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This is joint work with Ariel Shamir and Daniel Cohen-Or when I was in Israel.

I’m going to talk about a model of computation that’s very relevant to graphics.
We call it “Micro Perceptual Human Computation” and I will show how it can be used for visual tasks.

The first part of my talk will discuss the nature of human computation and our particular computational model.
The second part will describe three specific algorithms for computing depth layers, normal maps, and symmetry 
maps.

Before I begin, I would like to offer a historical digression to loosen up our minds a bit.



Historical	
  Digression
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1700’s

[David	
  Alan	
  Grier	
  2005]

Historical note:
    The term “computer” used to refer to humans who did computation [Grier 2005 “When Computers Were Human”].
        1700's: <click> Alexis Claude de Clairaut and friends divide the calculations <click> for the return of Halley's 
Comet.
        1800's: <click> Charles Babbage's "Law of Errors" (two humans performing the same computation are likely to 
make the same error); <click> the Difference Engine was invented because Babbage was frustrated by limitations of 
(human) computers.
        1900's: <click> WPA (Works Progress Administration) Mathematical Tables Project provided work during the 
depression, and other groups aided the <click> war effort (navigation, radar, bombs, Manhattan Project).
        <click> In the 1940's, the ENIAC was developed, the first electronic computer.
    
    Since then, computer has come to mean an electronic computer.
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1700’s

Clairaut

[David	
  Alan	
  Grier	
  2005]

Historical note:
    The term “computer” used to refer to humans who did computation [Grier 2005 “When Computers Were Human”].
        1700's: <click> Alexis Claude de Clairaut and friends divide the calculations <click> for the return of Halley's 
Comet.
        1800's: <click> Charles Babbage's "Law of Errors" (two humans performing the same computation are likely to 
make the same error); <click> the Difference Engine was invented because Babbage was frustrated by limitations of 
(human) computers.
        1900's: <click> WPA (Works Progress Administration) Mathematical Tables Project provided work during the 
depression, and other groups aided the <click> war effort (navigation, radar, bombs, Manhattan Project).
        <click> In the 1940's, the ENIAC was developed, the first electronic computer.
    
    Since then, computer has come to mean an electronic computer.
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1700’s

Clairaut Halley’s Comet

[David	
  Alan	
  Grier	
  2005]

Historical note:
    The term “computer” used to refer to humans who did computation [Grier 2005 “When Computers Were Human”].
        1700's: <click> Alexis Claude de Clairaut and friends divide the calculations <click> for the return of Halley's 
Comet.
        1800's: <click> Charles Babbage's "Law of Errors" (two humans performing the same computation are likely to 
make the same error); <click> the Difference Engine was invented because Babbage was frustrated by limitations of 
(human) computers.
        1900's: <click> WPA (Works Progress Administration) Mathematical Tables Project provided work during the 
depression, and other groups aided the <click> war effort (navigation, radar, bombs, Manhattan Project).
        <click> In the 1940's, the ENIAC was developed, the first electronic computer.
    
    Since then, computer has come to mean an electronic computer.
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1800’s

[David	
  Alan	
  Grier	
  2005]

Historical note:
    The term “computer” used to refer to humans who did computation [Grier 2005 “When Computers Were Human”].
        1700's: <click> Alexis Claude de Clairaut and friends divide the calculations <click> for the return of Halley's 
Comet.
        1800's: <click> Charles Babbage's "Law of Errors" (two humans performing the same computation are likely to 
make the same error); <click> the Difference Engine was invented because Babbage was frustrated by limitations of 
(human) computers.
        1900's: <click> WPA (Works Progress Administration) Mathematical Tables Project provided work during the 
depression, and other groups aided the <click> war effort (navigation, radar, bombs, Manhattan Project).
        <click> In the 1940's, the ENIAC was developed, the first electronic computer.
    
    Since then, computer has come to mean an electronic computer.
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1800’s

Babbage

[David	
  Alan	
  Grier	
  2005]

Historical note:
    The term “computer” used to refer to humans who did computation [Grier 2005 “When Computers Were Human”].
        1700's: <click> Alexis Claude de Clairaut and friends divide the calculations <click> for the return of Halley's 
Comet.
        1800's: <click> Charles Babbage's "Law of Errors" (two humans performing the same computation are likely to 
make the same error); <click> the Difference Engine was invented because Babbage was frustrated by limitations of 
(human) computers.
        1900's: <click> WPA (Works Progress Administration) Mathematical Tables Project provided work during the 
depression, and other groups aided the <click> war effort (navigation, radar, bombs, Manhattan Project).
        <click> In the 1940's, the ENIAC was developed, the first electronic computer.
    
    Since then, computer has come to mean an electronic computer.
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Babbage Difference Engine
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[David	
  Alan	
  Grier	
  2005]

Historical note:
    The term “computer” used to refer to humans who did computation [Grier 2005 “When Computers Were Human”].
        1700's: <click> Alexis Claude de Clairaut and friends divide the calculations <click> for the return of Halley's 
Comet.
        1800's: <click> Charles Babbage's "Law of Errors" (two humans performing the same computation are likely to 
make the same error); <click> the Difference Engine was invented because Babbage was frustrated by limitations of 
(human) computers.
        1900's: <click> WPA (Works Progress Administration) Mathematical Tables Project provided work during the 
depression, and other groups aided the <click> war effort (navigation, radar, bombs, Manhattan Project).
        <click> In the 1940's, the ENIAC was developed, the first electronic computer.
    
