BFS parent of a. The only
remaining possibilities are v as the BFS parent of a and b
as the BFS parent of a, both of which have valid cousin
tree relationships with v.

The analysis of the relationship between node v and
node c follows exactly the same argument as between
nodes v and a.
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This case cannot 
exist because 
the grid (when 
considering 
diagonal
edges) is
not 
homeomorphic 
to a ball.
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Fig. 10. Cousin tree configurations for a node on the
boundary: a outside (2 cases); a, b outside; a, c outside;
a,w outside; a, b, c outside; a, b, w outside (violates as-
sumption); b outside; b, c outside (4 cases); b, c, w outside
(4 cases); c outside (5 cases); c, w outside (5 cases); w
outside (6 cases); a, b, c, w outside.


