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Abstract. While the quality and robustness of animation techniques
for virtual human have improved greatly over the past couple of decades,
techniques for improving their intelligence have not kept pace. Ideally,
agents would be smart without being all-knowing and their future behav-
iors would be affected by their acquired knowledge just as with their real
human counterparts. In this paper we present a method that uses com-
monsense knowledge to establish a baseline of concepts and relationships
between objects. An agent then learns environment specific knowledge
through its own perception and communication with other agents. Ul-
timately, agents’ commonsense knowledge is then refined by their own
experiences.
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1 Introduction

Virtual Humans are now being utilized in many applications such as games,
movies, urban planning, and training and tutoring systems. With fast improving
graphics hardware, they are likely to be pervasive in more and more domains.
A critical aspect of virtual humans is their believability. In general, believability
can be augmented in two means: visual quality and intelligent behaviors. For
the past couple of decades, the visual quality of virtual characters has advanced
dramatically. However, in terms of intelligence, progress has not been nearly so
dramatic. In many applications, we still see largely hand-crafted and scripted
behaviors which result in monotonous and unreasonable action patterns. While
it is not clear when we might expect virtual characters with true human-level
intelligence, certainly advancements are possible now. In this work, we focus on
providing virtual humans with both general, scenario-independent knowledge
and the ability to learn contextual knowledge. Agent behaviors then reflect their
current understanding in terms of both commonsense knowledge and knowledge
of their world.

Most real adult humans have a wide range of general, shared knowledge.
Virtual humans, on the other hand, are either omniscient, greatly lacking in
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knowledge, or endowed with only scenario specific knowledge. When agents know
everything their resulting behaviors can be unreasonable. If they have never
been to or heard about a location, then they should not know to go there to
retrieve an item. On the other hand, a limited, scenario specific knowledge base
can prevent emergent behaviors and make authoring new scenarios too labor
intensive. To mitigate this, we use Cyc [18], a well articulated commonsense
knowledge base, to enrich our agents’ knowledge. While Cyc is not considered
complete in terms of all commonsense knowledge, its millions of concepts can
take our virtual characters a step closer toward real humans. For example, in
a first-person-shooter, Non-Player Characters (NPCs) could understand what
objects are hard enough to be bullet proof and which ones are not and use
that knowledge to find appropriate cover. Additionally, we are grounding the
concepts and knowledge from Cyc in virtual worlds, but they remain scenario-
independent so they can be applied in many different settings and environments
without major modifications.

Nevertheless, a large amount of commonsense knowledge is not sufficient.
Virtual humans also need to obtain information specific to the virtual world
they are inhabiting. They need to learn what resources are available and where
they are. While the ability to learn has been successfully deployed in robots,
interactive characters, and software agents, its implementation in virtual humans
needs further exploration. This is especially critical for NPCs in games. With
increasingly complex game environments and highly adaptive players, not only
do traditional AI techniques face creation and maintenance problems [17], but
NPCs that cannot learn end up perverting the gaming experience over time [26].
In this work we focus on learning about the virtual world through both direct
observation and explanation from other virtual humans. We feel these are the
two most common ways that people develop knowledge of the world they live
in. In particular, we deploy a perception system and exploit Explanation-Based
Learning (EBL) to enable agents to expand their prior knowledge and obtain
new information.

In summary, the goal of this work is to try to improve virtual humans through
more intelligent, emergent behaviors. To accomplish this, we provide our virtual
humans with a vast amount of commonsense knowledge and bestow them with
the ability to learn and evolve. Specifically, we explore the use of Cyc, a well
designed commonsense knowledge base, and simulate learning both by observa-
tion and explanation. To better demonstrate the effectiveness of our approach,
in a later section we will provide several examples in which our agents gain more
believable, contextual behaviors. A diagram of our current system illustrates the
information flow is shown in Figure 1.

2 Related Work

For the past decade, researchers have invested effort in creating life-like behav-
iors for virtual characters, including simulating the decision-making process and
developing action selection mechanisms. Some researchers have favored complex
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Fig. 1. System Diagram

computational methods such as Bayesian networks [14], decision networks [35]
and fuzzy logic [15]. Others have addressed this problem from a cognitive per-
spective. For example, Funge et al [11] developed a cognitive modeling language
for modeling behaviors of intelligent characters. Paris et al [28] incorporated a
cognitive model into a crowd simulation. Goertzel et al [12] proposed a cogni-
tive synergy approach for both animated and robotic agents. In addition, many
works have demonstrated the use of various social psychology factors in order to
generate reasonable, heterogeneous agent behaviors such as in [29, 20] and also a
group of work has been inspired by the BDI architecture [31]. While significant
results have been made, most of above mentioned work provides their agents
with limited domain-specific knowledge and assumes the agent knowledge base
is complete when the simulation begins, which not only prohibits the agents from
learning and evolving, but also limits their emergent behaviors and makes new
environment adaption difficult.