    Since then, computer has come to mean an electronic computer.
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1900’s

[David	
  Alan	
  Grier	
  2005]

Historical note:
    The term “computer” used to refer to humans who did computation [Grier 2005 “When Computers Were Human”].
        1700's: <click> Alexis Claude de Clairaut and friends divide the calculations <click> for the return of Halley's 
Comet.
        1800's: <click> Charles Babbage's "Law of Errors" (two humans performing the same computation are likely to 
make the same error); <click> the Difference Engine was invented because Babbage was frustrated by limitations of 
(human) computers.
        1900's: <click> WPA (Works Progress Administration) Mathematical Tables Project provided work during the 
depression, and other groups aided the <click> war effort (navigation, radar, bombs, Manhattan Project).
        <click> In the 1940's, the ENIAC was developed, the first electronic computer.
    
    Since then, computer has come to mean an electronic computer.
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1900’s

[David	
  Alan	
  Grier	
  2005]

Historical note:
    The term “computer” used to refer to humans who did computation [Grier 2005 “When Computers Were Human”].
        1700's: <click> Alexis Claude de Clairaut and friends divide the calculations <click> for the return of Halley's 
Comet.
        1800's: <click> Charles Babbage's "Law of Errors" (two humans performing the same computation are likely to 
make the same error); <click> the Difference Engine was invented because Babbage was frustrated by limitations of 
(human) computers.
        1900's: <click> WPA (Works Progress Administration) Mathematical Tables Project provided work during the 
depression, and other groups aided the <click> war effort (navigation, radar, bombs, Manhattan Project).
        <click> In the 1940's, the ENIAC was developed, the first electronic computer.
    
    Since then, computer has come to mean an electronic computer.
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1900’s

Trinity

[David	
  Alan	
  Grier	
  2005]

Historical note:
    The term “computer” used to refer to humans who did computation [Grier 2005 “When Computers Were Human”].
        1700's: <click> Alexis Claude de Clairaut and friends divide the calculations <click> for the return of Halley's 
Comet.
        1800's: <click> Charles Babbage's "Law of Errors" (two humans performing the same computation are likely to 
make the same error); <click> the Difference Engine was invented because Babbage was frustrated by limitations of 
(human) computers.
        1900's: <click> WPA (Works Progress Administration) Mathematical Tables Project provided work during the 
depression, and other groups aided the <click> war effort (navigation, radar, bombs, Manhattan Project).
        <click> In the 1940's, the ENIAC was developed, the first electronic computer.
    
    Since then, computer has come to mean an electronic computer.
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1900’s

[David	
  Alan	
  Grier	
  2005]

Historical note:
    The term “computer” used to refer to humans who did computation [Grier 2005 “When Computers Were Human”].
        1700's: <click> Alexis Claude de Clairaut and friends divide the calculations <click> for the return of Halley's 
Comet.
        1800's: <click> Charles Babbage's "Law of Errors" (two humans performing the same computation are likely to 
make the same error); <click> the Difference Engine was invented because Babbage was frustrated by limitations of 
(human) computers.
        1900's: <click> WPA (Works Progress Administration) Mathematical Tables Project provided work during the 
depression, and other groups aided the <click> war effort (navigation, radar, bombs, Manhattan Project).
        <click> In the 1940's, the ENIAC was developed, the first electronic computer.
    
    Since then, computer has come to mean an electronic computer.
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• Inconsistent	
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• ???

Electronic

• Fast

• Determinis2c

• Arithme2c
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Human

Electronic computers versus human computers. (This is a historic photograph from NACA/NASA.)

electronic: fast, deterministic (at arithmetic)
human: slow, inconsistent, yet still better at some things (which?)



The	
  Human	
  Advantage

• Percep2on

• Preference

• Crea2vity
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I’m going to suggest a taxonomy... (every time I revisit this slide I change the taxonomy)

Humans better at:

 perception/comprehension: reconstructing information that wasn't captured at capture-time (as in a photo or 
surface scan) or constructing/inferring information that was never recorded (as in a sketch/recognizing emotions/
labeling images) using knowledge humans naturally possess?

 preference/aesthetic judgements: evaluate goodness ("beauty") for sorting or optimization (see Sims, Electric 
Sheep, Interactive Genetic Algorithm/Human-Based Genetic Algorithms, [Little 2009]/[Bernstein 2011])?

 creativity

         - search: finding images that go well together

         - art projects like The Sheep Market [Koblin 2006]

         - [Little 2009/10] for expanding text/jokes/shirt design

         - [Yu and Nickerson 2011] for sketching chair designs (“Cooks or Cobblers”)

         - [Bernstein 2011] for posing humans

         - [Kittur 2011] for wikipedia... or wikipedia

Preference vs Creativity has a parallel to P vs NP (recognize versus generate)



Human	
  Computa2on

• Luis	
  von	
  Ahn’s	
  2005	
  PhD	
  thesis:
– “We	
  treat	
  human	
  brains	
  as	
  processors	
  in	
  a	
  distributed	
  
system,	
  each	
  performing	
  a	
  small	
  part	
  of	
  a	
  massive	
  
computa9on.”

– “We	
  argue	
  that	
  humans	
  provide	
  a	
  viable,	
  under-­‐tapped	
  
resource	
  that	
  can	
  aid	
  in	
  the	
  solu9on	
  of	
  several	
  
important	
  problems	
  in	
  prac9ce.”
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This brings us to the modern use of Human Computation...

