
Department of Computer Science
George Mason University Technical Reports

4400 University Drive MS#4A5
Fairfax, VA 22030-4444 USA
http://cs.gmu.edu/ 703-993-1530

GADGET: A Green Assessment and Decision GuidancE Tool for
Optimal Investment in Inter-dependant Energy Infrastructures

Bedor Alyahya
balyahya@gmu.edu

Alexander Brodsky
brodsky@gmu.edu

Technical Report GMU-CS-TR-2023-3

Abstract

In response to the urgent need for climate action and
the transition to cleaner energy, organizations and busi-
nesses are setting greenhouse gas emission reduction
targets to achieve carbon neutrality. Achieving these
targets requires informed investment decisions in a com-
plex mix of interconnected infrastructures and resources
related to energy service modalities.

This paper introduces GADGET, a Green Assessment
and Decision Guidance Tool. GADGET assists stakehold-
ers in optimizing investment choices in various energy
service modalities. It takes into account interconnected
infrastructures, greenhouse gas emission reduction, total
cost of ownership, and can be extended to cover ad-
ditional performance metrics. GADGET’s uniqueness
lies in its ability to generate machine-generated math-
ematical programming (MP) models through a library
of power-centric analytical models. Additionally, it is
equipped with a pre-processor engine that generates rep-
resentative operational demand windows, such as daily
patterns. This feature reduces the number of decision
variables while accounting for operational interactions.
Empirical studies confirm GADGET’s applicability to
large-scale investment challenges, ensuring effective and
efficient decision-making in energy systems.

1 Introduction

In response to the climate crisis and the need for transi-
tion to cleaner energy, many institutions and businesses
make commitments to climate action by setting green-
house gas emission reduction targets to reach carbon
neutrality. To achieve these targets, stakeholders need to
decide on how to invest in a mix of heterogeneous inter-
related modalities - infrastructures and resources - in-
cluding (1) building energy efficiency and electrification;
(2) heating and cooling efficiency at central plant and

buildings; (3) local and contracted renewable sources of
energy and co-generation; (4) energy storage; (5) man-
agement of schedulable loads such as for HVAC and
EV charging; (6) peak demand management vis-à-vis
utility contracts; and (7) renewable energy certificates
and carbon offset credits. Thus, there is an urgent need
for a decision guidance tool to help stakeholders with ac-
tionable recommendations on a mix of the inter-related
infrastructures and resources. Such a tool must enable
stakeholders to make informed Pareto-optimal trade-offs
between competing objectives and performance indica-
tors such as (1) GHG emission reduction, (2) total cost
of ownership over a time horizon and implicit price of
GHG reduction, and (3) availability, vulnerability and
resilience. Furthermore, the tool must support solving a
variety of investment problems across different energy
system architectures without the need to solve each spe-
cific problem from scratch. This will enable building
rapid solutions that are cost-effective, yet flexible and
with a high level of accuracy.

However, crafting clear practical recommendations
on infrastructure investments is inherently complex due
to (1) the complexity of the heterogeneous infrastruc-
tures as their components operationally interact with
each other, e.g., solar generation, energy storage and
peak load reduction; (2) consideration of trade-offs be-
tween financial, environmental and quality-of-service
performance indicators; (3) investment return depen-
dency on efficiency of operation, which is transient due
to stochastic nature of supply and demand; and (4) rapid
changes in infrastructure technologies. Because of these
challenges and despite remarkable improvements in the
energy efficiency and individual power solutions, in-
vestments in heterogeneous infrastructures often fail to
realize their full potential, resulting in significant waste
of resources, which could be avoided.

A substantial body of research has been devoted to the
prioritization and optimization of investments in energy
systems, as highlighted by [1]. One prominent direction

1

within this domain has emphasized the development
of models specifically designed to address challenges
inherent to the energy sector. These models are curated
with specific objectives, whether it’s to align with tar-
geted performance metrics, as seen in [2, 3, 4], address
greenhouse gas emission mitigation [5, 6], refine system
designs [7, 8], or focus on niche power systems, such
as hybrid power desalination systems [9]. They aim
to resolve particular investment challenges in various
infrastructure segments, including power production
[10, 11], distribution [5], and transmission [12]. How-
ever, these approaches do not consider or leverage the
interconnected nature of diverse infrastructures. This
oversight can lead to missed cross-silo investment op-
portunities and result in sub-optimal results.

Another line of research, exemplified by works [13]
and [14], focuses on studying the inter-dependencies
across a wide spectrum of infrastructures. While this
broader perspective is essential, these studies are limited
to financial aspects, but do not model detailed engineer-
ing and operational interactions of of such infrastruc-
tures. Relying on this financial-centric perspective puts
the burden on users to come up with financial data they
may not visibility into and thus result in superficial or
unrealistic assumptions and results.

A promising approach is taken in HOMER [15], a tool
for modeling and analyzing a microgrid. HOMER al-
lows to model a flexible micro-grid composed of vari-
ous components, and simulate its operation over a time
period. HOMER also has a layer to support simulation-
based black-box optimization. However, it does not sup-
port mathematical programming based optimization,
such as methods for Mixed Integer Linear Programming
(MILP) models, which are sufficient for GADGET type
problems. Whereas, for problems amenable to mathe-
matical programming, MP solvers are typically superior
to simulation-based methods in terms of optimality of
results and computational efficiency. Most importantly,
HOMER was not designed for multi-period investment
optimization under the assumption of optimal opera-
tional controls, which is the focus of this paper.

To overcome these limitations, we introduced the Ser-
vice Network Investment Model (SNIM) and a decision
guidance system in [16] based on mathematical program-
ming. This system offers actionable, Pareto-optimal in-
vestment recommendations for heterogeneous infras-
tructure service networks under the assumption of op-
timal operational controls over the time horizon. How-
ever, [16] did not specifically address achieving carbon
neutrality, nor did it focus on the investment modal-
ities in electric power microgrids, such as renewable
energy, energy storage, and utility contracts, and the
associated models that support these modalities. Fur-
thermore, SNIM leaves open the problem of generating
its input data that is not readily available. Most criti-
cally, the problem of analysis and pre-processing of long
term power, heating, cooling and gas demand to gener-

ate a manageable size set of typical operation demand
windows (e.g., days) was left open.

To bridge this gap, the core contribution of this paper
is the development of GADGET - a Green Assessment
and Decision GuidancE Tool to make Pareto-optimal
actionable recommendations on a mix of investment
modalities including solar panels, energy storage, trans-
formers, energy contracts, gas and electric boilers, re-
newable energy certificates (RECs) and carbon offsets.
The GADGET model borrows from SNIM [16] and for-
malizes cash flows and performance indicators based
on two key dimensions: (1) investment controls set for
a given investment time horizon (e.g., 20 years), often
segmented into multiple investment periods (e.g., ev-
ery 2 years), and (2) operational controls specifically
geared towards shorter operational windows, such as
days, further divided into operational intervals (e.g., ev-
ery 30 minutes), which are often controlled using an
energy management systems (EMS.) Such granularity
and precision in modeling are essential to fully capture
the operational interactions that occur in interconnected
infrastructures such as smart grids, renewable energy
sources, energy storage systems, schedulable loads. This
is especially true when these interactions occur over
short operational intervals. To manage the vast number
of operational decision variables, the model segments
the investment periods into a sequence of Representative
operational windows. These windows encapsulate con-
sistent operational patterns, distinguishing, for instance,
between weekend and weekday modes of operation. A
distinguishing feature of GADGET is its ability to pro-
duce machine-generated mathematical programming
(MP) models, using the system architecture proposed in
[17, 18] and decision-guidance analytics language pro-
posed in [18].