In comparison, several research groups have worked toward endowing virtual
characters with an ability to learn. Cohen and his colleagues [6] have built a
baby agent which is capable of learning conceptual knowledge using sensorimo-
tor interactions with a simulated environment. In [3], Blumberg et al integrate
learning activity into a virtual dog and allow users to train the dog by inter-
acting with it. For virtual humans in 3D environment, Conde et al [7] adopt a
reinforcement learning approach to assist agents with path-finding tasks. Orkin
et al developed a restaurant game [27] in which collected behaviors and dialogs
can be used by NPCs to enhance the gaming experience. However, the learning
phenomenon in these works are between an agent and the user or environment,
not among the characters themselves. These previous approaches can either de-
mand a lot of real human effort and limit agent interactions with other agents.
To summarize, we believe invoking learning activity between virtual agents in
addition to the environment would add more reasonableness and believability to
them and also allow them to evolve more autonomously.

Other research, such as Cyc [18], ConceptNet [33] and WordNet [10], has fo-
cused on collecting broader or commonsense knowledge with applications in, for
example, clinical question answering [19], conversational agents and storytelling
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[34, 5], interface agents [21], text-to-scene generation [8], and culture difference
studies [2]. While these applications have made interesting and promising show-
ing in the use of commonsense knowledge, most are related to software agents
development and natural language processing. In autonomous agent design, He
et al [13] proposed a multi-agent architecture using commonsense knowledge.
Rafique [30] wrote his Ph.D. thesis on commonsense reasoning in autonomous
intelligent agents. However, neither of their works address virtual characters in
rich 3D environments for simulations or games. Believing there is potential in
using commonsense knowledge in animation and games, in this paper we present
work that combines commonsense knowledge with learning methods to create
agents that demonstrate more contextual and consistent behaviors.

3 Commonsense Knowledge

Commonsense knowledge is knowledge about everyday things that ordinary peo-
ple possess but computers do not. Its importance has been recognized and es-
tablished by many researchers such as McCarthy [22], Lenat [18] and Minsky
[24]. It has also been labeled a bottleneck in making computers truly intelligent
[18, 24]. While software with commonsense knowledge is a promising and inter-
esting topic, its development has met several hurdles and thus its usage is not
prevalent. We believe there are several reasons for causing that. First of all, to
represent knowledge, different commonsense knowledge bases have adopted dif-
ferent approaches. To be specific, Cyc uses logic, a formally unambiguous form
for representing concepts; ConceptNet exploits semi-structure natural language,
treating each concept as a node in a hypergraph; WordNet organizes all the
words (e.g. nouns, verbs, adjectives, and adverbs) in an ontological structure
and mainly uses hyperonymy and hyponymy relations to connect them. These
different approaches all have certain advantages and disadvantages and thus
make each one of them more suitable for certain applications over the others.
Secondly, the definition of ”common sense” is intrinsically vague which can cause
concepts to vary widely between knowledge bases and for some uses a piece of
knowledge may seem too general but for others too specific. A third reason the
use of commonsense knowledge bases has not become more prevalent is related
to the potentially enormous amount of knowledge they could contain. And none
of the knowledge bases is able to claim that it contains all pieces of commonsense
knowledge at this point. As a result, for certain scenarios, the use of common-
sense knowledge seems inapplicable. For example, in those applications which
users have high expectations (e.g. expert systems), if the agent does not provide
a correct response on the first try, a user’s trust is lost.