(This is independent of the earlier historical digression; that forgotten history was published simultaneously.)
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[von Ahn and Dabbish 2004]

[von Ahn and Dabbish 2004] http://www.gwap.com/gwap/gamesPreview/espgame/

Collecting data.  Inspired by the Open Mind Initiative (1999+), a project for generating supervised machine learning datasets by 
crowdsourcing (a term which hadn’t been invented yet (it was invented by Jeff Howe in a 2006 Wired article)).

Motivation: Fun!
Quality control for labels: matching words with another human
Main use: tagging images (good for google!)
Very successful; became Google Image Labeler (though recently shut down, in 2011).
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[Russel et al. 2005/2008]

[Russel et al. 2005/2008] http://labelme.csail.mit.edu/

Collecting data.

Click out polygons around the boundary of individual objects and type a name.

Motivation: ?? researchers using the data please click out some objects. paid some people to do it (using Amazon’s Mechanical 
Turk)
Quality control for labels: users can revise other users
Main use: dataset for supervised learning
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[Bernstein et al. 2010]

[Bernstein et al. 2010] http://projects.csail.mit.edu/soylent/

The HC is now online.  (This isn’t for use offline to generate supervised learning datasets.)

A Word plug-in that uses crowd contributions to perform document shortening, proofreading, and human-language macros.

Motivation: Payment
Quality control: Soylent introduced a human computation design pattern called Find-Fix-Verify that splits tasks into three HC stages: 
identifying the region of interest; performing the action; verifying the action.



user application

electronic 
processors

code
def get_normals_for_locations( image_path, locations ):
    '''
    Given an 'image_path' and an iterable collection of integer (row,col)
    locations at which we want to know the normal 'locations',
    returns a list of (x,y,z) unit normals corresponding to each element
    in 'locations'.
    '''
    
    import oracle_normals.knowledge
    K = oracle_normals.knowledge.KnowledgePairChecking()
    K.want_to_know( image_path, locations )
    normals = K.get_answer_at_rows_cols( image_path, locations )
    assert len( normals ) == len( locations )
    return normals

def generate_surface_from_normals( rows, cols, locations2normals ):
    '''
    Returns a 2D array with shape( 'rows', 'cols' ) whose values are created
    by interpolating the normals given by 'locations2normals', a dictionary
    mapping integer ( row, col ) to ( x,y,z ) values.v

human processors

Computa2on

11

Let’s compare the traditional and this new model of computation.
Here we have a model of (interactive) computation we are familiar with.
The user sits at a computer and uses an application.
The application is written in code, which runs on electronic processors.



user application

electronic 
processors

code
def get_normals_for_locations( image_path, locations ):
    '''
    Given an 'image_path' and an iterable collection of integer (row,col)
    locations at which we want to know the normal 'locations',
    returns a list of (x,y,z) unit normals corresponding to each element
    in 'locations'.
    '''
    
    import oracle_normals.knowledge
    K = oracle_normals.knowledge.KnowledgePairChecking()
    K.want_to_know( image_path, locations )
    normals = K.get_answer_at_rows_cols( image_path, locations )
    assert len( normals ) == len( locations )
    return normals

def generate_surface_from_normals( rows, cols, locations2normals ):
    '''
    Returns a 2D array with shape( 'rows', 'cols' ) whose values are created
    by interpolating the normals given by 'locations2normals', a dictionary
    mapping integer ( row, col ) to ( x,y,z ) values.v

human processors

Human	
  Computa2on
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And here is a model of human computation for interactive algorithms.

In this model, human processors are unskilled and isolated and there is high communication latency.
% Such a pool has been available (with an API) since 2005 via Amazon’s Mechanical Turk platform, though there are others 
(SamaSource, txteagle).

We believe this model is especially relevant to computer graphics, because of humans’ capabilities at visual perception.
In particular, I/we want to see human processors used for online, interactive applications.



Why?
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user application

electronic 
processors

code
def get_normals_for_locations( image_path, locations ):
    '''
    Given an 'image_path' and an iterable collection of integer (row,col)
    locations at which we want to know the normal 'locations',
    returns a list of (x,y,z) unit normals corresponding to each element
    in 'locations'.
    '''
    
    import oracle_normals.knowledge
    K = oracle_normals.knowledge.KnowledgePairChecking()
    K.want_to_know( image_path, locations )
    normals = K.get_answer_at_rows_cols( image_path, locations )
    assert len( normals ) == len( locations )
    return normals

def generate_surface_from_normals( rows, cols, locations2normals ):
    '''
    Returns a 2D array with shape( 'rows', 'cols' ) whose values are created
    by interpolating the normals given by 'locations2normals', a dictionary
    mapping integer ( row, col ) to ( x,y,z ) values.v

human processors

1. Magic: make the impossible possible.  For many problems we have no/there are no (low-dimensional) models, so machine 
learning cannot really help.  We are many, many years from being able to solve such problems with computers.
2. Speed or Scalability.  Via parallelization, jobs complete faster than “giving them to a human to solve.”  You also gain access to a 
giant pool of workers.
3. Cheaper (or free).  Human Processors are unskilled, so their time costs less.  We advocate tasks that require no training.  If you 
can make a game out of it, it could even be free, though this is an issue of incentives, and I won’t be talking about it much today.
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user application