As part of GADGET development, we first have signif-
icantly enhanced the SNIM model with the model layer
of financial instruments, such as RECs and carbon off-
sets, which must be handled differently than equipment
components with operational interactions. Second, we
modeled a range of micro-grid components including so-
lar panels, energy storage devices, transformers, energy
contracts, gas and electric boilers. These models for-
malize both operational interaction with the micro-grid
service network, as well as computing financial metrics
over long time horizons. Third, and most critically, we
developed a pre-processor engine, based on a range of
clustering algorithms, to generate representative daily
operational demand windows. This allowed us to rep-
resent the demand pattern over each investment period
as a sequence of representative operational windows,
thereby significantly reducing the number of binary de-
cision variables for scaling up optimization. Finally, we
conducted two empirical studies: (1) to prove the feasi-
bility of GADGET application to large-scale investment
problems and (2) to assess the accuracy of GADGET’s
pre-processing algorithm by comparing computed KPIs

2

using its generated operational windows against actual
supply and demand patterns.

This paper is organized as follows. Section 2 pro-
vides a comprehensive review of the Service Network
Investment Model (SNIM). In Section 2.1, we delve into
the architecture of GADGET. Section 2.2 describes the
structure of the time horizon within which the model op-
erates. Section 2.3 emphasizes the GADGET component:
the pre-processor engine. Section 3 is dedicated to the
formalization of the Service Network Investment Model
(SNIM). The results of our preliminary experimental
study are discussed in Section 5. Finally, Section 6 revis-
its the main points of our research and offers concluding
remarks.

2 Service Network Investment
Model: High-Level Overview

The Service Network Investment Model (SNIM) com-
putes during each operational interval within the time
horizon two essential components: (1) a diverse set of
metrics covering financial, operational, environmental,
and quality factors, and (2) constraints related to capac-
ity, supply, demand, and other business considerations.
These metrics and constraints are influenced by a mix of
fixed and adjustable parameters. The model employs a
bottom-up approach, enabling constraints and metrics at
the operational level (often occurring at intervals as short
as 30 minutes) to capture the interaction of the infrastruc-
ture. This interaction, in turn, influences these metrics
and constraints at a higher level. Ultimately, this guid-
ance extends to the controlled parameters designated for
investments in specific modalities.

To comprehend how SNIM operates, we start by ex-
plaining the input structure, which involves a central
component encompassing the hierarchical arrangement
of all components within the power micro-grid, known
as the ”Service Network.” In Figure 1, we use a campus
power Service Network as an example to illustrate the
hierarchical structure of interconnected services, repre-
sented by nested boxes. These services include various
components such as cooling and heating plants, renew-
able energy sources, demand points (depicted as build-
ings), contractual agreements, financial instruments, and
more. Together, they depict the flow of resources (e.g.,
power, fuel,...), and the state (e.g., battery charging level)
at any given time within the network. At the base the
hierarchy, we find what we call ’atomic services,’ de-
picted as dotted boxes (e.g., batteries, local generator,...).
Whether these instances of atomic services are currently
owned or under consideration for potential investment,
each comes with associated fixed and controllable pa-
rameters. These parameters define how every infrastruc-
ture is supposed to operate. For example, in the case
of a battery, we can have parameters such as battery
efficiency, charging and discharging rates, the invested

number of units, and the required capacity per unit,
among others, as illustrated in Figure 2. The model then
collaborates with the extendable library, which houses
all the analytical models of different types (e.g., the bat-
tery analytical model), to generate the metrics and con-
straints at the atomic level. Each atomic analytical model
within the library provides a mathematical representa-
tion at the operational level to balance and compute the
inflow and outflow of resources, and at a more compre-
hensive level spanning the investment time horizon to
calculate the metrics. During the execution of the SNIM,
the system systematically consolidates flows, metrics,
and constraints, starting from the base level and mov-
ing upwards for each operational interval (e.g., every 30
minutes) within each window throughout the specified
time horizon. Following this consolidation process, the
system enters an iterative phase, revisiting the entire
time horizon to generate metrics and constraints. This
iterative step leverages the knowledge acquired about
flows across the complete time horizon, resulting in a
comprehensive set of metrics and constraints that encap-
sulate the intricacies of the system’s behavior over time.
This aggregated metrics and constraints are propagated
to the Financial Instruments layer, initiating an iterative
process over the financial instrument analytical models
(e.g., RECs, Offset). This iteration aims to generate the
metrics associated with these instruments and subse-
quently adjust the cash flow within the Service Network.
From there, the SNIM can be utilized within the GAD-
GET tool to solve the investment problem, which will
be explained in the next section. A couple of notable
features about the model include its capability to work
with the extensible library of modalities. This ensures
that new component models can be integrated without
modifying the existing SN model or previously defined
components. Examples of potential augmentations to
the component models might include installing Unin-
terruptible Power Supply (UPS) units for redundancy,
incorporating demand switch units for shifting from
gas to electricity, or implementing elimination strategies
using carbon capture technology. These enhancements
can span various facets, encompassing power genera-
tion, transmission, and distribution to renewable energy
sources and advanced energy storage solutions. The for-
mal description of the extended SNIM model is given in
Section 4.

2.1 GADGET Architecture

Figure 3 depicts GADGET high-level architecture. GAD-
GET comprises five main layers: the Graphical User
Interface (GUI), Pareto Optimal database, Graph Gener-
ator, Decision Guidance Management System (DGMS),
Pre-processing Engine, and External Tools. The GUI pro-
vides users with the capability to access summaries of
optimized problems, visualize diverse charts, compare
scenarios, explore specific solutions, and conduct ’what

3

Figure 1: Service Network

Analytical Models
Fixed Parameter

Controllable Parameter

Capacity
Depreciation rate
...

Number of Battery
...B

at
te

ry

Extendable library Metrics

Constraints

cost
co2e
...

capacity constraint
flow balancing
......

Solar Panels

Battery

Contract

Input

Operational
Interval

(e.g., 30 min)

Figure 2: Atomic Analytical Models

4

Request Output

Decision Guidance Management System

Graphical User Interface (GUI)

Optimize
Learn
Predict
Simulate
Estimate
...

Analytical Engine

Atomic Models:
Composite Models:

Optimization Learning simulationDBMS

Reusable, Extensible, Modular Model Repository

Investment SN
...

-RECs
-Offset
-Renewable energy
- ...

Tools

Green Assessment and Decision Guidance Tool (GADGET) Architecture

-Windows
Generation.
-Data
Transformation
Trend Forecasting
...

pre-processing
Engine

Preto-Optimal Database and Graph Generator

Input Data

-SN configuration.
-Historical Data.
-Parameters.
-Constraints.
-Inventory level.
-Technical data.
...

-Scenario Analysis.
-Recommendations.
-Data Visualization.
-Sensitivity Analysis.
-Comparative Analysis.
...

-Decision Recommendations.
-Sensitivity Analysis Reports.
-Comparison Matrices.
-Optimization Results.
-Action Plans.

Figure 3: GADGET Architecture

5

if’ and sensitivity analyses on selected scenarios.
The Pareto Optimal database and Graph Generator re-

spond to user requests and work closely with the DGMS
to undertake tasks necessary to fulfill the requests, such
as optimization, prediction, and learning. These tasks
are steered by the analytical engine within the DGMS,
which also maintains a library of reusable, modular, and
composable models. The library currently includes mod-
els for various modalities, including power storage solu-
tions, solar panels, gas and electric boilers, carbon offset
credits, Renewable Energy Certificates (RECs), trans-
formers, and power utility contracts. The DGMS archi-
tecture is intentionally designed for effortless integration
with various external tools, as depicted in the lower tier
of the system. This integration empowers the DGMS to
seamlessly collaborate with external tools such as CPLEX
for optimization, without necessitating a direct binding
to any specific tool. This flexibility is achieved through
a translation process facilitated by the use of the Deci-
sion Guidance Analytical Language (DGAL), which was
introduced in [19].

To generate graphs that require multiple optimization
runs, such as comparison graphs, the Graph Generator
can draw upon multiple pre-stored optimizations from
the Pareto Optimal database. If a specific optimization
scenario isn’t already stored, the Graph Generator em-
ploys the analytical engine. This engine requires several
inputs, including the SN configuration that blends time-
centric (e.g., time horizon setting) and financial param-
eters (e.g., discount rate), the selection of models from
the library, and their fixed parameter settings, leaving
the rest of the parameters to be optimized. Addition-
ally, for tasks like data transformation, trend forecasting,
and notably, window generation, the Graph Generator
relies on the Pre-processing Engine. During the window
generation process, this engine adjusts the supply and
demand trajectory to align with a given time horizon.
A more detailed discussion on the structure of the time
horizon and the window generation process will follow
in the upcoming sections.

