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Abstract- Co-evolutionary algorithms (CEAs) have been  Another goal may be to beat some knoexpertplayers.
applied to optimization and machine learning problems Yet a different goal may be to beat humans. One cannot ex-
with often mediocre results. One of the causes for the pect to use the same algorithm to achieve all of them; yetin
unfulfilled expectations is the discrepancy between the the pastit happened thatthe same co-evolutionary algorith
external problem solving goal and the internal mecha- was used for different goals.

nisms of the algorithm. In this paper, we investigate in One of the reasons co-evolution was used in the first
a principled way the relationships between the internal place was that the envisioned goal could not be translated
subjective metric used as fithess by a co-evolutionary al- into a fithess function for a traditional EA to use. This could
gorithm and the external objective metric measuring the be for one of several reasons: 1) the goal was not even theo-
algorithm’s progress towards the envisioned goal. We retically testable (e.g. find a chess playing program bgatin
point out the complexity of these relationships and ex- all other possible programs); 2) testing the goal was compu-

plain their causes. tationally intractable (e.g. find a sorting network thattsor
all binary input sequences, when the number of inputs is
1 Introduction high); 3) the goal was computationally testable, but it was

expensive to do so for each evaluation during the algorithm

Co-evolution emerged as a new subfield of EC at the irfe.g. in the sorting networks domain when the number of in-
tersection of efforts coming from several directions: B th puts is small [4]); and 4) the goal may not translate into an
simulation of those processes taking place in nature wheegolution-friendly fitness function (e.g. evaluating agsi
reciprocal evolutionary change occurs between intergctira set of expert opponents may provide no gradient for the
species or populations; 2) the need for a computationaearch). The hope of co-evolution was to have an algorithm
method to tackle domains in which performance of a poachieve such a goal without specifically encoding it inter-
tential solution can only be expressed based on interactionally into fitness. Was this hope realistic?
with other potential solutions; and 3) improving EAs’ per- On one hand, there seem to be no strong reasons to be-
formance through problem decomposition. lieve that an algorithm playing computer programs against

Co-evolutionary algorithms have thus been implementegbmputer programs would evolve human-competitive play-
and applied for different purposes, including simulatidn oers, other than the fact that human players can be seen as the
real-world co-evolutionary systems, study of phenomen@sults of an evolutionary process as well. Sometimes co-
emerging in such systems [1] and, predominantly, probleevolution gave good results in this respect and sometitnes
solving ([2, 3, 4, 5], etc.). Results have varied from eneourdidn’t. On the other hand, there seem to be stronger connec-
aging to disappointing across all goals. tions between an algorithm internally playing computerpro

In this paper we analyze one of the main causes of disagrams in a limited number of games (against other evolving
pointment when applying co-evolution to problem solvingcomputer programs) and the goal of optimality over all pos-
namely the disconnection between the external goal endible games. It turned out that co-evolution mayray not
sioned and the internal ways of working of co-evolution. work well in this respect either. The relationships between

the internal fitness (metric) used by the algorithm and its

2 Background progress towards the goal (measured by some external met-
ric) are generally not clear.
2.1 Co-evolution Goals In this paper we analyze such relationships between in-

. . . ternal and external metrics in co-evolution. We do so for a
In the past, co-e_volutlon was oft_en_ applle_c_l to various prof;,qie co-evolutionary algorithm and domains with a com-
:em domzlsuns without ahcleha{ priori Isdpeuged g_oal. The putationally testable goal (i.e. computable external ioetr
'oosegoal was to seew ether |t.cou produce myrest- We also provide insight into the causes for the observed re-
Ing resuIFs in a particular domam..What |nt.ere§t|ng meaqﬁtionships by means of dynamical systems analysis. We
was deC|d_ed post-factun; %mlj at tlmte)s akl)rbrl]tra_rlly (eg. hLb'elieve we need to understand such simple setups first be-
mans putting smartness labels on robot be awors). ... fore moving on to more complex (e.g. untestable) goals or
For many domains there can be multiple and quite differs, ;o complex algorithms. In fact, as the reader will see,

ent goals. For example in win/lose game playing domaing o, in pasic setups there is a wide range of possible rela-
([6, 7], etc.) one goal may be to find a player that can W”?ionships

against all other players (or at least as many as possible).