electronic 
processors

code
def get_normals_for_locations( image_path, locations ):
    '''
    Given an 'image_path' and an iterable collection of integer (row,col)
    locations at which we want to know the normal 'locations',
    returns a list of (x,y,z) unit normals corresponding to each element
    in 'locations'.
    '''
    
    import oracle_normals.knowledge
    K = oracle_normals.knowledge.KnowledgePairChecking()
    K.want_to_know( image_path, locations )
    normals = K.get_answer_at_rows_cols( image_path, locations )
    assert len( normals ) == len( locations )
    return normals

def generate_surface_from_normals( rows, cols, locations2normals ):
    '''
    Returns a 2D array with shape( 'rows', 'cols' ) whose values are created
    by interpolating the normals given by 'locations2normals', a dictionary
    mapping integer ( row, col ) to ( x,y,z ) values.v

human processors

• Make	
  the	
  impossible	
  possible

1. Magic: make the impossible possible.  For many problems we have no/there are no (low-dimensional) models, so machine 
learning cannot really help.  We are many, many years from being able to solve such problems with computers.
2. Speed or Scalability.  Via parallelization, jobs complete faster than “giving them to a human to solve.”  You also gain access to a 
giant pool of workers.
3. Cheaper (or free).  Human Processors are unskilled, so their time costs less.  We advocate tasks that require no training.  If you 
can make a game out of it, it could even be free, though this is an issue of incentives, and I won’t be talking about it much today.
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user application

electronic 
processors

code
def get_normals_for_locations( image_path, locations ):
    '''
    Given an 'image_path' and an iterable collection of integer (row,col)
    locations at which we want to know the normal 'locations',
    returns a list of (x,y,z) unit normals corresponding to each element
    in 'locations'.
    '''
    
    import oracle_normals.knowledge
    K = oracle_normals.knowledge.KnowledgePairChecking()
    K.want_to_know( image_path, locations )
    normals = K.get_answer_at_rows_cols( image_path, locations )
    assert len( normals ) == len( locations )
    return normals

def generate_surface_from_normals( rows, cols, locations2normals ):
    '''
    Returns a 2D array with shape( 'rows', 'cols' ) whose values are created
    by interpolating the normals given by 'locations2normals', a dictionary
    mapping integer ( row, col ) to ( x,y,z ) values.v

human processors

• Make	
  the	
  impossible	
  possible

• Speed	
  and	
  cost

1. Magic: make the impossible possible.  For many problems we have no/there are no (low-dimensional) models, so machine 
learning cannot really help.  We are many, many years from being able to solve such problems with computers.
2. Speed or Scalability.  Via parallelization, jobs complete faster than “giving them to a human to solve.”  You also gain access to a 
giant pool of workers.
3. Cheaper (or free).  Human Processors are unskilled, so their time costs less.  We advocate tasks that require no training.  If you 
can make a game out of it, it could even be free, though this is an issue of incentives, and I won’t be talking about it much today.



Humans	
  using	
  Computers
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user application

There is always a tradeoff between how much work the human does and how much work the computer does.



Range	
  of	
  Solu2ons

• How	
  much	
  human	
  and	
  how	
  much	
  computer	
  is	
  
involved?

More
Human
“cycles”

More
Computer
“cycles”

Fully	
  
Automa2c
(no	
  human)

Interac2ve
Applica2on

Let	
  a	
  human
do	
  it

Human	
  
Computa2on

15

There are a range of solutions, which you can think of as a slider in terms of How much human and how much computer is involved.

<describe axis>



Type	
  of	
  Human	
  Cycles

• You	
  can	
  also	
  think	
  of	
  the	
  type	
  of	
  ac2vity	
  the	
  
human	
  does.
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Low	
  level
Fine	
  grain

High	
  level
Complex

Interac2ve
Applica2on

ESP	
  Game Our	
  modelLabelMe

You can also think of the type of activity the human does.
<describe axis>

When dealing with graphics problems the key characteristic that still provides an advantage to humans is visual perception.
In our model, HC tasks are based on visual perceptual queries
" - No training or skill needed—any human has good visual perception. Simple tasks help keep cost low, since we don't have to 
pay for training (up front or amortized).
" - No dependency (between tasks)—compared to typical distributed processing, HPs execute few operations per second and 
have high latency.
" - Highly parallel—in theory, with perfect parallelism, our algorithms would take 3 minutes to complete.

So, our model can be summarized as massive parallelism with extremely simple (training-free/instantaneous) visual queries.



Algorithm	
  Design	
  Pacern
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This is the design pattern we use for our algorithms.

<describe diagram>

%We use Amazon's Mechanical Turk, online since 2005, which lets you advertise a job (brief description, amount of payment, time 
estimate) and has a large pool of workers (tens or hundreds of thousands).
%Has an API, so you can program it; there are others (SamaSource, txteagle, Farmville?).



The	
  Ques2on	
  We	
  Ask

• What	
  is	
  the	
  minimum	
  amount	
  of	
  informa2on	
  a	
  
human	
  could	
  provide	
  in	
  order	
  to	
  solve	
  the	
  original	
  
problem?

• Rephrase	
  the	
  algorithm	
  in	
  terms	
  of	
  the	
  smallest	
  
piece	
  of	
  informa2on	
  that	
  without	
  it	
  the	
  problem	
  
could	
  not	
  be	
  solved.
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When designing an algorithm with HC inside, the question we ask is...