2.2 Time Horizon Segmentation

The time horizon (e.g., 25 years) is segmented into a se-
quence of investment periods possibly different length
(e.g, 3,3,4,5,10), assuming that investments can take place
at the commencement of each period, ensuring the avail-
ability of infrastructure from the outset. Financial as-
pects, including payments for both investments and op-
erations, are specified using a more refined financial
sequence (e.g., daily), as illustrated in the cash flow se-
quence in Figure 5. Utilizing this sequence, the model
gains the capability to articulate multiple payments for
each infrastructure investment, as well as the definition
of multi-cycle payments for operational expenses (e.g.,
bills, payroll, etc.) Regarding the operational aspects of
the system, each investment period is defined by a se-

quence of operational windows, wherein each window
is composed of smaller, refined intervals that illustrate
the system’s interactions at the operational level (e.g.,
every 30 minutes). The following section provides a de-
tailed description of how we create these operational
windows.

2.3 Pre-processing: Generation of Represen-
tative Operational Windows

Representing all individual windows over the entire ex-
tended horizon creates a major optimization scalability
problem. Each operational interval (e.g., 30 minutes)
over investment periods over the time horizon (e.g., of
20 years) will have binary on/off decision variables. This
does not scale, according to our experimentation, to real
size problems when using MILP solver (CPLEX.) To ad-
dress this, and to harness the operational interactions of
interconnected infrastructures (e.g., renewable energy,
power storage, and schedulable loads) over shorter op-
erational intervals (e.g., 30 minutes), the engine creates
representative windows as proxies for actual windows
that exhibit similar supply and demand patterns.

To generate these representative windows, a system-
atic process is employed to preserve critical factors such
as peak demand and total demand. Initially, within each
investment period (e.g., 3 years), the engine categorizes
all windows based on their power peak demand. This
categorization employs a clustering (bucketing) tech-
nique, where windows with peak demand within a small
distance (ϵ) from the maximum peak are grouped into a
single category. As the process extends away from the
overall maximum peak observed across all windows, the
value of (ϵ) increases for each subsequent category. This
ensures that, as peaks decrease in magnitude, a broader
range of windows is accommodated within the same
category. This step is essential to accurately represent
windows with elevated peaks, a crucial consideration
due to their direct impact on demand contract charges
(refer to Figure 4, step 2).

Subsequently, the engine refines the categorized buck-
ets using the Mean Shift clustering algorithm to further
segment them based on additional dimensions, such as
the normalized daily accumulated solar radiation and
normalized daily heat demand (see Figure 4, step 3).
The bandwidth, which determines the sensitivity to fine
details in the data, is adjustable based on the user’s pref-
erence for refining these windows. For each refined cat-
egory, the engine creates a representative window that
closely aligns with the aggregate metrics of the windows
in that particular category. The criteria for this are:

1. The aggregated power and heat demand, along with
other supply and demand dimensions like solar
radiation from all windows in a category, should
match that of the representative window when mul-
tiplied by the number of windows in that category.

6

Bucket 1 Bucket 2 Bucket 3

step 2
step 3

Bucket 2A Bucket 2B Bucket 2Bucket 1

...

Group windows based on:
daily power peak demand

Split each bucket based on:

step 1

Split to windows:
 Each window: 48 Interval

Each Interval: 30-min

step 4

Create a representative window that:

Rep window 1 Rep window 2 Rep window 3 Rep window 4

Split

Split

Group

Create preserves the total window metrics
maintains the maximum peak power demand

The daily sum of solar radiation
The daily sum of heat demand

Text

Metrics

Figure 4: Windows Generation

2. The peak power demand of the representative win-
dow should mirror the highest among all windows
in the designated category (See Figure 4, step 4).

It’s important to note that there are two bucketing phases.
The primary phase underscores the significance of peak
heat demand, while the subsequent phase pivots to-
wards other clustering dimensions.

3 Service Network Investment
Model: Formalization

3.1 Optimization Problem

The optimization problem is shaped by the output from
the analytic performance model (AM). This model com-
putes various performance metrics, such as cost and
carbon emissions. Additionally, it integrates feasibility
constraints, reflecting both constant and variable op-
erational and investment parameters across the entire
investment time horizon. For a formal depiction, let
us define the analytical performance model, AM, as fol-
lows:

AM : IN → OUT (1)

Here, AM forms a valid output instance out ∈ OUT, rep-
resenting performance metrics like cost or emission. This

is derived from a valid input in ∈ IN which contains
both fixed and controlled operational and investment
parameters.

Given the aforementioned context, we can express the
investment optimization challenge as:

min
in∈IN

obj(AM(in))

s.t. C(AM(in))
(2)

In this formulation, Obj is an objective function that
quantifies the objective’s real value in R using a valid
output instance out ∈ OUT. Meanwhile, C functions
as a constraint evaluator. It returns either True or False,
indicating whether the solution is feasible and meets all
constraints or not.

Representing the optimization problem as an outcome
of the Analytical Model (AM) rather than expressing
it directly is advantageous because it can effectively
address a wide range of investment optimization chal-
lenges. This approach offers flexibility in accommodat-
ing various infrastructure configurations, objectives, and
timeframes without the need to modify the AM.

In what follows, we’ll introduce a notation to represent
a set of key-value pairs:
m={key1:value1,key2:value2, ...,keyn:valuen}

The keys serve as distinct identifiers. Notably, this collec-

7

tion signifies a relation

m : {key1, . . . , keyn} →
n⋃

i=1

Di

from the set of keys {key1, . . . , keyn} to the union of the
domains

⋃n
i=1 Di, with Di being the domain of values

linked to keyi. Hence,

m(keyi) ∈ Di∈{1...n}

For referencing all keys related to the set m of key-
value pairs, we employ the expression keys(m) =
{key1, . . . , keyn}. Moreover, we introduce a list nota-
tion in the form l = [a1, . . . , an]. This is interpreted as a
function

l : {1, . . . , n} → D

where D signifies the domain of list values. Here,
l(i) = ai denotes the i-th list element, and the expres-
sion length(l) = |l| returns the list’s element count.

Using the notations mentioned above, we are
equipped to elaborate on all previously discussed com-
ponents. We initiate with a valid model output instance,
out, showcased in section 3.2, proceed with the input
instance in in section 3.3, and conclude by illustrating
the analytical model which derives an output instance
from the provided input instance.

With the notations explained, we’ll first discuss the
model output out in section 3.2, then the input in in
section 3.3, and finally, how the analytic model processes
the input to produce an output.

3.2 Service Network Instance: The Model
Output

A valid SN output instance out comprises of a set of
key:value pairs, structured as follows:
{config :<set of configurations >,
rootServiceID :<root service ID>,
instruments:<set of instruments >,
services :<set of services >},
adjustments: <value as in form 4>

Form 1: out
where config value ,extracted from the input, consists of
key:value pairs structured as:
{financial:{financialInterval:<value >,

intRate:<value >,...},
intRatio:<value >,
horizon: [p1 , p2 , . . .]}

Form 2: config value
In this context, intRate signifies the interest rate (e.g.,
0.0001%) for each financialInterval (e.g., day), while intRa-
tio (e.g., 24) indicates the number of operation intervals
(e.g., of 1 hour each) within the financial interval (e.g., 1
day). The underlying assumption is that the time is split
into operational intervals during which operations, such
as machinery control, are conducted.

The horizon describes a list [p1, p2, . . .] of investment
periods, each structured as:

{windows:{w1:{length:l1}, w2:{length:l2} ,...},
winSeq:<sequence of window IDs >}

Form 3: period value

Here, each period represents a set of windows (e.g., sum-
mer day, winter day, etc.) that can have different lengths
(e.g., day, week, etc.).

The winSeq denotes the sequence in which these win-
dows appear within a particular investment period of
the time horizon. As such, window IDs can recur to
depict recurring window patterns.