2.2 Co-evolution Metrics 3 The Setup

It is important to clearly define goals before applying co3 1 The Domains and the External Objective Metric
evolution and also to define ways of instrumenting it. A lot

of confusion persisted in the field due to failure to distin/n the experiments reported in this paper we focused on
guish between the internal and the external perspectiye. [§°MPpetitive co-evolution involving two specieswe call
cleared matters by providing a clustering of metrics for coth® two species the(-specie and th&-specie and both
evolution. We reproduce it here in a slightly different form contain real numbers. Each problem domain is expressed by

Instrumenting co-evolution comes down to defining® tWo-parameter functiofi : Dx x Dy — R; Dx, Dy C
some metrics of the typeu(individual, context) and an-  F- When _artz:-|nd|V|du_aI interacts W|th a-individual, the
alyzing the values produced by these metrics for some/@Htcome is that ther-individual receives a payoff equal
individuals produced at run-time by the algorithm. Therd® f(z,y) and they-individual receives a payoff equal to
are two important criteria for clustering such metrics: delaZ (zy)epx x Dy (2, y) — f(z,y). Outcomes of interac-
pendence on context and influence on the algorithm. tions between individuals can thus be characterized ingerm

Based on the first criteria, metrics can be divided int®f game theory asonstant sum
objectiveand subjective An objective metric will always ~ Both species want to maximize payoff, however our
return the same value for an individual, regardless of throblem solving goal is only related to th& species.
context. A subjective metric is one that is not objective. Namely, thegoal is to find anz-individual with max-

Based on the second criteria, metrics can be divided intf)um expected(or average or cumulativg payoff over
internal andexternal An internal metric is one whose val- all possible interactions with-individuals. Formally, this
ues are used by the algorithm and influence its course. AReans finding:o which maximizes:(z) = [}, f(z,y) dy.
external metric is one that is not internal. e(z) represents the cumulative payoff for arindividual.

A traditional EA uses an internal objective metric as fit-The average (or expected) payoff is given dyg(z) =
ness. A co-evolutionary algorithm always uses an internal)/size(Dy ). avg(z) will be ourexternal objective met-
subjective one. The contextis usually a set of other evglvinfic of performance with respect to reaching the goal.
individuals. External metrics can also be objective or sub- We use for our experiments four domains described
jective. In cases where co-evolution was applied without By four such functions, three of which were previously
precise goal or with a non-testable goal, some external sulptroduced in [8], where their analytical forms can be found
jective metrics of performance were used to tell whether théor space constraints we do not reproduce them here). A
algorithm was making angrogress(e.g. metrics that eval- fourth one,chaoticRidgesis introduced here in order to
uate individuals in contexts composed of individuals frongxpose additional possible relationships between metrics
previous generations of the same run - [7], etc.). While sudfs expression ischaoticRidges,(z,y) =
metrics tell us something about the behavior of the algof{ 7 +23¢ —yl — |z —yl  if (2 — &)y — 3) > 0;
rithm, they may not tell us how the algorithm is doing with J %% + [275% — y| if z < ?;
respect to the actual goal. Performance with respect to o —n + 3z + [2(n — ) —y| if x < 3
goal should be measured with an external objective metrick 3(n — ) + [2(n —x) —y| otherwise

Of the variety of goals for which co-evolution was ap- !N all the experiments presented here= 8 was used
plied, we choose to investigate one which is characteristié®. Dx = Dy = [0,8]). Three dimensional views of all
of problem solving domains involving two differentspeciesfour functions are shown in Figures 1 and 2. Each surface
such as evolving sorting networks vs. input sequences [H] these figures represents the payoff thandividuals get
or cellular automata vs. initial conditions [3]. The goal isfrominteracting with a-individual for that particular setup.
to find the individual of the first species with the highestl he payoff surface fog-individuals is omitted for brevity
cumulative payoff over interactions with all individualg o and it would look like theX' payoff surface upside down.
the other species (e.g. networks that sort all binary inputs ~ Figures 1 and 2 show what the landscapes look like from
guences; CAs that correctly classify the maximum numbéhe point of view of individual interactions (and therefore
of initial conditions). internal fitness). They are very much alike with regard to

First, we will define a proper external objective metric’uggedness/modality. By contrast, Figures 3 and 4 show
to measure performance with respect to this goal. Then v What the landscapes look like from the point of view of
will analyze the relationships between the run-time trend@ur external objective metric, the one we really hope to op-
of this external objective metric and the algorithm’s intr  timize.  They plot for each of the four functionag(x)
Subjective metric, as well as their causes. vs z. These plOtS confirm that the domains are similar.

