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Abstract

Cooperative multi-agent systems problems are ones in
which several agents attempt, through their interaction,
to jointly solve tasks or to maximize their utility. Due to
the interactions among the agents, multi-agent problem
complexity can rise rapidly with the number of agents
or their behavioral sophistication. The challenge this
presents to the task of programming solutions to such
problems has spawned increasing interest in machine
learning (ML) techniques to automate the search and op-
timization process.

We provide a broad survey of the cooperative multi-
agent learning literature. Previous surveys of this area
have largely focused on issues common to specific sub-
areas (for example, reinforcement learning or robotics).
In this survey we attempt to draw from multi-agent learn-
ing work in a spectrum of areas, including reinforcement
learning, evolutionary computation, game theory, com-
plex systems, agent modeling, and robotics.

We find that this broad view leads to a division of
the work into two categories, each with its own special
issues: applying a single learner to discover joint so-
lutions to multi-agent problems (team learning), or us-
ing multiple simultaneous learners, often one per agent
(concurrent learning). Additionally, we discuss two im-
portant topics independent of these categories: problem
decomposition and communication. We conclude with
a presentation of multi-agent learning problem domains,
a discussion of certain challenge topics (scalability and
adaptive dynamics), and a list of multi-agent learning re-
sources.

1 Introduction

In recent years there has been increased interest in decen-
tralized approaches to solving complex real-world prob-
lems. Most such approaches fall into the area ofdis-
tributed systems,where a number of entities work to-
gether to cooperatively solve problems. The combina-
tion of distributed systems and artificial intelligence (AI)
is collectively known asdistributed artificial intelligence
(DAI). Traditionally, DAI is divided into two areas. The
first area,distributed problem solving, is usually con-
cerned with the decomposition and distribution of a prob-
lem solving process among multiple slave nodes, and the
collective construction of a solution to the problem. The
second class of approaches,multi-agent systems(MAS),
emphasizes the joint behaviors of agents with some de-
gree of autonomy.

In this survey, we will focus on the application ofma-
chine learning(ML) to problems in the MAS area. Ma-
chine learning explores ways to automate the inductive
process: getting a machine agent to discover on its own,
through repeated trials, how to solve a given task or to
minimize error. Machine learning has proven a popular
approach to solving multi-agent systems problems be-
cause the inherent complexity of many such problems
can make solutions by hand prohibitively difficult. Au-
tomation is attractive. We will additionally focus on
problem domains in which the multiple agents areco-
operatingto solve a joint task or to maximize utility; as
opposed tocompetingwith one another. We call this
specific subdomain of interestcooperative multi-agent
learning. Despite the relative youth of the field, the num-
ber of multi-agent learning papers is large, and we hope
that this survey will prove helpful in navigating the cur-
rent body of work.
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Agents Interactions Environments
number of agents range predictability

heterogeneity of team bandwidth richness of resources
complementarity of goals frequency episodicity

control architectures persistence discrete/continuous
roles in the team (un)structured
sensing abilities signal/knowledge
effective abilities directory service

representation abilities variability
infrastructure

Table 1: Degrees of variation for multi-agent systems according to [248, 106]

1.1 Multi-Agent Systems

The termsagentandmulti-agentare not well-defined in
the community; we offer our own, admittedly broad, def-
initions of the concepts here as we intend to use them
later in the survey. Anagentis a computational mecha-
nism that exhibits a high degree of autonomy, perform-
ing actions in its environment based on information (sen-
sors, feedback) received from the environment. Amulti-
agentenvironment is one in which there is more than
one agent, and further, there are constraints on that en-
vironment such that agents may not at any given time
knoweverythingabout the world that other agents know
(including the internal states of the other agents them-
selves). Otherwise, the multi-agent system’s dynamics
may be analogous to a single-agent system where each
of the “agents” is really an appendage of a master con-
troller.

Before continuing, we mention few other definitions
for agents and multi-agent problems in the literature. Ac-
cording to Wooldridge and Jennings [267], there are two
general usages of the term agent:weak agents, which
often exhibit autonomy, social ability, reactivity, interac-
tion via a communication language, pro-activeness, and
the ability to perceive the environment and respond to
it accordingly; andstrong agents, which may have be-
liefs, desires, intentions, knowledge, commitments, and
other human-like characteristics. Jennings et al. [114]
suggest that most multi-agent systems applications fea-
ture agents with incomplete information about the envi-
ronment, a lack of centralized control, decentralized and
distributed information, and asynchronous computation.