In Form 1, the instruments comprise of a set of key:value
pairs. Each key serves as a unique identifier for an in-
strument (like RECs), while the value provides details on
the parameter and metrics associated with that specific
instrument. Here’s a breakdown:

{metrics:{NPV:<list of values as in form 6>,
cashFlow:<list of values as in form 6>,
m1:<value as in form 5>,
m2:<value as in form 5>,...},

constraints:True or False}

Form 4: metrics and constraints

In this context, the value of each metrics encapsulates an
array of additive metrics, denoted as m1, m2, These
metrics could represent various factors like cost or emis-
sions. Furthermore, every metric value provides a break-
down of quantities specific to each investment period.
As a result, the structure for each metric value is as fol-
lows:
{perPeriod:[v1,v2 ,...],total:<numerical value > }

Form 5: metric value

The metrics section includes a distinct key referred to
as cashFlow, along with other financial metrics that are
contingent on the cashFlow, such as the NPV.

The value of cashFlow is an array comprising various
payment entries. Each of these payments adopts the for-
mat:
{interval: i,amount: <numerical value >}

Form 6: payment value

Here, every interval i designates a unique payment in-
terval spanning the entire time horizon and is included
no more than once in the list.

Moreover, the constraint values, as elaborated in Form
4, indicate the extent to which the instrument adheres to
its specified constraints.

The rootServiceID, in Form 1, denotes the root service’s
ID, such as a micro-grid system. Specifics about the
service network’s layout and each service’s parameters
can be found within the services value. Here, services
are identified either as composite or atomic. A composite
service, like Energy Storage, encompasses one or more
sub-services, and the IDs for these sub-services are listed
under subService. The format for each composite service
is illustrated below:
{type:"composite",
inFlow:{ f1 : [v1 , v2 , ..., vP], f2 : [v1 , v2 , ..., , vP], ...},
outFlow:{ f1 : [v1 , v2 , ..., vP], f2 : [v1 , v2 , ..., , vP] ,...},
metrics:<value as in form 4>,

8

constraints:True or False ,
subServices:<set of service IDs >}

Form 7: composite service

In this structure, inFlow and outFlow have a set of flows
{f1,f2,...} symbolizing the IDs of flows that enter and exit
each service, respectively. Each flow’s corresponding
value is a list of period flows [v1, ..., vp], each of the form:
{ w1:{qty: [q1,q2 ,...],total:<value >},

w2:{qty: [q1,q2 ,...],total:<value >} ,...}

Form 8: period flow value

The qty list, represented as [q1, q2, ...], indicates the flow
quantity for each operational interval within specific
windows, denoted by {w1, w2, ...}, for an investment
period p. Conversely, total provides a summary of the
entire flow spanning a single window during that pe-
riod.

The atomic service largely mirrors the structure out-
lined in Form 7. However, there are some key differ-
ences. Firstly, it doesn’t contain the subServices key-value
pair. Secondly, its type references an atomic analytical
model found within the library. Finally, this structure
introduces some other unique key-value pairs that set it
apart:
numUnitInvested:[v1 ,...,vp],
avaliable:[v1 ,...,vp],
initAvaliable:<value >,
capacityPerUnit:<value >,
numUnitON:<value as in form 10>,
state:<value as in form 10>,
lifeExp:<value >,
initLifeExp:<value >

Form 9: additional pairs

In this structure, the numUnitInvested and available val-
ues represent the counts of invested and available units
for a specified service across various periods. The ini-
tAvailable designates the initial count of available units
at the onset of the first period. Concurrently, capacityPe-
rUnit provides the peak capacity each unit can accom-
modate. Moreover, the numUnitON denotes the count
of units actively running (ON) during each interval of
a window within the specified investment period. This
leads to the following structured representation for nu-
mUnitON:
[{w1:[v1,v2 ,...],w2:[v1,v2 ,...] ,...},

{w1:[v1,v2 ,...],w2:[v1,v2 ,...] ,...} ,...]

Form 10: operational value

The state is an optional set of parameters (e.g., accu-
mulated kWh, battery charge level, etc.) used to track
the service state. Each parameter represents a key:value
pair, where the key signifies the ID of the parameter, and
the value is in the form of Form 10, reflecting the ser-
vice’s state during each operational interval within the
period’s windows. The lifeExp represents the number of
financial intervals during which the service is expected
to function normally before requiring replacement when
invested in. Conversely, initLifeExp indicates the num-
ber of financial intervals remaining for a service that is
already in the inventory (i.e., not newly acquired.)

As for Form 1, the adjustments value aggregates the
metrics of the rootService and the instruments. Moreover,
the constraints here must satisfy those of the rootService
and instruments, as outlined in Form 4.

In the following section, we’ll outline the required
input model used to create the output instance.

3.3 Service Network Instance: The Model
input

The input model (in) mirrors the structure of the output
with several distinctions: (1) The metrics and constraints
key:value pairs are absent since they will be calculated
from this input mode; (2) In the composite service, rather
than presenting a list that details flow quantities, we sub-
stitute them with their lower bounds (LB); (3) Contrary
to providing a list that illustrates the state in the atomic
service, it’s replaced by a singular value representing the
state at the outset of the initial operational window; (4)
For an atomic service and instruments, there’s an added
set of key-value pairs:
payments:{invPayments:<value >,

opPayments:<value >}
typeSpecific:{<set of key:value pairs >}

Form 11: additional atomic key:value pairs

where the invPayments ⟨value⟩ represents a list of pay-
ments for investing in this atomic service during a par-
ticular period p ∈ {1, .., P} , formulated as:
{1:{{due:<value >,amt:<value >},

{due:<value >,amt:<value >} ,...},
...,
P:{{due:<value >,amt:<value >},

{due:<value >,amt:<value >} ,...}}

Form 12: invPayment

Each due specifies the intervals (relative to the start
of period p) when the amount (amt) is due, assuming
the investment is made during period p. On the other
hand, opPayments represents a sequence of operational
payments, each associated with specific billing intervals.
Thus, the opPayments value is defined as a sequence
of these operational payments, where each payment is
structured as:
{billAt:<list of intervals >,due:<value >}

Form 13: opPayments value

where the billAt value consists of a list of financial
intervals that representing the the commencement of
each billing cycle, while due indicates the number of
financial intervals before these bills are due. The optional
typeSpecific value, as in Form 11, conveys the parameters
essential for atomic and instrument analytic models type
to compute its metrics and constraints.

3.4 Analytic Model (AM)

In this section, we explain how the analytic model de-
rives an output instance based on the input instance.

9

Short form Description Long form

intRatio The number of operational intervals in each
financial interval. in(con f ig)(intRatio)

ID The set of all services IDs keys(in(services))
W(p) The set of all window ids in period p. keys((in(con f ig)(horizon)(p)(windows)))
in fid(s) The set of all inFlows id’s for service s. keys((in(services)(s)(inFlow)))
out fid(s) The set of all outFlows id’s for service s. keys((in(services)(s)(outFlow)))
length(p, w) The length of window w at period p. length(in(con f ig)(horizon)(p)(windows)(w))

qtyIn(id, f , p, w, i)
The quantity of inFlow f for the service with
ID id during period p, window w and interval i
in the input structure in.

in(services)(id)(inFlow)(f)(p)(w)(qty)(i)

qtyOut(id, f , p, w, i)
The quantity of outFlow f for the service with
ID id during period p, window w, and interval i
in the input structure in.

in(services)(id)(outFlow)(f)(p)(w)(qty)(i)

LB(id, f , p, w, i)
The lower bound of inFlow f of the service id
at period p, window w, and interval i
in the input structure in.

in(services)(id)(inFlow)(f)(p)(w)(LB)(i)

sub(cs) The set of all subservices of the composite service cs. in(services)(cs)(subService)
seq(p) The window sequence at period p. con f ig(horizon)(p)(winSeq)

seq(p, x) xth window based on the window sequence
during period p.

in(config)(horizon)(p)winSeq[x]

unitON(id,p,w,k)
The number of units of the service id during period p,
window w, and interval i
in the input structure in.