The only previous study in this area is [6], which anaThey all have a single global maximum, no local maxima
lyzed relationships between internal and external meimics @nd a smooth gradient. We shall see however that relation-
the context of some number game domains. However, thghips between the external objective metric and the interna
research cannot be directly extended to other domains, $iddjective one (for best of generation individuals) caryvar
the external objective metrics are problem dependent., Als#idely across these domains.
it did not provide explanations for the observed behavior:

We address both these issues in this paper. lWe expect the same richness of behaviors for more than two
species/populations, but analysis/visualization areemdficult.
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Figure 1: Internal landscape perspective (individualrextdon payoff surfaces); leftollapsingRidgesright: expanding-
Ridges

R
i, e
R,
R RN
S
Weeestetont

e,
SRR
R
ARIRREREL,

ZNNNNes
AR
MMINS

Figure 2: Internal landscape perspective (individualretéon payoff surfaces); leftyclingRidgesright: chaoticRidges

g g
=] =
g 97 g 97
1% 1%
4 4
] ]
r o | r o |
o - o -
= =
°© °©
kol kol
<) <)
gm— 9”’*
[ [
£ £
] ]
= =
w w

o o

T T T T T T T T T T
0 2 4 6 8 0 2 4 6 8
X X

Figure 3: External landscape perspective (average paypifés); left:collapsingRidgesight: expandingRidges
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Figure 4: External landscape perspective (average paynfés); left:cyclingRidgesright: chaoticRidges



3.2 The Algorithm and the Internal Subjective Metric objective metric isivg(z). Note that as the external metric

. . . . .is an average over the domain, its range of values is more

The co-evolutionary algorithm used in these experimentsin_ . . ! .
restricted than that of the internal metric.

;llj)rlxzsint\g(\)/o?\(/)iﬁglétﬁgr?]s, i.oer.]ec:r?lg/eoic: psgp?lfllzit?o?\nii ggéii\l/(ss I.n _this case the.internal_subjecFive metric decre.ases from
per generation. Within, each population a non-overlappin'ts initial yalue quite fast in the first few generations _and
generational model is used, with elitism of 1. The individ-ﬁ]]e.n stabilizes f_or the rest of the run at a value in the middie

. : Y ' . of its range. This might suggest very poor performance, but
uals in the active population are evaluated by having them

. ; S : . n fact the external metric has the exactly opposite trend,
interact with the best individual in the other population a{ . . - Y opp -
. . . . I.e. it increases quickly at the beginning and then stadsliz
the previous generatiofet elite opponengvaluation [9]). ; . .
. ) . S . at what is actually its maximum value.
This defines ouinternal subjective metricBinary tourna- L
S . ! o A completely reversed situation happens foréixpand-
ment selection is followed by Gaussian mutation with sigma.__. ; L o
) ) o : . IgRidgedunction. As can be seen in Figure 6, initial gen-
fixed to 0.25, altering each individual with probability 8.7 . . o : ) .
A : S . erations display rapid increase in the internal metric and
The new individuals are evaluated in combination with the_ . . . :
A . . rapid decrease in the external metric, after which they both
best individual in the other population and, based on the fit- |, .. . : ;
. U . . "stabilize (the internal one at its maximum and the external
nesses obtained, the best individual for this population is

. . . . 0One at its minimum). What internally looks like progress,
determined. Control is passed to the opposite population. ) S y prog
‘from an external perspective is actually regress.

Unless otherwise specified, each population had a size At this point the situation appears confusing. The two

of 100. At the beginning of the algorithm both IOOpulat'onsfunctions are very similar from several perspectives. tFirs

are initialized uniformly random across the domain. The N .
opulation is the first to be active. One randosindividual the 2D surfaces generated by the payoff of individual inter-
bop . S gma actions have the same degree of ruggedness (same global

is picked for evaluating alt-individuals, as there is noest . . ;

. . ) . optima, no local optima, same number of ridges, smooth

in theY population yet. The first’-generation (second of .

the run) uses for evaluation the actual heshdividual de- gradient). Second, the curves generated by the average pay-

termined in the previougX) generation off over all interactions have the same degree of ruggedness
P 9 ' (single global optima, no local optima, smooth gradient).