Depending on their interest, several authors have pro-
vided different taxonomies for MAS applications. For
example, Dudek et al. [65] classify swarm robotics ap-
plications according to team size, range, communica-
tion topology and bandwidth, team composition and re-
configurability, and the processing ability of individual
agents. In a collection describing the application of Dis-
tributed Artificial Intelligence to industry, Parunak [171]
differentiates betweenagent characteristics(team het-

erogeneity, control architectures, input/output abilities)
andsystem characteristics(for example, communication
settings). Stone [223] and Stone and Veloso [225] ex-
plicitly distinguish among four groups divided by hetero-
geneity vs. homogeneity and by communication versus
lack thereof. Last, Weiß [246, 248] and Huhns and Singh
[106] define a number of multi-agent systems character-
istics, summarized in Table 1.

1.2 Multi-Agent Learning

Much of the multi-agent learning literature has sprung
from historically somewhat separate communities — no-
tably reinforcement learning and dynamic programming,
robotics, evolutionary computation, and complex sys-
tems. Existing surveys of the work have likewise tended
to emphasize issues special to only some subset of these
areas. As there is increasing cross-fertilization among
these fields, we believe a new, unified survey of multi-
agent learning may be useful to provide a joint overview
of the state of the art.

Accordingly, we begin the survey by defining multi-
agent learning broadly: it is the application of machine
learning to problems involving multiple agents. We think
that there are two features of multi-agent learning which
merit its study as a field separate from ordinary machine
learning. First, because multi-agent learning deals with
problem domains involving multiple agents, the search
space involved can be unusually large; and due to the
interaction of those agents, small changes in learned
behaviors can often result in unpredictable changes in
the resulting macro-level (“emergent” ) properties of the
multi-agent group as a whole. Second, multi-agent learn-
ing may involve multiple learners, each learning and
adapting in the context of others; this introduces game-
theoretic issues to the learning process which are not yet
well understood.1

1Our argument here differs somewhat from Weiß and Dillenbourg
[249], who believe that what makes multi-agent learning special are:
separate learning algorithms, task decomposition, agent interaction,
conflict resolution among agents, mutual regulation among the agents,
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A large portion of the multi-agent literature may be
neatly divided according to whether or not it involves
the second feature (multiple learners); and this division
forms the top level of our survey taxonomy. Some litera-
ture applies a single learner to improve the performance
of the entire team of agents. We call this categoryTeam
Learningbecause the learning process adjusts the behav-
ior of the team as a whole. Other literature applies sep-
arate learning processes to individual agents, while still
assessing the quality of the agents as a team. We term
this approachConcurrent Learning.

To illustrate the difference between the two, consider
a problem domain involving a room with two robots and
a box. The robots need to cooperatively push the box
from its initial location to a target location, and the only
performance measure provided how close to the target
location thatboth robots togetherhave pushed the box.
A Team Learning approach employs a single learner to
iteratively improve the “team behavior” – which consists
of both robot behaviors – according to the performance
measure provided as feedback. The Concurrent Learning
approach allows each agent (robot) to modify its own be-
havior via the agent’sown learning process. The perfor-
mance measure now must be apportioned among the two
agents (perhaps by dividing it equally). The agents will
improve their behaviors independent of one another, but
have little or no control over how the other agents decide
to behave.

Research in Concurrent Learning has broken down
along different lines than that in Team Learning, primar-
ily because of differences in the dynamics of the tech-
niques. As Team Learning uses a single learner, most
research has focused on therepresentationof candidate
solutions that the learner is developing: in particular,
the degree of heterogeneity among the team members.
More heterogeneity leads to more specialization and to
more sophisticated team behaviors, but also increases the
search space. In contrast, Concurrent Learning literature
has largely focused on the relationships the learners have
with one another: the game-theoretic properties of the
agents’ interactions, the apportioning of the performance
measure among them, and how agents may model one
another.