in(services)(as)(numUnitON)(p)(w)(k)

cap(as) The capacity per unit of the service id. in(services)(as)(capacityPerUnit)
available(id,p) The number of available unit of service id at period p. in(services)(id)(available)(p)
inAvailable(id) The number of initial available unit of service id. in(services)(id)(initAvailable)

numUnitInvested(id,p) The number of units invested of service
with ID id at period p . in(services)(id)(numUnitInvested)(p)

initLifeExp(id) The inital life expectancy of service id. in(services)(id)(initLifeExp)

lifeExp(id) the life expectancy of a newly introduced service
identified by id. in(services)(id)(lifeExp)

expireIn(c, f)
The function returns the period p in which a service
is set to expire, given the current
period c and the specified financial interval f.

count(p,w)
The function returns the count of windows
of type w for period p present
in the sequence con f ig(horizon)(p)(winSeq).

invPayment(id, p, i) The ith payment if invested in service id at period p. in(services)(id)(payments)(invPayments)(p)(i)

invPayment(id, p) The payments associated with investing in service id
during period p. in(services)(id)(payments)(invPayments)(p)

metric(mi , id, p) The amount of metric mi of service id at period p. out(services)(id)(metrics)(mi)(perPeriod)(p)

opPayment(id, i) The ith operational payment op of service id
during period p

. in(services)(as)(payments)(opPayments)(i)

opPayment(id) The operational payments of service id during period p. in(services)(as)(payments)(opPayments)

billAt(id, op)
The list of intervals marking the start of the
billing cycle for operational payment op
associated with service id.

in(services)(id)(payments)(opPayments)(op)(billAt)

disDemand(ec, bp) The distributed demand for the energy contract (ec)
at billing period (bp). in(services)(ec)(serviceSpeci f ic)(disDemand)(bp)

demand(ec, bp) The demand for the energy contract (ec)
at billing period (bp). in(services)(ec)(serviceSpeci f ic)(demand)(bp)

state(v, as, p, w, k) The state of object v in service as at window,
during period p w and interval k. out(as)(state)(v)(p)(w)(k)

degradation(ps, kwh, c, R)
The function calculates the battery degradation based
on the kWh of consumption, the current battery
capacity c, and the depreciation ratio R for each cycle.

hourDuration(ps) The duration, in hours, of a battery’s power supply (ps). in(services)(ps)(serviceSpecific)(hourDuration)
efficiency(ps) The efficiency of a battery’s power supply (ps). in(services)(ps)(serviceSpecific)(efficiency)

Table 1: Notations

Although the out and in structures are similar, our pri-
mary focus is on the additional components introduced
in the out structure for both services and instruments. It’s
worth noting that adjustments in Form 1 represent the
combined metrics across both services and instruments.

To calculate the other components within out(services),
we first consider ID to be the set comprising all service
IDs. Thus, out(services) is realized through a two-step
process: ⋃

id∈ID

mOut (periodsOut (in(services)(id)))

The recursive function periodsOut processes a service
input form and returns the same service, augmented
with calculations for inFlow, outFlow, constraints, and
an updated state for each interval. Meanwhile, mOut,
another recursive function, takes the service format pro-
duced by periodsOut and computes metrics for each pe-
riod to formulate the out(services) structure.

Further information on the operations of periodsOut
and mOut can be found in Sections 3.4.1 and 3.4.2, re-
spectively. The notation employed is presented in Ta-
ble 1.

3.4.1 periodOut

In this section, we demonstrate how the periodsOut func-
tion computes the inFlow and outFlow quantities for each
interval within the windows over the investment peri-
ods. This computation includes the required constraints

for both types of services: composite (cs) and atomic (as).
Composite service(cs):

Let CS be the set of all composite service IDs. For
each composite service cs ∈ CS,we consider i as a flow in
in fid(cs) and j as a flow in out fid(cs). For a given a period
p ∈ {1, . . . , P}, and for every window w ∈ W(p) and
interval k ∈ {1, . . . , length(p, w)}, the inFlow quantity
qty — as defined in Form 7 — is recursively expressed
as:

qtyIn(cs, i, p, w, k) =

∑
s∈sub(cs)

(qtyIn(s, i, p, w, k) − qtyOut(s, i, p, w, k))

Therefore, the total for each inFlow is given by:

length(p,w)

∑
k=1

qtyIn(cs, i, p, w, k)

As with the inFlow described above, the outFlow is ex-
pressed similarly. For each composite service cs ∈ CS,
the constraints are formulated as a conjunction of the
following constraints:

1. Demand Constraint: For each sub-
service s ∈ sub(cs), a flow key i ∈
{[out fid(s) ∪ in fid(s)] − [in fid(cs) ∪ out fid(cs)]} ,
a period p ∈ {1, . . . , P}, a window w ∈ W(p), and
an interval k ∈ {1, . . . , length(p, w)}, the constraint
is:

qtyIn(s, i, p, w, k) ≥ qtyOut(s, i, p, w, k).

2. Bound Constraint: To verify that the minimum/-
maximum flow is achieved, the boundConstraint is
defined as: For any cs ∈ CS, a flow key i ∈ in fid(cs),
a period p ∈ {1, . . . , P}, a window w ∈ W(p), and
an interval k ∈ {1, . . . , length(p, w)}, the constraint
is:

LB(cs, i, p, w, k) ≤ qtyIn(cs, i, p, w, k).

Analogous to the lower bound (LB) constraint
above, the upper bound (UB) constraints for the
outFlow can be described similarly.

3. Sub-service Constraint: To ensure all constraints
of sub-services are met, the subServiceConstraints is
expressed as a conjunction of its subservices’ con-
straints:

∧
s∈sub(cs) out(services)(s)(constraints).

Atomic service (as): Let AS be the set of all atomic ser-
vice IDs. For each atomic service as ∈ AS, the state is
defined as a function returning the updated state based
on the previous state for the given service. The quantity
(qty) of every inFlow and outFlow for an atomic service is
computed by invoking the analytical model associated
with its type (refer to Section 4). Furthermore, for each
atomic service as ∈ AS, the constraints are formulated as
a conjunction of the following:

10

1. Bound Constraint: Ensure adherence to both lower
and upper bounds for every flow, referencing ex-
pressions similar to those detailed for composite
services (see Section 3.4.1).

2. Capacity Constraint: Guarantee that the flow quan-
tities do not exceed the capacity of the (ON) units
for every as ∈ AS, i from out fid(as), p ∈ {1, . . . , P},
w ∈ W(p), and k ∈ {1, . . . , length(p, w)}:

qtyOut(as, i, p, w, k) ≤ (unitON(as, p, w, k) × cap(as)) .

3. State Consistency Constraint: Maintain an assump-
tion that guarantees consistent state levels at both
the beginning and end of each window. Such uni-
formity ensures that changing the window order,
either within the same period or across different pe-
riods, doesn’t result in service state inconsistencies.

4. Domain Specifics Constraints: Incorporate any
domain-specific constraints (see Section 4).

5. Unit Count Constraints: Ensure that the number
of (ON) units for each interval does not surpass the
combined count of initial and invested units retain-
ing a viable life expectancy. To formalize this con-
straint, we first define the available number of units
in any given period p, denoted as available(as, p).
This is expressed as the summation of two quanti-
ties:

(a) initialUnit(as, p): This represents the number
of initial units that remain usable at period p:

initialUnit =
{

initAvailable(as), if p ≤ expireIn(1, initLifeExp(as))
0, otherwise

(b) investedUnit(as, p): Denotes the sum of units,
if invested in, that are still usable at period p.

investedUnit =
{

numUnitInvested(as, x), if x ≤ expireIn(x, lifeExp(as))∀x ∈ {1, ..., p}
0, otherwise

Thus,

available(as, p) = initialUnit(as, p) + investedUnit(as, p)

Now, unit count constraint can be expressed for
every as ∈ AS, p ∈ {1, . . . , P}, w ∈ W(p), and
k ∈ {1, . . . , length(p, w)}:

unitON(as, p, w, k) ≤ available(as, p)

3.4.2 metricOut (mOut)

In this section, we explore the functionality of the mOut,
or metricOut, function. Its role is to derive metrics for
both composite and atomic services by interpreting the
outputs of the periodOut function across all periods. The
completion of this process results in the formation of the
out(service), as outlined in Form 1.