Why does the same algorithm have opposite behaviors?
4 The Results

Since we are set in a context of applying co-evolution fof N€ Dynamics To elucidate this, we look at the dynamics
optimization, we will instrument our algorithm from the of best individuals from the perspective of their movement

perspective of change in best individuals throughout the ruacross the search space, using a technique introduced in [8]

For each experiment we conducted 100 runs and gendfich we will briefly summarize here.
ated plots for all of them. These plots were then visually in- | "€ ight hand side of Figures 5 and 6 shows the tra-
spected. If all had the same trend, we picked to show in tHECtOries of best individuals across the space (for the same
paper the one that displays the trend most clearly. If thef&ns)- Each 'an,ECt'On p_om?on such atrajgctory corresgond
were several different trends, we similarly picked one fronfe One ge.ne_ra}Uon and it displays the-palr (of genotype_s) c.)f
each category, regardless or which category was more helle best individual from that generation and the best indi-

ily represented. Mean fitness trends (not shown) were eith§jdual from the previous generation (from interaction with
presenting nearly no variance (fesllapsing Ridges and whom it got its fitness). The starting point is marked by an

expandingRidges) or they were obscuring the true phe_empty geometrical shape (in this case a circle) and the end

nomena, because they were averaging very different valuegint by the same §hape but filled.
(for cyclicRidges andchaoticRidges). The plots also display the so callbdst response curves

We grouped the results into three categories, based 3}.] characteristic to the surfaces of individual interans

the relationship between the internal and the external mét@yoff and how these curves influence the trajectory of the

ric. In comparing the metrics, we looked both at the relgfestindividuals. Théest Response X curve is obtained by

tionship between their respective values and at the natureRJotting for everyy the z- that gets the highest payoff out

their change over time. For each case, we show how the cﬂ/f interacting with that particulag. Thebest ResponseY

namics analysis explains the (otherwise mysterious) end"Urve is similarly defined. _
To understand the fithess plot for a function, one needs

to collectively analyze the trajectory plot, the individira
teractions surface plot and the external metric plot fot tha
The Fitness Figure 5 shows a typical run for ttemllaps-  particular function. For any function, a point of intersec-
ingRidgedunction. On the left hand side, the fitness curvesion of the two best response curves is a fixed point for best
plot (only) the points corresponding to the best individuaindividual trajectories. In the case of tieellapsingRidges

in generations in whickX' was the active population. For function, due to the fact that in this point the absolute galu
each such point, the internal subjective metric used by ttef the slope of thdestResponseMirve is smaller than that
algorithm is the payoff that the bestindividual in that gen-  of the bestResponsedurve (0| < | — 1), this fixed point
eration obtained from interacting with the bgsindividual  has attracting behavior. Regardless of where a trajectory
from the previous (non-plotted) generation. The externaitarts (we show one starting quite far away from this point),

4.1 Opposite Monotonic Trends
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it will end up in the fixed point. The fitness plot basically10, which is the maximum in a range of 6-10. Trajectories
reports internal and external metric values for the poifits avandering closer to the extremes of the space will have the
the trajectory on or near theestResponsedurve. These internal metric closer to its maximum of 16 and the external
points move closer and closer to the center of the spaametric closer to its minimum of 6.

The internal fithess values correspond to the values associ-

ated with these points on the 2D surface of individual in4.3 Complex Trends

teractions payoff (left in Figure 1). We can see on this sur- )

face that moving closer to the center means decreasing v _th_e three examples examined so far,_ the trend of ea_ch
ues. Once at the center there is only small variation due fgetric t_hro_ughout the run was r_nonot(_)nlc, apart frpm mi-
stochastic effects. The external fithess values corresunondn_Or oscillations. The fou_rth f_unctlon pa_mts qune a diéiat :
the values associated with thé coordinate of these points picture, as can be Seenin Figure 8 which displays three di-
on the external fitness chart (left in Figure 3). We can sdgrentruns, each _W|th its own set of plots. Both thg internal
on this curve that moving from the sides to the center gene"i"-nd th(_a external f't”_ess Ccurves are very rugged' W'th numer-
ates increase in values up to the maximum in the fixed poifif'S SPikes. For thefirstrun, the spikes are irregular inshap

(again, with small perturbations due to stochastic efpectss'Ze and frequency _throughout_the run. The second run dis-
And this is exactly what we see on the fitness plot. plays two phases, first one of irregular spikes and then one

In the case of thexpandingRidgefsinction, the relation- of very regular spikes. During this second phasg, the t‘,NO
ship between the absolute values of the slopes of the b ptrics go up and down syn_chrqnously, whereas In the first
response curves at the fixed pointis reversed (> | — 1|). phase (and more cIearI_y visible in _the plot qf the third run)
This makes the fixed point unstable, so trajectories are r)g/_hen_external f|tn_ess increases, |nterr_1al fltnes§ decreases
pelled from it (even when they start very close to it, as jnd vice-versa. Finally, th_e third run d'_SplayS fairly regu
the example run presented). Following the same type Jﬁr spikes an(_j the tyvo metrics are n_egatlvely.correlated.
analysis as for theollapsingRidgeswe now understand . Next, we mvesngate the dynamlcs.and tie them to the
the shapes of the internal and external fitness curves awgi]ess' The right har_1d side plots n Figure 8 show c_:lea_rly
why they are different from the previous function (both thé'°"® complex behavior than previously seen. Considering
2D surfaces and the external metric curves have the safe SYSteme — bestResponseX (bestResponseY (x)),
monotonicities, but the trajectories move in one case frofat d_etermlmstlcally fOIIOWS, the best response curves, t
the center to the extremes and vice versa in the other cas 9!'9‘”'”9 can b,e mathemaucally proven. 1)_ It ha§ a re-

