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Abstract- Co-evolutionary algorithms (CEAs) have been
applied to optimization and machine learning problems
with often mediocre results. One of the causes for the
unfulfilled expectations is the discrepancy between the
external problem solving goal and the internal mecha-
nisms of the algorithm. In this paper, we investigate in
a principled way the relationships between the internal
subjective metric used as fitness by a co-evolutionary al-
gorithm and the external objective metric measuring the
algorithm’s progress towards the envisioned goal. We
point out the complexity of these relationships and ex-
plain their causes.

1 Introduction

Co-evolution emerged as a new subfield of EC at the in-
tersection of efforts coming from several directions: 1) the
simulation of those processes taking place in nature where
reciprocal evolutionary change occurs between interacting
species or populations; 2) the need for a computational
method to tackle domains in which performance of a po-
tential solution can only be expressed based on interactions
with other potential solutions; and 3) improving EAs’ per-
formance through problem decomposition.

Co-evolutionary algorithms have thus been implemented
and applied for different purposes, including simulation of
real-world co-evolutionary systems, study of phenomena
emerging in such systems [1] and, predominantly, problem
solving ([2, 3, 4, 5], etc.). Results have varied from encour-
aging to disappointing across all goals.

In this paper we analyze one of the main causes of disap-
pointment when applying co-evolution to problem solving,
namely the disconnection between the external goal envi-
sioned and the internal ways of working of co-evolution.

2 Background

2.1 Co-evolution Goals

In the past, co-evolution was often applied to various prob-
lem domains without a cleara priori specified goal. The
loosegoal was to see whether it could produce anyinterest-
ing results in a particular domain. What interesting meant
was decided post-factum and at times arbitrarily (e.g. hu-
mans putting smartness labels on robot behaviors).

For many domains there can be multiple and quite differ-
ent goals. For example in win/lose game playing domains
([6, 7], etc.) one goal may be to find a player that can win
against all other players (or at least as many as possible).

Another goal may be to beat some knownexpertplayers.
Yet a different goal may be to beat humans. One cannot ex-
pect to use the same algorithm to achieve all of them; yet in
the past it happened that the same co-evolutionary algorithm
was used for different goals.

One of the reasons co-evolution was used in the first
place was that the envisioned goal could not be translated
into a fitness function for a traditional EA to use. This could
be for one of several reasons: 1) the goal was not even theo-
retically testable (e.g. find a chess playing program beating
all other possible programs); 2) testing the goal was compu-
tationally intractable (e.g. find a sorting network that sorts
all binary input sequences, when the number of inputs is
high); 3) the goal was computationally testable, but it was
expensive to do so for each evaluation during the algorithm
(e.g. in the sorting networks domain when the number of in-
puts is small [4]); and 4) the goal may not translate into an
evolution-friendly fitness function (e.g. evaluating against
a set of expert opponents may provide no gradient for the
search). The hope of co-evolution was to have an algorithm
achieve such a goal without specifically encoding it inter-
nally into fitness. Was this hope realistic?

On one hand, there seem to be no strong reasons to be-
lieve that an algorithm playing computer programs against
computer programs would evolve human-competitive play-
ers, other than the fact that human players can be seen as the
results of an evolutionary process as well. Sometimes co-
evolution gave good results in this respect and sometimesit
didn’t. On the other hand, there seem to be stronger connec-
tions between an algorithm internally playing computer pro-
grams in a limited number of games (against other evolving
computer programs) and the goal of optimality over all pos-
sible games. It turned out that co-evolution may ormay not
work well in this respect either. The relationships between
the internal fitness (metric) used by the algorithm and its
progress towards the goal (measured by some external met-
ric) are generally not clear.

In this paper we analyze such relationships between in-
ternal and external metrics in co-evolution. We do so for a
basic co-evolutionary algorithm and domains with a com-
putationally testable goal (i.e. computable external metric).
We also provide insight into the causes for the observed re-
lationships by means of dynamical systems analysis. We
believe we need to understand such simple setups first be-
fore moving on to more complex (e.g. untestable) goals or
more complex algorithms. In fact, as the reader will see,
even in basic setups there is a wide range of possible rela-
tionships.