Composite service: The metrics for a composite service
are aggregated from the values of its subservices.

For each composite service cs ∈ CS and throughout
every period p ∈ {1, . . . , P}, any metric mi (e.g., cost and
CO2) is recursively expressed as:

metric(mi , cs, p) = ∑
s∈sub(cs)

metric(mi , s, p))

Metrics for individual intervals within every window
of a specific period are calculated similarly. The aggre-
gate metric value for a given composite service (cs) is
formulated as:

metricTotal(cs, mi) = ∑
p∈{1,...,P}

metric(mi , cs, p)

It’s essential to highlight that the cashFlow metric is rep-
resented as a list, as indicated in Form 6. To aggregate
this list, amounts occurring in the same interval are com-
bined, producing a list with a similar form.

Furthermore, several financial metrics, which de-
pend on the cashFlow (like NPV), utilize the result of
cashFlow in conjunction with financial parameters found
in in(con f ig) (e.g., intRate) to compute their values.
The atomic service (as): For atomic services, the metric
perPeriod is calculated by multiplying the metric value
of a given window w ∈ W(p) with the number of times
that window is repeated in the given period (p):

∑
w∈W(p)

(
count(p,w)∗

length(p,w)
∑

k=1
metric(mi ,as,p,w,k)

)

where count(p,w) is a function that counts the number of
windows of type w at period p in winSeq(p) sequence.

The total metric value is calculated by aggregating the
value of a given metric over all periods as follow:

∑
p∈{1...P}

metrics(mi ,as,p)

To accurately compute the cashFlow, we need to con-
solidate both the investment and operational expenses.

To determine the specific financial interval—namely,
the designated day set for each payment, we sum
all preceding financial intervals leading up to the
period p. This aggregate is then supplemented by due,
which distinctly specifies the financial interval directly
associated with period p, as follow:

inPayment(as, p, i)(due) +

 ∑
x∈{1,...,p−1},

w∈W(x)

length(x, w) × count(x, w)

÷ intRatio

Subsequently, the amount corresponding to the above
interval is scaled by the number of units invested during
period p, described by the equation:

inPayment(as, p, i) × numUnitInvested(as, p)

11

On the other hand, operational expenses typically ad-
here to billing periods, such as the commencement of
every month, to determine the relevant charges for that
duration, like maintenance costs. It’s essential to un-
derstand that these expenses can be variable or static,
contingent on the operation type and the service in ques-
tion. For every period p within the set {1, . . . , P}, and
for every payment op from the set opPayment(as), and
every billing cycle b from the set billAt(as, op), the in-
terval appended to each cashFlow can be articulated
as:

billAt(as, op)(b) + opPayment(as)(due)

The associated amount for the aforementioned inter-
val is deduced using the analytical model tailored to its
distinct service type, as delineated in the library (refer to
Section 4).

In a parallel approach to computing out(services), con-
sider iID = keys(in(instruments)) as the set encompass-
ing all instrument IDs. The output’s instrument com-
ponent, represented as instruments, can be delineated
by: ⋃

i∈iID
instrumentOut(in(instruments)(i))

In this context, the instrumentOut function processes
an instrument input form and, upon completion, returns
the instrument with its corresponding metrics and con-
straints. The computation methodology for perPeriod
follows a pattern akin to the operational expenses seen
with atomic services. Additionally, the metric values and
constraints are derived using the analytical model corre-
sponding to the instrument type found in the library.

4 Atomic Service and Instrument Li-
brary Models

Within the library, every atomic service is equipped with
two Analytical Models (AMs). The primary AM is specif-
ically designed to compute visibility constraints at the
operational level, ensuring a balance between resource
inflow and outflow over each operational interval. Once
the flows are balanced over the time horizon, the sec-
ondary AM takes on the responsibility of calculating
critical metrics, including cost and emissions, as it pos-
sesses visibility of the overall operational constraints. In
the following, we will discuss how these AMs for each
atomic service generates these metrics and constraints.

4.1 Energy Contract (ec):

The outFlow from the energy contract specifies the over-
all energy going out, so there is no inflow balancing re-
quired here. We can pull as much power as needed from
the contract at the operational level within the bound
constraints specified in Section 3.4.1.

The other constraints that restrict the operational
outflow are calculated at the level of metrics calcula-
tion. When we calculate the bills for each billing pe-
riod b ∈ [v1, ..., Vpb] specified in billAt(ec, op) (e.g., ev-
ery month), the AM calculates the cost by summing
up the Distribution Service Charges and the Electricity
Supply (ES) Service Charges. The following presents
the key:value pairs in the serviceSpecific data, which are
needed to calculate these charges:
changeInRate:[v1 ,...,vbp],

disDemand:[v1 ,...,vbp],

distDemandPWPoints:<value >,
disDemandCharge:[v1 ,...,vbp],

demandCharge: <value >,
demand:[v1 ,...,vbp],

AdjustmentCharges:AdjustmentCharges ,
adjChargePWPoints:<value >,
ElectricitySupply: [v1 ,...,vbp],

basicCharge:<value >,
rkVAFactor:<value >,
rkVARate:<value >,
riders: <value >,
emissionFactor:[v1 ,...,vbp],

lineLoss: <value >

Form 14: (ec)serviceSpecific
These charges are the sum of the following categories:

1. Fixed Charges: These charges include fixed fees per
billing period b, such as basicCharges.

2. Usage-Based Charges: These charges are deter-
mined by the amount of energy consumed during
each billing period b. Items in this category, such
as ’rides,’ are calculated based on the following for-
mula: Let Ib = {i1, i2, . . .} represent the intervals
in each billing period b, Wb represent all windows
within a given billing period b at investment period
p, and F = infid(ec) is the set of all energy contract
outflows (ec). Then, the charge for ’rides’ is calcu-
lated as follows:

rate × pc(b)

Here, rate represents the cost per kilowatt-hour
(KWh) of power consumed during billing period b,
and pc(b) is defined as:

pc(b) = ∑
i∈Ib , f∈F,w∈Wb

qtyOut(ec, f , p, w, i)

3. Demand Charges: These charges are based on
the highest amount of power used during an op-
erational interval (e.g., 30 minutes). To account
for this, we add the following constraint for each
demand(ec, b) in {v1, . . . , vbp}:

demand(ec, b) ≥ pc(b)

where b is a billing period, and bp is the total num-
ber of billing periods in the time horizon.

4. Peak Charges: This charge structure results in
higher prices during peak hours. In this context,

12

’demand’ is constrained to exceed the average kilo-
watts (kW) measured during specific peak intervals,
which can vary based on time, days of the week, or
seasons.

5. Rate Tiers: The charges depend on rate struc-
tures with different tiers. The criteria for mov-
ing between tiers depend on factors such as ”dis-
Demand” and ”demand.” These transitions be-
tween tiers are defined by specific capacity thresh-
olds, which are specified as ”piecewise points” in
”disDemandPWPoints” and ”adjChargePWPoints”
respectively.

6. Rolling Average Charges: This refers to a billing
method that takes into account the average en-
ergy consumption over a certain period, which
can change over time as new data becomes avail-
able. It’s typically used to smooth out billing fluc-
tuations and may involve looking at energy us-
age over a rolling average of several months, such
as the previous 11 months. Given this, for ev-
ery outFlow f outfid(ec) and for every interval k in
the set {1, . . . , length(p, w)} within each window
w ∈ W(p) in a given rolling month of the specified
period p, the outFlow quantity is constrained by:
disDemand(ec, bp) ≥ qtyOut(ec, f , p, w, k).

For each billing period, the AM calculates the actual
emissions (Scope 2) by multiplying the emission fac-
tor with the actual power consumption (the outflow in a
given billing period), factoring in the line loss. It’s impor-
tant to note that the aforementioned costs are updated
in the cashFlow, as per the structure outlined in Form 6.
Additionally, the charge rates (e.g., basicCharge,...) con-
form to the rate increments delineated for every billing
period in changeInRate.