In spite of these issues, researchers have been able to take advantage of com-
monsense knowledge bases. As noted in [21], for interface agents, where the main
use of commonsense knowledge is to provide suggestions and alternative options,
promising results have been achieved. In addition, for natural language related
applications, since vagueness and ambiguity is inevitable and sometime even de-
sirable, the use of commonsense knowledge is becoming popular (We have listed
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a few in the previous section). Also, some researchers have started to use com-
bination of different commonsense knowledge bases in developing their project
[26]. In the work presented in this paper, we extend and ground the usage of
commonsense knowledge in applications related to animation and game research.
While the use of commonsense knowledge is not prominent in this community,
we believe our virtual humans can benefit from it for a couple of reasons. First,
users should expect virtual humans to obtain as much commonsense as real hu-
mans do and reason and behave upon it. This means limited and constrained
knowledge is not going to support highly believable, reasonable behaviors. Sec-
ondly, scripted knowledge is usually scenario-dependent which limits an agent’s
emergent behaviors to a great extent and also makes expansion of new scenarios
labor intensive (i.e. new knowledge needs to be incorporated into the system to
fit in new scenarios). Commonsense knowledge can help to overcome these draw-
backs. Even though none of the knowledge bases is considered exhaustive right
now, they can greatly extend an agent’s knowledge from dozens or hundreds
of concepts in current applications to millions of highly scenario independent
concepts.

Among several commonsense knowledge bases, we have chosen Cyc for further
exploration. Particularly, we are using OpenCyc, an open source version of Cyc
with full knowledge items. We are using Cyc for the following reasons. First of
all, Cyc is the world’s largest and most complete general knowledge base and
commonsense reasoning engine [1]. Cyc has been successfully deployed in many
applications and numerous users have exploited it for their own projects (a list
of current and potential applications can be found in [1]). Secondly, Cyc uses
its own logic-based language CycL for representing knowledge. There are several
advantages in using a logic representation. One is that logic is unambiguous and
can facilitate reasoning. Another is that it still preserves expressiveness which
makes it suitable for natural language related applications. Thirdly, the built-in
search engine in Cyc is well optimized making the searching process very fast
and efficient. For an extensive tutorial of Cyc, CycL and more, we refer readers
to their official website [1]. Finally, we would like to note that even though we
are using Cyc in this work, the learning strategy presented in the next section
is not dependent on a particular commonsense knowledge base. In the future
we may explore other knowledge bases and even the combinations of knowledge
bases.

4 Learning Activity

The learning activity of real humans is very sophisticated and its exact nature is
still being uncovered. However, it is generally accepted that it contains several
approaches, such as explanation-based learning, instance-based learning, analog-
ical learning, and reinforcement learning. Given the complexity of this problem,
we do not intend to capture all aspects of human learning. We will concentrate
on learning by explanation and observation. Learning by explanation and ob-
servation is one of the main approaches humans use to obtain knowledge. For
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example, there are students learning from teachers, trainees acquiring skills and
duties from a supervisor, and visitors adopting cultural differences from their
hosts. In following sections, we will outline two forms of learning: agent-from-
agent and agent-from-environment.

4.1 Agents Learning from Other Agents

For learning between agents, we use Explanation-Based Learning (EBL). EBL
is an analytical learning method which acquires new knowledge and concepts
based on prior knowledge, explanation, observation and information expansion of
training examples [25, 9]. We have adopted EBL because other learning methods
seem less applicable in this context. Inductive learning methods, such as decision
tree learning and neural networks, usually require abundant examples which
our application does not have. Instance-based learning which requires similar
examples to make a comparison faces the same problem. Statistical methods,
such as Bayesian networks, are also not ideal because of a need for crafted
probabilities. In addition, we do not attain any direct and/or indirect reward and
penalty feedback as a training source which is needed to carry out reinforcement
learning. With these considerations in mind, we believe EBL is the most plausible
and applicable method for simulating learning by explanation and observation.

Generally speaking, EBL contains four components: a Goal Concept, a target
concept with a set of relevant features; a Training Example, a typical positive
example of the goal concept; Domain Theory, prior knowledge used to analyze
and explain why training example satisfies the goal concept; a Learned Rule, a
generalized rule learned from prove of the positive example using domain theory.
An example of EBL is provided below:

– Goal Concept: MailToProfA(x)
– Training Example: A positive example, MailToProfA(Obj1)

Inside(Obj1, Office 0)
Inside(Obj1, Obj2)
Type(Obj1,Mail)
Type(Obj2, Box)
Color(Obj1, Red)
Color(Obj2, Green)

– Domain Theory:
MailToProfA(x)← Location(x,Office 0)∧Inside(x, y)∧Type(x,Mail)∧
Type(y,Box) ∧ Color(y,Green)
Location(x,Office 0)← Inside(x,Office 0)

– Learned Rule:
MailToProfA(x) ← Inside(x,Office 0) ∧ Inside(x, y) ∧ Type(x,Mail) ∧
Type(y,Box) ∧ Color(y,Green)

One of the critical features of EBL is the assigning prior knowledge. We use a
commonsense knowledge base to aid in this process. In this learning scenario, we
treat knowledge concepts in Cyc as the base or prior knowledge for our agents.