pelling fixed point at(2, 12); 2) it has periodic orbits of
any size; 3) all periodic orbits are sources (i.e. repe)ling
4) it has chaotic orbits; and 5) the whole inter{@|I8] is a
On thecyclingRidges$unction the two metrics seem to agreechaotic attractor. The proof is beyond the scope of this pa-
in their trends, in the sense that both of them stagnate froper, but for the interested reader it is similar to thoselfier t
beginning to end. However, they disagree in the type of valegistic and tent maps presented in chapters 1 and 3 of [10].
ues they report. Figure 7 shows two runs superimposed on Of course, when we introduce stochasticity, as in our
the same plot(s) (runs are distinguished by line type/widthCEA, we no longer have clear definitions of the above men-
In one of them the internal metric reports high values fotioned dynamical systems concepts. However, visually at
its range while the external metric reports low values for itleast, the CEA using a population size of 100 approximates
own range. In the other run, the internal metric shows avequite closely the deterministic system.
age values, while the external one is almost at its optimum. The first run is the analog of a chaotic orbit for the

Armed with the technique described above, we can exorresponding deterministic system (which would come in-
plain these results. The dynamics plot shows that the twimitesimally close to any point in th@, 8] interval an in-
best response curves have the same slope in absolute vafirete number of times, without periodicity). This explains
This causes the fixed point to be neither attracting nor reéhe irregular nature of the fitness curves for this run. The
pelling. Additionally, it causes the appearance of an infifirst part of the second run is fairly similar to it, then the
nite number of size two periodic orbits. Trajectories wanderajectory spends some time around a period two orbit, gen-
about such orbits close to the point where they started (theyating the saw-like shape of the fitness. In the third run
do not follow a single orbit due to stochastic effects). Thehe trajectory wanders around a higher period orbit, which
periodic orbits intersect thieestResponseeurve in points explains the wider regularly shaped teeth in the fitness plot
symmetric with respect to the center, and the corresponding Note first that values in the fithess plot come from points
fitness values are equal both for the 2D surface of individualong thebest ResponseX curve (the main diagonal of the
payoffs (internal metric) and for the average payoff exaérn space). Along this diagonal, the minimum payoff is 8 (see
metric. This explains the flat trend of the fitness curves. Figure 2), therefore the internal fithess never goes belw th

Whether the internal metric claims better performancealue. At the same time, the maximum average payoffis 10
than the external or vice versa depends on the point whefgee Figure 4). Points close to the left/bottom end of the di-
a particular run’s trajectory starts and is cycling close toagonal { close to0) have close to maximum internal fithess
Trajectories wandering close to the center will have an irand high but not quite optimum external fithess. Points near
ternal metric close to 8 (the value at the center) which is ithe fixed point have very low internal fitness and close to
the middle of the 0-16 range and an external metric close tiptimum external fithess. Points close to the right/top end

4.2 Flat Trends
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of the diagonal have medium internal fitness and very lownetric would be appropriate when the goal is not finding
external fithess. The rest is somewhere in between. the ideal combination, but finding individuals that genigral
As can be seen on any of the trajectory plotsgollaborate well with others. Previously, [5] suggesteat th
best ResponseX (best ResponseY (x)) has the following CCEAs tend to move towards points of maximum average
general effects: 1) it moves points near the top/right end feerformance. By performing the same analysis as in this
points near the bottom/left end; 2) moves points close to thgaper for the two functions introduced in [11] we can say
bottom/left end to points near the fixed point, but above ithat this is not always the case.
3) moves points near the fixed point, but above it to points
near the fixed point, but below it; and 4) moves points neggjpliography
the fixed point, but below it to points further away from the
fixed point and closer to the top/right end. [1] R. Axelrod, “Evolving new strategies,” ienetic Al-
Consulting Figures 2 and 4, we can see that: case 1) cor- gorithms and Simulated Annealind. Davis, Ed.,
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