Three	
  Example	
  Algorithms

• Given	
  an	
  image,	
  create
– depth	
  layers

– a	
  normal	
  map

– a	
  bilateral	
  symmetry	
  map
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I will show three micro perceptual human computation algorithms:
        - recovering depth layers from a photograph (useful for object insertion/removal, dehazing, depth of field, retargeting)
        - normals (useful for relighting or surface reconstruction)
        - bilateral symmetry (useful for edit propagation, retargeting)

These algorithms are intended for use in, say, Photoshop.  The HC must be online—inside the algorithm—because input images 
are too high-dimensional.



Issues

• Mo2va2on:
– Money:	
  Amazon’s	
  Mechanical	
  Turk
– Fun:	
  Games	
  with	
  a	
  Purpose	
  (GWAP)

• Efficiency

• Quality	
  Control:
– Duplica9on
– Sen9nel	
  Opera9ons
– Self-­‐Refereeing
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Here is a summary of the issues that arise in HC algorithms.

Incentives (money or fun)
" “money, love, or glory” taxonomy due to Thomas W. Malone, Robert Laubacher, and Chrysanthos Dellarocas (MIT Center for 
Collective Intelligence); motivations for network collaboration

" - You can pay human processors with an online labor market such as Amazon’s Mechanical Turk.  Mechanical Turk has been 
online since 2005, and lets you advertise a job (brief description, amount of payment, time estimate) and has a large pool of workers 
(tens or hundreds of thousands).  Has an API, so you can program it; there are others (SamaSource, txteagle, Farmville?).

" - If you can make a game out of your human computation, it could become free, though this is an issue of incentives, and I 
won’t be talking about it much today.  You can think of it as the “Inverse Karate Kid” problem.  If you tackle a worthwhile cause, such 
as protein folding in FoldIt, you can also get people to participate for free.  (You could also find a way to force people to do your 
work, like (re)Captchas.)

Efficiency means using as little HC as possible. HC is slow (compared to electronic, in terms of carrying out operation and in terms 
of latency), so this is typically the bottleneck.  For example, at what granularity do we partition the problem?

Quality control is important!
" humans are: noisy/inconsistent/non-deterministic.  depending on their motivations, they may cheat.
" humans have internal biases (perceptual biases as in depth scaling or bas-relief [Koenderink et al. 1992; Belheumer et al. 
1997; Koenderink et al. 2001]).

        It’s not an algorithm if there’s a researcher in the loop!  We are only interested in human computation that runs on a pool of 
unskilled, isolated, and oblivious human processors.  This means no expert user inside the algorithm accepting and rejecting human 
computation.
        - duplication (multiple HPs or same HP multiple times—used in perceptual experiments and, for example, [Cole et al. 2009])
        - sentinel operations (using known answers or “gold data”)
        - self-refereeing [Little et al. 2010b; Bernstein et al. 2010] --- increases amount of HC and adds data dependency.
        - [Quinn and Bederson 2011] describe more variations

- We use Amazon's Mechanical Turk.
- We opt for massive parallelism with extremely simple visual queries in our examples.
- For our quality control, we use both kinds of duplication and sentinel operations.



Algorithm	
  1:	
  Depth	
  Layers
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Depth (distance from the camera) is an important cue that can assist image manipulations (insertion and removal of objects, 
retargeting, adding depth-of-field effects, de-hazing, etc.)

Today, you could use a depth camera, but you may not have one, you may already have your image, or your scene may not be 
applicable due to depth camera limitations.



Calculate	
  Depth	
  of	
  a	
  Given	
  Image?

22

We aim to be more robust than automatic techniques [Hoiem et al. 2005; Assa and Wolf 2007; Saxena et al. 2009].
For example, Make3D [Saxena et al. 2009] seems to assume that...
This is not always correct.
<click>
And some images are very, very challenging, such as artwork.



Calculate	
  Depth	
  of	
  a	
  Given	
  Image?

• Automa2c	
  methods:
– Depth	
  increases	
  in	
  the	
  up	
  
direc9on	
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We aim to be more robust than automatic techniques [Hoiem et al. 2005; Assa and Wolf 2007; Saxena et al. 2009].
For example, Make3D [Saxena et al. 2009] seems to assume that...
This is not always correct.
<click>
And some images are very, very challenging, such as artwork.

There are some manual techniques one could use, but they require a trained user: [Oh et al. (including Durand) 2001; Ventura et al. 
2009; Sykora et al. 2010]
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So what should our micro-task be?

<click>
<click>
<click>
We can compute image patches using a superpixel-type algorithm which divides the image into small pieces.

I will show the result of using this third one later.
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This is reliable ([Koenderink 2001]).

However, it’s still ambiguous:
1 depth jump between A and B
2 non-smooth depth change between A and B
3 smooth depth change between A and B

Our depth layer task matches 1.
I will also show a comparison to a continuous version of this question.
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This is reliable ([Koenderink 2001]).
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Note the static example in the corner.  That’s it, there is no other training.
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- Near-instantaneous.
- Well-defined so we can program with it.  A metaphor is sampling the real-world with a temperature sensor; we get a number back, 
which we can program with.
- We also want this task to be something humans can actually do, not just something humans think they can do (like absolute 
depth).

Of course, it must also be something computers can’t do.
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The relative depth ordering provides offsets of -1, 0, or 1 between adjacent regions in the image.