Virtual Humans: Evolving with Common Sense 7

For instance, in the above EBL example, three categories of prior knowledge
have been used. They are colors (e.g. Red,Green,Blue), spatial relationships
(e.g. Inside,Outside, Above), and object types (e.g. Mail,Box) and instances
(e.g. Office 0). These concepts, except the object instances which are generated
from their parent object types, are all provided by Cyc or in other words they
all have an entry in the Cyc knowledge base. As you might imagine, the large
number of concepts stored in Cyc combined with EBL provides the potential for
virtual humans to acquire an enormous amount of new knowledge and concepts.

Agent-from-agent learning requires certain coordination between the agents.
So, for each Learner and Instructor, we have designated actions Observe and
Explain respectively. The positive example and domain theory are then put into
a database with an additional boolean field initially set to 0 to indicate the
learning status. Once the learner begins to Observe and the instructor starts
to Explain. An underlying iterative algorithm will start to prove the positive
example using domain theory. If this step concludes successfully, the learning
status will change from 0 to 1 to imply that learning process is complete. Next,
the proven positive example will be generalized into a rule and this rule, the
newly learned knowledge, will be put into the learner’s knowledge base. The
learner can then perform the corresponding behaviors associated with this piece
of knowledge. For example, the final learned rule in above example states “Mail
x is for ProfA if x is inside Office 0 and inside y which has type Box and color
Green”. With this newly learned knowledge, the learner can execute behaviors
such as “Deliver ProfA’s mail to his box” and “Retrieve ProfA’s mail from his
box”.

4.2 Agents Learning from the Environment

In addition to learning from other people, humans can also learn through direct
observation of their environment. For example, every time you walk into a store
you refine your knowledge of the items found there. Then when you need to
purchase a certain item you have a better idea of which store to look in and
where in the store to find it. This learning mechanism is pervasive and powerful.
However, knowledge formation in this process requires not only a functional per-
ception system but also other elements such as memory and desire. According
to psychologists, there are several different types of memory. One type, Declara-
tive Memory, can be further decomposed into Long-term Memory and Working
Memory. Long-term memory stores long-lasting facts while working memory
tracks information related to immediate tasks (for more information on memory
classifications we refer readers to [32]).

In this work, we are currently assuming that our agents have the desire to
update their knowledge about the environment and they have perfect Long-term
Memory, meaning they will not suffer memory loss. As far as perception, many
factors can have an impact. For instance, larger items with dazzling color and
peculiar shape tend to draw attention [16]. As the focus of our current work is
improving agent intelligence and not implementing a comprehensive perception
system, we focus on just the following factors that can influence agent perception:
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Size, a large object is easier to see; Quantity, while many items could appear in
a location human Working Memory can only store 5 to 9 objects at a time [23];
Occurrence Rate, the number of times an agent has seen an object in a particular
type of location; Object Location, an agent needs to know object locations in
order to retrieve them later. When updating its knowledge base with objects, an
agent also updates the object locations.

Details of our implementation of learning from the environment are as follows.
First we search the Cyc knowledge base for a list of objects associated with a
certain place. For example, Cyc searches for “kitchen” yield “kitchen tool” and
an association with “microwave oven”, “pan”, “blender”, and “cutting board”
(among others). Next we add this object list to the agent’s knowledge base
with an occurrence rate of 1. These objects become a part of the agent’s initial
definition of a certain place (e.g. kitchen). As agents operate in an environment,
they encounter places for which they have definitions in their knowledge bases.
They refine these definitions in accordance with their experiences. For example,
if a place contains contains n objects, agents do the following: if n ≤ 5, update
their knowledge bases with all n objects; if n > 5, generate a random number
m between 5 and n and update their knowledge using the m objects with the
biggest size. The updating procedure is: if the object already exists in an agent’s
definition of such a room, increase the occurrence rate with 1; otherwise under the
definition of such a room, create an entry for the object and label its occurrence
rate with 1; update the location of each object that the agent is using to refine
its knowledge base.

We believe mechanisms for enabling agents to learn about their environment
leads to more reasonable behaviors than programming omniscient agents. The
same observation is shared by many researchers. For example, Burke et al [4]
call this Sensory Honesty and provides additional justification for its necessity.