2.2 Co-evolution Metrics

It is important to clearly define goals before applying co-
evolution and also to define ways of instrumenting it. A lot
of confusion persisted in the field due to failure to distin-
guish between the internal and the external perspective. [5]
cleared matters by providing a clustering of metrics for co-
evolution. We reproduce it here in a slightly different form.

Instrumenting co-evolution comes down to defining
some metrics of the typem(individual, context) and an-
alyzing the values produced by these metrics for some/all
individuals produced at run-time by the algorithm. There
are two important criteria for clustering such metrics: de-
pendence on context and influence on the algorithm.

Based on the first criteria, metrics can be divided into
objectiveandsubjective. An objective metric will always
return the same value for an individual, regardless of the
context. A subjective metric is one that is not objective.

Based on the second criteria, metrics can be divided into
internal andexternal. An internal metric is one whose val-
ues are used by the algorithm and influence its course. An
external metric is one that is not internal.

A traditional EA uses an internal objective metric as fit-
ness. A co-evolutionary algorithm always uses an internal
subjective one. The context is usually a set of other evolving
individuals. External metrics can also be objective or sub-
jective. In cases where co-evolution was applied without a
precise goal or with a non-testable goal, some external sub-
jective metrics of performance were used to tell whether the
algorithm was making anyprogress(e.g. metrics that eval-
uate individuals in contexts composed of individuals from
previous generations of the same run - [7], etc.). While such
metrics tell us something about the behavior of the algo-
rithm, they may not tell us how the algorithm is doing with
respect to the actual goal. Performance with respect to a
goal should be measured with an external objective metric.

Of the variety of goals for which co-evolution was ap-
plied, we choose to investigate one which is characteristic
of problem solving domains involving two different species,
such as evolving sorting networks vs. input sequences [4]
or cellular automata vs. initial conditions [3]. The goal is
to find the individual of the first species with the highest
cumulative payoff over interactions with all individuals of
the other species (e.g. networks that sort all binary input se-
quences; CAs that correctly classify the maximum number
of initial conditions).

First, we will define a proper external objective metric
to measure performance with respect to this goal. Then we
will analyze the relationships between the run-time trends
of this external objective metric and the algorithm’s internal
subjective metric, as well as their causes.

The only previous study in this area is [6], which ana-
lyzed relationships between internal and external metricsin
the context of some number game domains. However, this
research cannot be directly extended to other domains, as
the external objective metrics are problem dependent. Also,
it did not provide explanations for the observed behavior.
We address both these issues in this paper.

3 The Setup

3.1 The Domains and the External Objective Metric

In the experiments reported in this paper we focused on
competitive co-evolution involving two species.1 We call
the two species theX-specie and theY -specie and both
contain real numbers. Each problem domain is expressed by
a two-parameter functionf : DX × DY → R; DX , DY ⊂
R. When anx-individual interacts with ay-individual, the
outcome is that thex-individual receives a payoff equal
to f(x, y) and they-individual receives a payoff equal to
max(x,y)∈DX×DY

f(x, y) − f(x, y). Outcomes of interac-
tions between individuals can thus be characterized in terms
of game theory asconstant sum.

Both species want to maximize payoff, however our
problem solving goal is only related to theX species.
Namely, thegoal is to find an x-individual with max-
imum expected(or average, or cumulative) payoff over
all possible interactions withy-individuals. Formally, this
means findingx0 which maximizese(x) =

∫

DY

f(x, y) dy.
e(x) represents the cumulative payoff for anx-individual.
The average (or expected) payoff is given byavg(x) =
e(x)/size(DY ). avg(x) will be ourexternal objective met-
ric of performance with respect to reaching the goal.