To reconstruct a continuous depth map we solve a <click> Laplace equation with derivative constraints of -1, 0, or 1 across region boundaries.
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�f = 0

The relative depth ordering provides offsets of -1, 0, or 1 between adjacent regions in the image.

To reconstruct a continuous depth map we solve a <click> Laplace equation with derivative constraints of -1, 0, or 1 across region boundaries.
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This is what an HC algorithm looks like in pseudocode.

<click>
We partition the task into superpixels
<click>
In our quality control setup, we dispatch batches of 20 micro-tasks at a time to human processors.
Each batch is composed of 6 queries whose results we need plus 4 sentinel queries whose results we know.  All queries appear 
twice in each batch in random order, so we can check an HP’s output for internal consistency as well as for agreement on the 
sentinel tasks.

Note that we use sentinel queries from the same image, so the user must answer ~10–20 queries himself to get the results of the 
crowd.  This is to prevent detection of the sentinel tasks.  If many instances of the algorithm were run at once, the queries could be 
intermingled and then sentinel answers wouldn’t have to come from the same image.
<click>
We send each batch to 3 different HPs for a median vote.
<click>
We verify whether the HC passes the quality control tests; if not, we re-dispatch it.
<click>
Finally, we combine the input by solving a laplace equation.
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This is what an HC algorithm looks like in pseudocode.
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Here are our results
<click>
versus Make3D [Saxena et al. 2009].
We get a pretty good depth map, especially compared to a state-of-the-art automatic technique.
<click>
Here is a depth-of-field effect applied.
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This is the comparison to the “absolute depth” version of the micro-task I promised.  While it looks correct overall, it is extremely 
noisy.
This is what we would expect from the psychology literature; there is no good rectification to correct for humans’ differing internal 
biases that can be done.
Thresholds for quality control (is it consistent? does it match the sentinel?) are very difficult.
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Asking HPs to choose a continuous, relative depth between neighboring patches with a slider leads to pretty good results—
essentially a noisier version of the discrete question.
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In our second algorithm, we create a normal map for a given image.  This can be used for relighting or for surface reconstruction.

We use a “gauge figure” micro-task that comes from the perception literature [Koenderink et al. 1992];
it was also used by [Cole et al. 2009] for gathering normals using the Mechanical Turk.
I should mention that [Cole et al. 2009] was the inspiration for this research.
HPs orient the gauge figure so that it appears to lie flush against the surface in the image.

We implemented this algorithm in an adaptive manner, so large variations in normals led to more queries in that area.

We also experimented with sliders for the xy direction and z-slant of the gauge figures, but did not find a difference in performance.
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Here we add two new lights to an old photograph of a face and create a 3D reconstruction.
<click>

Our normal map algorithm has a similar quality control setup to our depth layers algorithm, though thresholds are needed when 
comparing normals as well as a rectification step accounting for humans differing internal biases.
Since we have sentinel queries, we solve for the depth scaling of the normals (not the full bas-relief ambiguity; the difference was 
found to be minor with gauge figures) to align each HP with the sentinel queries.

For composition, we solve a bilaplace equation (bilaplacian = 0) with the user-given normals as least-squares constraints.  This 
removes noise and ensures the consistency of the normals.

The shape-from-shading approach shown is “Tsai and Shah”, which gave the best output from among the Shape-from-Shading 
approaches surveyed in [Durou et al. 2008].
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Here we add two new lights to an old photograph of a face and create a 3D reconstruction.
<click>

Our normal map algorithm has a similar quality control setup to our depth layers algorithm, though thresholds are needed when 
comparing normals as well as a rectification step accounting for humans differing internal biases.
Since we have sentinel queries, we solve for the depth scaling of the normals (not the full bas-relief ambiguity; the difference was 
found to be minor with gauge figures) to align each HP with the sentinel queries.

For composition, we solve a bilaplace equation (bilaplacian = 0) with the user-given normals as least-squares constraints.  This 
removes noise and ensures the consistency of the normals.

The shape-from-shading approach shown is “Tsai and Shah”, which gave the best output from among the Shape-from-Shading 
approaches surveyed in [Durou et al. 2008].
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Here are a couple more examples of 3D reconstructions.
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In our third algorithm, we create a bilateral symmetry map for an object in an image.  This can be used for edit propagation or 
retargeting.

We sample points in the region of interest and ask HPs to identify the symmetrically opposed point.

This algorithm also has a similar quality control setup to our other algorithms.
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Here are bilateral symmetry maps created with our algorithms.
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- We use a lot of micro-tasks.  Depth layers is most expensive, because it’s per neighboring patches, not per patch.
" - We know from the literature ([Mason and Watts 2010]) that payment is not correlated with accuracy, only with how likely an 
HP is to do the task.
- Normal Map task is most difficult, judging by completely unreliable HPs.  Can we make a better task?
- These micro-tasks per HP numbers are low; a median of 1–3 batches per HP.  That implies people were able to do it right away and 
we could scale.



Timing
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- Micro-tasks take little time!
- The total algorithm took a while, though delay is entirely due to waiting for HPs to choose to perform the tasks.
" - It’s known from the literature ([Ipeirotis 2010; Chilton et al. 2010; Faridani et al. 2011; Mason and Suri 2011; Mason and 
Watts 2010]) that this is correlated with the amount one is willing to pay, as well as the amount of same-type jobs there are to do 
and with newness.  Latter two would be helped if this were a popular algorithm, though it’s anyone’s guess how the market of HC 
will change in the future.