5 Examples

In this section we will provide a few more detailed examples to better illustrate
our agents use of commonsense knowledge and their learning techniques. Our
first example involves agents learning from each other. In this example, we have
two agents, a Learner and a Instructor. The learner is tasked with learning
several administrative related concepts from the instructor. The learner then
applies behaviors according to his newly acquired knowledge. For simplicity,
here we only list the learned rules in EBL form:

– ReadyForPost(x)← Inside(x,Hallway 1)∧Above(x, y)∧Type(y, Table)∧
Color(y, Y ellow)

– LeftInLibrary(x)← Inside(x, Library) ∧ ¬Type(x,WhiteBoard) ∧
¬Type(x,Desk) ∧ ¬Type(x,Chair) ∧ ¬Type(x, Shelf) ∧ ¬Type(x, Light)

– NeedWatering(x)← Type(x, P lant) ∧ Color(x, Y ellow)

The first rule states if an object is inside hallway 1 and above a yellow table
then is ready for post. With this knowledge, the agent will know where objects
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ready to be posted are stored. He can then retrieve these objects and post them
on the bulletin board. The other learned rules result in similar corresponding
behaviors. Figure 2 shows screen shots of the agent learning and preforming
activities.

Fig. 2. Learner acquires several concepts (i.e. ReadyForPost, LeftInLibrary and Need-
Watering) and later performs corresponding behaviors (e.g. Post Flyers, Check Library
and Water Plant).

In our second example, agents learn and refine their knowledge through ob-
servation of the environment. Cyc provides our agents with an initial definition
of a place. For example, a kitchen contains a microwave oven, a pan, a blender
and more. Given this definition, agent can search for an item in the kitchen
and refine his knowledge by observing the space. Also, an agent can learn about
additional locations by traversing the environment or by communicating with
other agents. Figure 3(a)-(c) illustrates such a scenario: first an agent travels to
a kitchen, refines his knowledge and gets a banana. Then during his way back,
another agent informs him of a closer kitchen. Later, the agent reflects this newly
learned knowledge by searching the closer kitchen for kitchen related items. In
another case, as agents encounter new places in their environment, they attempt
to use their commonsense knowledge to define or categorize the spaces. Figure
3(d)-(f) shows an agent discovering a room with a fridge, a laboratory desk, a
printer, and a copy-machine. The agent considers how often he has seen these
objects other already defined rooms. For example, his occurrence rates for these
objects in a laboratory is 3, 20, 15, and 12. For kitchens they are 25, 1, 5, and 4.
Summing the occurrence rates for the objects, we see that laboratory scores 50
and kitchen scores 35, resulting in the room being classified as a laboratory. The
agent’s future behavior will now reflect that he considers this room a laboratory.
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Fig. 3. (a) An agent travels to a kitchen and refines his knowledge. (b) Another agent
informs him of a closer kitchen. (c) Later the agent searches the closer kitchen first
when he wants a kitchen related item. (d) An agent uses his knowledge to categorize a
new place. (e) Given objects occurrence rates, he classifies the space as a laboratory.
(f) Later when the agent is asked to put paper in lab copy-machines, he includes this
newly defined location.

6 Discussion and Future Work

Our goal is to improve the behavior of virtual humans, make them closer to real
human behaviors, and facilitate the use of virtual humans in games and other
simulations. In particular, we have presented techniques for supplying agents
with a foundation of commonsense knowledge and for accumulating and contex-
tualizing their knowledge through interactions with the environment and other
agents. Agents should be smart without being all-knowing and their future be-
haviors should be affected by their acquired knowledge just as with their real
human counterparts.

Additional work is required to obtain even more realistic behaviors. In partic-
ular, more detailed perception and memory systems need to be modeled. What
we perceive in a scene is affected by a number of factors including the properties
and motion of the objects, but also our own state of mind. Our current goals and
focus also influence both our creation of memories and our recall ability. Given
the imperfect nature of humans, how much accuracy and specificity is needed
in these sub-systems to generate agents behaviors that are plausible and accept-
able to real human observers? Human observers do tend to notice when agent
behaviors demonstrate a lack of knowledge they would deem commonsense. The
various knowledge bases have different characteristics. Instead of solely using
Cyc, we would like to explore more of the semantic network and see if additional
resources could help strengthen the current system. The work presented here
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focused on aspects of the environment and the objects in it. It might also be
interesting to explore the representations of actions and their consequences.
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