We use for our experiments four domains described
by four such functions, three of which were previously
introduced in [8], where their analytical forms can be found
(for space constraints we do not reproduce them here). A
fourth one,chaoticRidges, is introduced here in order to
expose additional possible relationships between metrics.
Its expression is:chaoticRidgesn(x, y) =














n + 2|2n
3 − y| − |x − y| if (x − 2n

3 )(y − 2n
3 ) ≥ 0;

n+x
3 + |2n+x

3 − y| if x ≤ n
2 ;

−n + 3x + |2(n − x) − y| if x ≤ 2n
3 ;

3(n − x) + |2(n − x) − y| otherwise.
In all the experiments presented heren = 8 was used

(i.e. DX = DY = [0, 8]). Three dimensional views of all
four functions are shown in Figures 1 and 2. Each surface
in these figures represents the payoff thatx-individuals get
from interacting with ay-individual for that particular setup.
The payoff surface fory-individuals is omitted for brevity
and it would look like theX payoff surface upside down.

Figures 1 and 2 show what the landscapes look like from
the point of view of individual interactions (and therefore
internal fitness). They are very much alike with regard to
ruggedness/modality. By contrast, Figures 3 and 4 show
us what the landscapes look like from the point of view of
our external objective metric, the one we really hope to op-
timize. They plot for each of the four functionsavg(x)
vs x. These plots confirm that the domains are similar.
They all have a single global maximum, no local maxima
and a smooth gradient. We shall see however that relation-
ships between the external objective metric and the internal
subjective one (for best of generation individuals) can vary
widely across these domains.

1We expect the same richness of behaviors for more than two
species/populations, but analysis/visualization are more difficult.
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Figure 1: Internal landscape perspective (individual interaction payoff surfaces); left:collapsingRidges, right: expanding-
Ridges
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Figure 2: Internal landscape perspective (individual interaction payoff surfaces); left:cyclingRidges, right: chaoticRidges
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Figure 3: External landscape perspective (average payoff curves); left:collapsingRidges, right: expandingRidges
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Figure 4: External landscape perspective (average payoff curves); left:cyclingRidges, right: chaoticRidges



3.2 The Algorithm and the Internal Subjective Metric

The co-evolutionary algorithm used in these experiments in-
volves two populations, one for each species and it takes
turns in evolving them, i.e. only one population is active
per generation. Within each population a non-overlapping
generational model is used, with elitism of 1. The individ-
uals in the active population are evaluated by having them
interact with the best individual in the other population at
the previous generation (last elite opponentevaluation [9]).
This defines ourinternal subjective metric. Binary tourna-
ment selection is followed by Gaussian mutation with sigma
fixed to 0.25, altering each individual with probability 0.75.
The new individuals are evaluated in combination with the
best individual in the other population and, based on the fit-
nesses obtained, the best individual for this population is
determined. Control is passed to the opposite population.

Unless otherwise specified, each population had a size
of 100. At the beginning of the algorithm both populations
are initialized uniformly random across the domain. TheX-
population is the first to be active. One randomy-individual
is picked for evaluating allx-individuals, as there is nobest
in theY population yet. The firstY -generation (second of
the run) uses for evaluation the actual bestx-individual de-
termined in the previous(X) generation.

4 The Results

Since we are set in a context of applying co-evolution for
optimization, we will instrument our algorithm from the
perspective of change in best individuals throughout the run.

For each experiment we conducted 100 runs and gener-
ated plots for all of them. These plots were then visually in-
spected. If all had the same trend, we picked to show in the
paper the one that displays the trend most clearly. If there
were several different trends, we similarly picked one from
each category, regardless or which category was more heav-
ily represented. Mean fitness trends (not shown) were either
presenting nearly no variance (forcollapsingRidges and
expandingRidges) or they were obscuring the true phe-
nomena, because they were averaging very different values
(for cyclicRidges andchaoticRidges).