- Note that we could complete in ~3 minutes if we had enough people.

Paul Sajda (pronounced “shayda”) can categorize images at 10 hz by using brain wave scanning (“Is there a ballerina in the 
image”).
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To test accuracy as a function of quality control parameters, we used this billiards image.
We ran many variations; the data you will see in the following graphs was generated from 4 calibrated runs.

We varied the percent of queries in each batch that had to be internally consistent before throwing the entire batch out.
We varied the percent of sentinel queries in each batch that had to be accurate before throwing the entire batch out.

We also varied the number of reliable queries to use when computing each answer (the voting/median/average in the composition 
step).
%We also varied the number of different HPs to send each batch to (and receive reliable answers from).  When we throw a batch 
out, we send it to a new HC (until we have N).

NOTE: We varied granularity, using smaller patches, but didn’t find an interesting correlation using 30,60,90,120 patches.  120 
patches is still far from per-pixel, which would be prohibitively expensive to run.
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We ran the billiards example 4 times.

On the line graph, the dark blue lines show how many batches pass either the consistency or the sentinel test (one or the other).  
The heat map on the right is a 2D version of this.
" - The vast majority (94%) of HC batches are 80% consistent (or more), though only 65% are 100% consistent.
" - Batches are more stratified in agreeing with sentinel operations. Only 74% were correct for 75% or more of the sentinel 
ops; only 50% were correct for 100%.

The salmon-colored lines depict the average accuracy of all HC batches above either the consistency or the sentinel test (one or the 
other).
" - Average accuracy is only marginally affected by increasing the consistency threshold: from 0% to 80% to 100% only 
increases the accuracy from 87% to 88% to 90%.
" - Increasing the sentinel threshold has a greater effect on average accuracy: from 87% to 94% to 96% as the threshold 
increases from 0% to 75% to 100% (at the cost of discarding 50% of HC batches!).

On the right, this is a two-dimensional plot of consistency and sentinel thresholds; at each location, both tests are applied.
If we only want 100% consistent and agreeing-with-sentinel, we throw out 57% of all HC batches, but we get 97% accuracy (as we’ll 
see on the next slide).
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Here we vary the number of reliable queries to use when computing each answer (the voting/median/average in the composition 
step).  (When we throw a batch out, we send it to a new HC, until we have N.)

The overall trend to see is that the heat map “whitens” as N goes up.

Increasing the number of HPs used in voting reduces the likelihood that the final output is affected by inaccurate HC that 
nonetheless passes the sentinel and consistency tests.
% Each location in these heat maps depicts the probability that reliable queries from N different HPs produces the correct answer 
for the depth order between a pair of neighboring patches; the depicted value is the average over all pairs of neighboring patches.

There is no obvious “sweet spot.”
Interesting to note that you can have an expected 97% accuracy with only one reliable HC answer for each micro-task by setting the 
sentinel and consistency thresholds to 100%.
These thresholds are too strict to use when deciding whether to pay HPs—they get upset—so you must pay for substantially more 
HC than you’ll use.
Still, it’s cheaper to obtain 97% accuracy by requiring 100% consistency and sentinel accuracy *while paying HPs at 75% 
thresholds*
than to get reliable HC from N = 3 HPs with 75% consistency and sentinel thresholds and pay for 3x the number of accurate micro-
tasks actually needed.

1 HP @ 100% c/s: pay for 100 · 72% = 167% of the number of accurate micro-tasks actually needed instead of 3x.
Need N > 1 HPs for achieve higher than 97% accuracy.

Take-away: you may be able to make-do with a single answer if it comes from a batch of high-quality HC.
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  HC	
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  can	
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  your	
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  in	
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  of	
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  human	
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• How	
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efficiency: timing, cost: quality control overhead, different micro-task designs (optimizing perceptual experiment design)

Thank you.  Questions?



End
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    Many kinds of collective intelligence (open-source software, wikipedia, pagerank, supervised learning in general, elections?)
" - Collaborative filtering: [Goldberg et al. 1992; Adomavicius and Tuzhilin 2005]
" - Open Mind Initiative
    Modern assembly line (Ford Motor Company 1908--1915)
        Wikipedia:
            In his autobiography Henry Ford (1922) mentions several benefits of the assembly line including:
                Workers do no heavy lifting
                No stooping or bending over
                No special training required
                There are jobs that almost anyone can do
                Provided employment to immigrants
            The gains in productivity allowed Ford to increase worker pay from $2.50 per day to $5.00 per day and to reduce the hourly 
work week while continuously lowering the Model T price. These goals appear altruistic; however, it has been argued that they were 
implemented by Ford in order to reduce high employee turnover.
    Interchangeable parts:
        Adam Smith on division of labor (1776)
        Terracotta army (3rd century BC)
        Venetian Arsenal (ship building)
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  2010]
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  al.	
  2010]
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  et	
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  experiments
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  et	
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  et	
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  et	
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Online algorithms
        [von Ahn 2005]: CAPTCHA (not useful computation; in [reCAPTCHA 2008] it became useful), ESP game (labeling)
        [Little et al. 10a,b] and [Bernstein 2010] for text processing and sorting.  Their Soylent system makes a similar argument as we 
do for incorporating human computation into a word processor.  VizWiz [Bigham et al. 2010] and [Bernstein 2011] focus on 
decreasing latency (applied to image labeling for the blind (VizWiz) and applied to choosing an image from a short video, a creative 
task posing a figure, and perceptual sorting (Bernstein)).
    [Davis et al. 2010] makes a similar argument about using human computation in online algorithms and evaluated many 
characteristics of what they call “Human Processing Units”.
    [Sorokin et al. 2010] introduced a workflow for 3D object reconstruction to assist robots.
    Many more recent works databases (CrowdDB), calorie counting, ...