4.2 Power Storage (ps):

The following presents the key:value pair in the service-
Specific which is needed to calculate the operation, main-
tenance and investment cost, emissions and as well as
adjust the capacity of the battery to account for battery
degradation:
mCost:[v1 ,...,vbp],

batteryCapacity:[v1 ,...,vp],
capacityPerUnit:<value >,
MaxNumOfUnit: <value >,
efficiency:<value >,
co2Factor: <value >,
hourDuration:<value >,

Form 15: (ps)serviceSpecific

The power storage AM use the quantities of power
inFlow and outFlow at every operational interval k and
the state of the battery charge (chargeLevel) to calculate

new state as follow:

state(chargeLevel, ps, p, w, k)
= state(chargeLevel, ps, p, w, k − 1)

+ qtyIn(ps, in fid(ps), p, w, k)
− (qtyOut(ps, out fid(ps), p, w, k) ∗ efficiency(ps))

The AM also incorporates a constraint to maintain the
balance of charge levels at each interval through either
charging or discharging operations. The constraints are
as follows:

qtyIn(ps, in fid(ps), p, w, k) >= 0

qtyOut(ps, in fid(ps), p, w, k) >= 0

qtyIn(ps, in fid(ps), p, w, k) <= Charge ∗ M

qtyOut(ps, in fid(ps), p, w, k) <= (Charge − 1) ∗ M

Here, Charge is a binary variable, and M is a large pos-
itive number. It’s important to note that the combined
charging level across all available units in period p must
be bounded between zero and the total battery capacity.
This can be mathematically represented as

0 ≤ state(chargeLevel, ps, p, w, k) ≤ totalCapcity(ps, p)
(3)

The total capacity is updated each period to account
for newly invested units as well as the degradation of
batteries purchased in previous periods. It’s assumed
that degradation impacts all units uniformly. This can
be mathematically represented as:

totalCapcity(ps, p + 1)
= capacityPerUnit(ps) ∗ hourDuration(ps)

∗ investedNumUnit(ps, p + 1)
+ degradation(ps, Kwh, totalCapcity(ps, p), R)

4.3 Gas Boiler (gb):

The system calculates the heat output by taking into
account the efficiency of the gas boiler when provided
with a specific quantity of gas. The cost associated with
operating the gas boiler during each billing period is
tied to gas consumption, resembling the Usage-Based
Charges in the energy contract (ec). Additionally, this
cost is affected by both fixed and variable maintenance
expenses. The emissions generated by this process are
determined by a specific emissions factor associated with
burning gas.

4.4 Electric Boiler (eb):

Similar to the gas boiler, in this case, we use electricity as
the input, and we have already taken into account its cost
and emissions. Therefore, there is no need to introduce
additional costs or emissions to avoid double-counting.
The only cost considered is for maintenance.

13

4.5 Solar Panel(sp):

The model calculates the kWh output by taking into ac-
count the solar radiation at each interval and the specific
type of solar panel in use. The cost associated with main-
taining these panels is determined by the quantity of
units available during any given period.

4.6 Transformer (t)

The transformer is classified as an instrument because
it lacks operational control. We assume that the trans-
former upgraded at most once throughout the time hori-
zon. This is done if we invest in a service that require
electricity, such as electric boilers. The mathematical
representation is:

available(t, p) ∗ UB ≥ available(eb, p)

0 ≤ numUnitInvested(t, p) ≤ 1

Here, UB denotes the upper limit of units the trans-
former can handle. The associated cost is updated in the
cashFlow, akin to other services.

4.7 RECs:

The following presents the key:value pair in the serviceSpe-
cific which is needed to calculate the cost and emissions
reduction for RECs purchased:
costMwh:[v1 ,...,vm],
co2Factor:<value >,
adjCO2:[v1 ,...,vap],
RetiredRECs: [v1 ,...,vap],
investedNumRECs:[v1 ,...,vbp]

Form 16: (RECs)serviceSpecific

To ensure accurate accounting for RECs within a defined
accounting period, typically a year, there are specific
timelines set for recognizing these certificates. Specif-
ically, these RECs can either be generated within the
accounting period, in the six months preceding it, or the
three months following it. This flexible window for REC
recognition is implemented to offer more latitude in REC
purchasing. To model this, we introduce the following
parameter:

• The cost per Mwh costMwh for each month m.

• The adjusted CO2 adjCO2: This refers to the amount
of CO2 emissions offset due to the utilization of these
RECs within the accounting period (year).

• RetiredRECs: This represent the RECs that have been
claimed within each accounting period (ap).

• investedNumRECs: This represents the actual month
when the RECs were procured, denoted as bp.

Figure 5: Time horizon

This facilitates a billing mechanism based on the
monthly cost delineated in costMwh, multiplied by the
corresponding InvestedNumRECs of that month. How-
ever, when it comes to actual emission offset, it is aligned
with the month specified by RetiredRECs. Importantly,
this system accommodates a flexible window. Given
this setup, it’s essential to maintain equilibrium between
the aggregates of investedNumRECs and RetiredRECs
throughout the entire period. Consequently, these costs
are integrated into the cashFlow, and the CO2 metrics
are adjusted accordingly.

4.8 Offset:

The AM follows a structure similar to that of RECs, but
the primary emphasis here is on the cost per ton of CO2.
This model can be applied to address both scope 1 and
scope 2 emissions, while RECs predominantly cater to
scope 2 emissions related to contractual energy sources.

5 Experimental study

In this section, we conducted two experimental stud-
ies to assess the system’s scalability and its precision in
addressing real-world investment problems. Our exper-
iments were conducted on a batch-processing cluster,
leveraging a single core of the AMD Opteron Processor
6276. For optimization purposes, we employed CPLEX
22 as our primary tool.

In the first experimentation we assess the system’s abil-
ity to optimize investments for large-scale problems us-
ing exptended time horizon with differnt level of carbin
constraints. In our study, we devised four scenarios us-
ing a grid system with modules like solar panels, energy
contracts, batteries, electric and gas boilers, transformers,
RECs, and offsets. Our goal was to optimize operational
control strategies and infrastructure expansion over a

14

Figure 6: CPLEX solution progress

25-year investment horizon, divided into five-year pe-
riods with 30-minute operational intervals. We used
preprocessing algorithms with an epsilon of 300 kW to
generate windows. The second window splitting had
a bandwidth of 0.25, with each window representing a
day. We incorporated business constraints to meet spe-
cific carbon reduction targets. Our primary objective
was to minimize the system’s present value cost (PVC)
throughout the investment horizon.

In our experimental scenarios, the objective was to de-
termine the most efficient financial investment strategy
by minimize the system’s present value cost (PVC) un-
der varying carbon neutrality constraints. The stopping
criteria were set either at a time limit of 5 days or upon
reaching a gap of 0.3%.

Here are our findings:

1. No Carbon Reduction Constraint: In this scenario,
where no restrictions were placed on carbon emis-
sions, the first feasible solution appeared at 75.73
seconds with a 100% gap (see Figure 6). As the com-
putations progressed, the solution narrowed to a
gap of 0.28% after 7.5 hours, reflecting an absolute
gap of $358,722 out of $127,813,907.

2. Carbon Neutrality by the Fourth Period: When
we introduced a carbon neutrality constraint effec-
tive from the fourth period onward, the model took
longer to find its first feasible solution – 950.24 sec-
onds with a starting gap of 100%. With extended
computation, the gap reduced to 0.09% after 8 hours,
corresponding to an absolute gap of $134,694 out of
%136,212,897.

3. Achieving Carbon Neutrality by the Second Pe-
riod: By advancing the carbon neutrality con-
straint to start from the second period, the solution
achieved a gap of 0.29% after 14.5 minutes, with an
absolute gap of $478,873 out of $ 160,173,051.

4. Mandatory Carbon Neutrality Across All Periods:
In our strictest scenario, which mandated carbon
neutrality across all periods, the model identified
a solution within 77.96 seconds, albeit with a gap

of 80.14%. With extended processing, this gap di-
minished significantly, stabilizing at 0.26% after 11
hours. This translates to an absolute gap of $ 443,671
from a total of $ 168,774,499.

To summarize, these trials served as preliminary inves-
tigations into the viability of using our model to tackle
realistic investment scenarios. The results are promis-
ing, as in each case, the model was able to converge to a
solution near the optimum within a feasible timeframe.