We grouped the results into three categories, based on
the relationship between the internal and the external met-
ric. In comparing the metrics, we looked both at the rela-
tionship between their respective values and at the nature of
their change over time. For each case, we show how the dy-
namics analysis explains the (otherwise mysterious) trends.

4.1 Opposite Monotonic Trends

The Fitness Figure 5 shows a typical run for thecollaps-
ingRidgesfunction. On the left hand side, the fitness curves
plot (only) the points corresponding to the best individual
in generations in whichX was the active population. For
each such point, the internal subjective metric used by the
algorithm is the payoff that the bestx-individual in that gen-
eration obtained from interacting with the besty-individual
from the previous (non-plotted) generation. The external

objective metric isavg(x). Note that as the external metric
is an average over the domain, its range of values is more
restricted than that of the internal metric.

In this case the internal subjective metric decreases from
its initial value quite fast in the first few generations and
then stabilizes for the rest of the run at a value in the middle
of its range. This might suggest very poor performance, but
in fact the external metric has the exactly opposite trend,
i.e. it increases quickly at the beginning and then stabilizes
at what is actually its maximum value.

A completely reversed situation happens for theexpand-
ingRidgesfunction. As can be seen in Figure 6, initial gen-
erations display rapid increase in the internal metric and
rapid decrease in the external metric, after which they both
stabilize (the internal one at its maximum and the external
one at its minimum). What internally looks like progress,
from an external perspective is actually regress.

At this point the situation appears confusing. The two
functions are very similar from several perspectives. First,
the 2D surfaces generated by the payoff of individual inter-
actions have the same degree of ruggedness (same global
optima, no local optima, same number of ridges, smooth
gradient). Second, the curves generated by the average pay-
off over all interactions have the same degree of ruggedness
(single global optima, no local optima, smooth gradient).
Why does the same algorithm have opposite behaviors?

The Dynamics To elucidate this, we look at the dynamics
of best individuals from the perspective of their movement
across the search space, using a technique introduced in [8]
which we will briefly summarize here.

The right hand side of Figures 5 and 6 shows the tra-
jectories of best individuals across the space (for the same
runs). Each inflection point on such a trajectory corresponds
to one generation and it displays the pair (of genotypes) of
the best individual from that generation and the best indi-
vidual from the previous generation (from interaction with
whom it got its fitness). The starting point is marked by an
empty geometrical shape (in this case a circle) and the end
point by the same shape but filled.

The plots also display the so calledbest response curves
[8] characteristic to the surfaces of individual interactions
payoff and how these curves influence the trajectory of the
best individuals. ThebestResponseX curve is obtained by
plotting for everyy the x that gets the highest payoff out
of interacting with that particulary. ThebestResponseY
curve is similarly defined.

To understand the fitness plot for a function, one needs
to collectively analyze the trajectory plot, the individual in-
teractions surface plot and the external metric plot for that
particular function. For any function, a point of intersec-
tion of the two best response curves is a fixed point for best
individual trajectories. In the case of thecollapsingRidges
function, due to the fact that in this point the absolute value
of the slope of thebestResponseYcurve is smaller than that
of thebestResponseXcurve (|0| < | − 1|), this fixed point
has attracting behavior. Regardless of where a trajectory
starts (we show one starting quite far away from this point),
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Figure 5: A selected run forcollapsingRidges; left: best-of-generation metrics, right: best-of-generation space dynamics.
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it will end up in the fixed point. The fitness plot basically
reports internal and external metric values for the points of
the trajectory on or near thebestResponseXcurve. These
points move closer and closer to the center of the space.
The internal fitness values correspond to the values associ-
ated with these points on the 2D surface of individual in-
teractions payoff (left in Figure 1). We can see on this sur-
face that moving closer to the center means decreasing val-
ues. Once at the center there is only small variation due to
stochastic effects. The external fitness values correspondto
the values associated with theX coordinate of these points
on the external fitness chart (left in Figure 3). We can see
on this curve that moving from the sides to the center gener-
ates increase in values up to the maximum in the fixed point
(again, with small perturbations due to stochastic effects).
And this is exactly what we see on the fitness plot.