    Can recast existing experiments as human computation operations: [Koenderink et al. 1992]/[Cole et al. 2009] or [Chen et al. 
2009].  In those works, primary goal is gathering data on humans, not on the efficiency of the data gathering per se.
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  (3/6)

• Training	
  data:
– ESP	
  Game	
  [von	
  Ahn	
  and	
  Dabbish	
  2004],	
  …

– LabelMe	
  [Russel	
  et	
  al.	
  2008;	
  Yuen	
  et	
  al.	
  2009]

– Hands	
  by	
  Hand	
  [Spiro	
  et	
  al.	
  2010]

• Using	
  HC	
  data	
  gathered	
  offline:
– [Talton	
  et	
  al.	
  2009]

– [Kalogerakis	
  et	
  al.	
  2010]	
  using	
  [Chen	
  et	
  al.	
  2009]
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    Gathering training data, but don't have tight algorithmic coupling. ESP Game [von Ahn and Dabbish 2004], LabelMe [Russel et al. 
2008; Yuen et al. 2009], motion tracking [Spiro et al. 2010].
    
    HC for learning: [Talton et al. 2009] for tree modeling by sampling human good models. [Kalogerakis et al. 2010] for segmentation 
from [Chen et al. 2009] data.



Related	
  Work	
  (4/6)

• Depth	
  Layer	
  Algorithm
– automa9c:	
  [Hoiem	
  et	
  al.	
  2005;	
  Assa	
  and	
  Wolf	
  2007;	
  
Saxena	
  et	
  al.	
  2009]

– manual:	
  [Oh	
  et	
  al.	
  2001;	
  Ventura	
  et	
  al.	
  2009;	
  Sykora	
  et	
  
al.	
  2010]

• Normal	
  Map	
  Algorithm
– manual:	
  [Wu	
  et	
  al.	
  2008]

• Symmetry	
  Map	
  Algorithm
– automa9c:	
  [Chen	
  et	
  al.	
  2007]
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Related	
  Work	
  (5/6)

• History
– “When	
  Computers	
  Were	
  Human”	
  [Grier	
  2005]

– GeneFc	
  Algorithms
• [Sims	
  1991]

• InteracFve	
  GeneFc	
  Algorithm	
  [Takagi	
  2001]

• Human-­‐Based	
  GeneFc	
  Algorithms	
  [Kosorukoff	
  2001]

• Electric	
  Sheep

– Open	
  Mind	
  IniFaFve

– collaboraFve	
  filtering:	
  [Goldberg	
  et	
  al.	
  1992;	
  Adomavicius	
  and	
  
Tuzhilin	
  2005]

• “Human	
  ComputaFon”	
  [von	
  Ahn	
  2005]
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Related	
  Work	
  (6/6)

• Recent	
  survey:	
  [Quinn	
  and	
  Bederson	
  2011]

• Market	
  properFes:
– [IpeiroFs	
  2010;	
  Chilton	
  et	
  al.	
  2010;	
  Faridani	
  et	
  al.	
  2011;	
  
Mason	
  and	
  Suri	
  2011;	
  Mason	
  and	
  Wa2s	
  2010]

• Surface	
  percepFon:
– [Koenderink	
  et	
  al.	
  1992;	
  Belheumer	
  et	
  al.	
  1997;	
  
Koenderink	
  et	
  al.	
  2001]

• Shape-­‐from-­‐Shading:
– [Durou	
  et	
  al.	
  2008]
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Theore2cal	
  Limits

• 125–180	
  seconds	
  (median)	
  /	
  20	
  ques2ons	
  =	
  6.25–
9	
  seconds	
  per	
  percep2on	
  for	
  our	
  tasks

• 7	
  billion	
  humans	
  (does	
  not	
  include	
  other	
  animals	
  
capable	
  of	
  similar	
  tasks)

• (	
  number	
  of	
  humans	
  )	
  /	
  (	
  seconds	
  per	
  percep2on	
  )	
  
~=	
  1	
  billion	
  percep2ons	
  per	
  second
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+ HC: Theoretical limits.
    - 20 ms (.02 s) from brain to hand.
    - ?? ms (. ?? s) for perception
    - between 125 and 180 seconds (median) / 20 questions = 6.25--9 seconds per perception for our tasks.
    - 7 billion humans (does not include other animals capable of similar tasks)
    - ( number of humans ) / ( seconds per perception ) ~= 1 billion perceptions per second

There is an upper limit to human computation, which we can get by
dividing the number of humans (~7 billion) by the time to record one
perception (6.25 to 9 seconds in our examples), for a total of ~1
billion perceptions per second.  That's 500 images per second if we
want, say, per-pixel depth comparisons in a megapixel image and assume
perfect humans: 1 billion perceptions per second / ( 1M pixels per
image * 2 perceptions per pixel (4 neighboring pixels per pixel / 2
because the relationship is symmetric) ) = 500 images per second.

Of course, this does not take into account better input (recording a
perception may take as little as 1 second instead of 7) or, more
importantly, Dog or Cat Computation.