In our second experimentation, the focus was on gen-
erating representative windows and evaluating how ac-
curately these representations compare to the actual win-
dows. In this experiment, we formulated a problem that
incorporated three modalities representing the electricity
contract, boiler, and solar energy – the latter emulating
the supply from solar panels. We utilized data from
George Mason University’s Fairfax campus, specifically
the electricity demand in 30-minute intervals through-
out the year 2019. Additionally, heat demand data for
the same campus, with similar granularity, was used,
along with solar radiation estimates sourced from the
National Renewable Energy Laboratory for the corre-
sponding region. First, we optimized both the opera-
tional and investment controls for the actual operation
windows. Subsequently, we repeated the experiment
using the same data, but reduced the number of win-
dows by leveraging our preprocessing algorithm. This
generated 54 representative windows with an epsilon
of 30 and bandwidth of 0.25, as well as 16 representa-
tive windows using an epsilon of 300 and bandwidth
of 30, respectively. Table 2 shows the differences in key
performance indicators between the actual data and the
representative windows, as well as the percentage of
error in each run compared to the actual windows. From
the table, it’s evident that the present value cost for both
representative problems was minimal. This suggests
that, at least for the modalities we employed, the gen-
erated representative windows are a good indicator for
the actual windows, and the preprocessing algorithm
provides a solid approximation of the actual data. This
assessment serves as an initial evaluation of the algo-
rithm. Further experimentation could be pursued to
generalize our findings.

Number of Windows 365 (Actual) 57 (Representative) Error 16 (Representative) Error
Present Value Cost 10,534,371 10,535,022 0.01% 10,568,506 0.32%
Operation Cost 6,822,388 6,822,651 0.00% 6,822,651 0.00%
CO2e (scope1) 13,609 13,609 0.00% 13,609 0.00%
CO2e (scope2) 25,778 25,778 0.00% 25,778 0.00%
Electric
Contract (PVC) 5,873,315 5,874,133 0.01% 5,908,495 0.60%

Boilers (PVC) 4,655,862 4,655,695 0.00% 4,654,818 0.02%
Solar (PVC) 5,192 5,192 0.00% 5,192 0.00%

Table 2: Actual windows vs representative windows

15

6 Conclusion and Future Work

As part of GADGET development, we enhanced the
integration of financial instruments within the SNIM
model, modeled various micro-grid components with a
focus on operational and financial aspects, established
a pre-processor engine to streamline the process, and
conducted two empirical studies. The first study show-
cased GADGET’s effectiveness in addressing large-scale
investment challenges, while the second validated the
accuracy of its pre-processing method in faithfully rep-
resenting real-world supply and demand patterns.

Future work will concentrate (1) expanding the exten-
sible library of domain-specific analytic models relevant
to system components, including models for building
retrofits, energy efficiency retrofits, central utility electri-
fication, and distributed energy sources; (2) conducting
a case study to assess GMU’s journey toward achieving
carbon neutrality by 2040; and (3) enhancing the time
complexity associated with the optimization problem
in the model by integrating a pre-processing algorithm.
This algorithm is designed to break down the challenges
posed by the analytical model into smaller, pre-resolved
operational problems.

7 Acknowledgment

These experiments were run on ARGO, a research
computing cluster provided by the Office of Research
Computing at George Mason University, VA. (URL:
http://orc.gmu.edu)

References

[1] W. Wei, W. Danman, W. Qiuwei, M. Shafie-Khah,
and J. P. Catalao, “Interdependence between trans-
portation system and power distribution system: A
comprehensive review on models and applications,”
Journal of Modern Power Systems and Clean Energy,
vol. 7, no. 3, pp. 433–448, 2019.

[2] X. Xin, X. Wang, L. Ma, K. Chen, and M. Ye,
“Shipping network design–infrastructure invest-
ment joint optimization model: a case study of west
africa,” Maritime Policy & Management, vol. 49, no. 5,
pp. 620–646, 2022.

[3] Y. Ru, J. Kleissl, and S. Martinez, “Storage size deter-
mination for grid-connected photovoltaic systems,”
IEEE Transactions on Sustainable Energy, vol. 4, no. 1,
pp. 68–81, 2013.

[4] Z. Wang, B. Chen, J. Wang, J. Kim, and M. M.
Begovic, “Robust optimization based optimal dg
placement in microgrids,” IEEE Transactions on
Smart Grid, vol. 5, no. 5, pp. 2173–2182, 2014.

[5] J. M. Home-Ortiz, O. D. Melgar-Dominguez,
M. Pourakbari-Kasmaei, and J. R. S. Mantovani,
“A stochastic mixed-integer convex programming
model for long-term distribution system expansion
planning considering greenhouse gas emission mit-
igation,” International Journal of Electrical Power and
Energy Systems, vol. 108, pp. 86,95, 2019.

[6] K. Liaqat, “Modeling, optimization, and software
development for concentrated solar power plants,”
2021.

[7] M. T. Al-Nory, “Optimal decision guidance for the
electricity supply chain integration with renewable
energy: Aligning smart cities research with sustain-
able development goals,” IEEE Access, vol. 7, pp.
74 996–75 006, 2019.

[8] M. Dicorato, G. Forte, M. Pisani, and M. Trovato,
“Planning and operating combined wind-storage
system in electricity market,” IEEE Transactions on
Sustainable Energy, vol. 3, no. 2, pp. 209–217, 2012.

[9] B. Alyahya and A. Brodsky, “A decision guidance
system for optimal operation of hybrid power de-
salination service network.” in ICORES, 2021, pp.
416–424.

[10] M. Breen, J. Upton, and M. Murphy, “Development
of a discrete infrastructure optimization model for
economic assessment on dairy farms (diomond),”
Computers and Electronics in Agriculture, vol. 156, pp.
508 – 522, 2019.

[11] Q. Fu, L. F. Montoya, A. Solanki, A. Nasiri,
V. Bhavaraju, T. Abdallah, and D. C. Yu, “Micro-
grid generation capacity design with renewables
and energy storage addressing power quality and
surety,” IEEE Transactions on Smart Grid, vol. 3, no. 4,
pp. 2019–2027, 2012.

[12] T. Kolster, R. Krebs, S. Niessen, and M. Duckheim,
“The contribution of distributed flexibility poten-
tials to corrective transmission system operation for
strongly renewable energy systems,” Applied energy,
vol. 279, pp. 115 870–, 2020.

[13] “Reports from federal university advance knowl-
edge in industrial engineering (a robust optimiza-
tion approach for cash flow management in sta-
tionery companies),” pp. 1074–, 2016.

[14] T.-Y. Hsieh and H.-L. Liu, “Genetic algorithm for op-
timization of infrastructure investment under time-
resource constraints,” Computer-Aided Civil and In-
frastructure Engineering, vol. 19, no. 3, pp. 203–212,
2004.

[15] T. Lambert, P. Gilman, and P. Lilienthal, “Microp-
ower system modeling with homer,” Integration of
alternative sources of energy, vol. 1, no. 1, pp. 379–385,
2006.

16

[16] B. Alyahya and A. Brodsky, “A decision guidance
system for optimal infrastructure investments,” in
2021 IEEE 33rd International Conference on Tools with
Artificial Intelligence (ICTAI), 2021, pp. 1337–1342.

[17] M. O. Nachawati, A. Brodsky, and J. Luo, “Unity
decision guidance management system: Analytics
engine and reusable model repository.” in ICEIS (1),
2017, pp. 312–323.

[18] A. Brodsky and X. S. Wang, “Decision-guidance
management systems (dgms): Seamless integration
of data acquisition, learning, prediction and opti-
mization,” in Proceedings of the 41st annual Hawaii in-
ternational conference on system sciences (HICSS 2008).
IEEE, 2008, pp. 71–71.

[19] A. Brodsky and J. Luo, “Decision guidance analytics
language (dgal),” in Proceedings of the 17th Interna-
tional Conference on Enterprise Information Systems -
Volume 1, ser. ICEIS 2015. Portugal: SCITEPRESS -
Science and Technology Publications, Lda, 2015, pp.
67–78.

17