In the case of theexpandingRidgesfunction, the relation-
ship between the absolute values of the slopes of the best
response curves at the fixed point is reversed (|∞| > |−1|).
This makes the fixed point unstable, so trajectories are re-
pelled from it (even when they start very close to it, as in
the example run presented). Following the same type of
analysis as for thecollapsingRidges, we now understand
the shapes of the internal and external fitness curves and
why they are different from the previous function (both the
2D surfaces and the external metric curves have the same
monotonicities, but the trajectories move in one case from
the center to the extremes and vice versa in the other case).

4.2 Flat Trends

On thecyclingRidgesfunction the two metrics seem to agree
in their trends, in the sense that both of them stagnate from
beginning to end. However, they disagree in the type of val-
ues they report. Figure 7 shows two runs superimposed on
the same plot(s) (runs are distinguished by line type/width).
In one of them the internal metric reports high values for
its range while the external metric reports low values for its
own range. In the other run, the internal metric shows aver-
age values, while the external one is almost at its optimum.

Armed with the technique described above, we can ex-
plain these results. The dynamics plot shows that the two
best response curves have the same slope in absolute value.
This causes the fixed point to be neither attracting nor re-
pelling. Additionally, it causes the appearance of an infi-
nite number of size two periodic orbits. Trajectories wander
about such orbits close to the point where they started (they
do not follow a single orbit due to stochastic effects). The
periodic orbits intersect thebestResponseXcurve in points
symmetric with respect to the center, and the corresponding
fitness values are equal both for the 2D surface of individual
payoffs (internal metric) and for the average payoff external
metric. This explains the flat trend of the fitness curves.

Whether the internal metric claims better performance
than the external or vice versa depends on the point where
a particular run’s trajectory starts and is cycling close to.
Trajectories wandering close to the center will have an in-
ternal metric close to 8 (the value at the center) which is in
the middle of the 0-16 range and an external metric close to

10, which is the maximum in a range of 6-10. Trajectories
wandering closer to the extremes of the space will have the
internal metric closer to its maximum of 16 and the external
metric closer to its minimum of 6.

4.3 Complex Trends

In the three examples examined so far, the trend of each
metric throughout the run was monotonic, apart from mi-
nor oscillations. The fourth function paints quite a different
picture, as can be seen in Figure 8 which displays three dif-
ferent runs, each with its own set of plots. Both the internal
and the external fitness curves are very rugged, with numer-
ous spikes. For the first run, the spikes are irregular in shape,
size and frequency throughout the run. The second run dis-
plays two phases, first one of irregular spikes and then one
of very regular spikes. During this second phase, the two
metrics go up and down synchronously, whereas in the first
phase (and more clearly visible in the plot of the third run)
when external fitness increases, internal fitness decreases
and vice-versa. Finally, the third run displays fairly regu-
lar spikes and the two metrics are negatively correlated.

Next, we investigate the dynamics and tie them to the
fitness. The right hand side plots in Figure 8 show clearly
more complex behavior than previously seen. Considering
the systemx → bestResponseX(bestResponseY (x)),
that deterministically follows the best response curves, the
following can be mathematically proven: 1) it has a re-
pelling fixed point at(16

3 , 16
3 ); 2) it has periodic orbits of

any size; 3) all periodic orbits are sources (i.e. repelling)
4) it has chaotic orbits; and 5) the whole interval[0, 8] is a
chaotic attractor. The proof is beyond the scope of this pa-
per, but for the interested reader it is similar to those for the
logistic and tent maps presented in chapters 1 and 3 of [10].

Of course, when we introduce stochasticity, as in our
CEA, we no longer have clear definitions of the above men-
tioned dynamical systems concepts. However, visually at
least, the CEA using a population size of 100 approximates
quite closely the deterministic system.

The first run is the analog of a chaotic orbit for the
corresponding deterministic system (which would come in-
finitesimally close to any point in the[0, 8] interval an in-
finite number of times, without periodicity). This explains
the irregular nature of the fitness curves for this run. The
first part of the second run is fairly similar to it, then the
trajectory spends some time around a period two orbit, gen-
erating the saw-like shape of the fitness. In the third run
the trajectory wanders around a higher period orbit, which
explains the wider regularly shaped teeth in the fitness plot.

Note first that values in the fitness plot come from points
along thebestResponseX curve (the main diagonal of the
space). Along this diagonal, the minimum payoff is 8 (see
Figure 2), therefore the internal fitness never goes below this
value. At the same time, the maximum average payoff is 10
(see Figure 4). Points close to the left/bottom end of the di-
agonal (x close to0) have close to maximum internal fitness
and high but not quite optimum external fitness. Points near
the fixed point have very low internal fitness and close to
optimum external fitness. Points close to the right/top end
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of the diagonal have medium internal fitness and very low
external fitness. The rest is somewhere in between.

As can be seen on any of the trajectory plots,
bestResponseX(bestResponseY (x)) has the following
general effects: 1) it moves points near the top/right end to
points near the bottom/left end; 2) moves points close to the
bottom/left end to points near the fixed point, but above it;
3) moves points near the fixed point, but above it to points
near the fixed point, but below it; and 4) moves points near
the fixed point, but below it to points further away from the
fixed point and closer to the top/right end.

Consulting Figures 2 and 4, we can see that: case 1) cor-
responds to some increase in the internal metric and con-
siderable increase in the external one (with respect to their
own ranges); 2) entails deep drop in the internal metric and
small increase in the external one; 3) gives small increase in
the internal metric (gradient to the left of the fixed point is
bigger than gradient to the right) and almost no change in
the external one; and 4) corresponds to some increase in the
internal metric and some decrease in the external one.

This causes a wide range of metric relationships. First
of all, the metrics are no longer monotonic throughout the
whole run, although they can be for smaller periods of time
(e.g. the upward slopes in internal fitness on the spikes for
the third run). Second, the two metrics may no longer agree
or disagree throughout the whole run, instead there can be
periods when they are positively correlated (e.g. second half
of second run) and periods when they are negatively corre-
lated (e.g. the teeth in the third run). Moreover, correlation
can change sign very often and irregularly (e.g. first run).

5 Conclusions, Preliminary and Future Work

In this paper we used four simple fitness landscapes to gain
insight into one of the main causes of failure when using
co-evolution for optimization, namely the disconnection be-
tween the envisioned external goal and the internal behavior
of the algorithm. We identified a problem solving goal that
appears often in practice and formalized it in a domain in-
dependent way. Moreover, the goal is expressed in terms
of interactions between individuals, as these are the ones
used by the algorithm. This way, there is at least a com-
mon ground between the goal and the algorithm. We defined
a computable external objective metric for testing progress
towards the goal. We used a basic algorithm so that the in-
ternal subjective fitness metric had a simple dependency on
the individual interactions.

We showed that even with a simple algorithm on simple
landscapes, complex relationships between the two metrics
can emerge. To understand them, a single perspective anal-
ysis is not enough. One must combine several views, an
important one being given by dynamical system analysis.

The research conducted is preliminary in nature and we
deliberately picked a simple setup. Natural further ex-
tensions include: 1) analyzing more complex evaluation
schemes; 2) analyzing more complex external goals; and
3) analyzing cooperative setups.

We have already conducted some experiments for coop-
erative co-evolution using the same external metric. This

metric would be appropriate when the goal is not finding
the ideal combination, but finding individuals that generally
collaborate well with others. Previously, [5] suggested that
CCEAs tend to move towards points of maximum average
performance. By performing the same analysis as in this
paper for the two functions introduced in [11] we can say
that this is not always the case.
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