Additionally, there are a two large research areas
which are somewhat independent of the learning pro-
cess: communication and problem decomposition. We
discuss these areas in their own sections. We conclude
the survey with a large collection of multi-agent problem
domains drawn from the gamut of the literature, some
challenge issues (scalability and adaptive dynamics)
plus a list of existing resources. The survey follows the
following format:

and the ability of agents to explain the reasoning to one another.

Multi-Agent Learning Categories
Team Learning

Homogeneous Team Learning approaches
Heterogeneous Team Learning approaches
Hybrid Team Learning approaches

Concurrent Learning
Dynamics of learning
Credit assignment and locality of reinforcement
Concurrent modeling

Category-independent Research Areas
Problem Decomposition
Communication and Learning

Direct Communication
Indirect Communication

Challenges
Scalability
Adaptive Dynamics

Problem Domains
Embodied Agents
Game-Theoretic Environments
Real-World Applications

Resources and Conclusions

We believe that this taxonomy provides a good ar-
rangement of multi-agent learning research. However,
there are a few issues which recur several times during
the survey and are worth mentioning here:

Credit Assignment. When evaluating an agent, an im-
portant problem that needs to be solved is that of decid-
ing which one of a series of agent actions led to the rein-
forcement received from the environment. Additionally,
when the reinforcement is attributed to a team’s behav-
ior, assessing the credit an agent receives, and its share of
the team reinforcement, can also be very important to the
learning process. The two subproblems are known as the
intra-agentandextra-agentcredit assignment problems
[250].

Game-theoretic Problems. An important related issue
is how to cast a given multi-agent problem as a coopera-
tive problem (as opposed to a competitive one, etc.). This
is not a trivial problem: many multi-agent learning prob-
lems can exhibit unexpected interactions between agents
as they gravitate towards equilibium with one another.
Here we will approach the issue only by defining coop-
eration, competition, etc. in a relatively extreme fashion.
If increasing the reward received by one agent leads to
increasing the reward for another agent, we say that they
are cooperating. If increasing an agent’s reward leads to
decreasing the reward received by another agent, we con-
sider that the two are competing. If there isno relation-
shipbetween the two (they are completely independent),
we say that they areindifferentto one another. There are
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of course many game-theoretic environments which do
not fall into any of these categories.

Co-adaptation. Another interesting, game-theoretic
multi-agent learning issue concerns the fact that the
learning processes are not independent, but they affect
each other. Consider when an agent observes the envi-
ronment (containing other agents as well) and tries to
improve its performance. This leads to a modification
in its behavior. This modification is then sensed by the
other agents, who change their behaviors in order to im-
prove their performances as well. This “moves the goal-
posts” for the original agent: its newly-learned behav-
ior may no longer be appropriate. Thus as the agents
co-adapt to one another, the agent environment is essen-
tially changing beneath their feet. Learning in the face of
this dynamic is not easy: such co-adaptation can result in
cyclical or chaotic adaptive behavior, and may gravitate
towards balanced equilibrium rather than to an optimum.

The survey is mainly concerned with cooperative
multi-agent learning, rather than competitive learning
methods. However, it is worth mentioning one impor-
tant class of competitive multi-agent learning problem
domains: learning to play games. In fact, one of the
earliest, and still celebrated, machine learning papers is
concerned with learning to play checkers [194]. How-
ever, the bulk of learned game-playing work has been rel-
atively recent. For example, Luke [133] evolved soccer-
playing softbot teams, and Fogel [73] evolved a highly
human-competitive checkers program called Blondie24.
Tesauro’s TD-Gammon program ranked among the best
players in the world in the game of backgammon [233].
Other investigations concerned games such as Tic-Tac-
Toe [5], Backgammon [175, 174], Mancala [56], Oth-
ello [211], pursuit-evasion [48, 88], Go [131], Chess
[234, 121], Poker [122], Blackjack [229] and Tag [187].

Another large class of learning in multi-agent systems
that we will ignore in this survey involves situations
where a single agent learns while the other agents’ be-
haviors are fixed. One of the many examples of such
learning investigations is presented in [83]. This is
single-agent learning: there is only one learner, and the
behaviors are plugged into only one agent, rather than
distributed into multiple agents.

1.3 Machine Learning Methods

There are three main approaches to learning:supervised,
unsupervised, andreward-based2 learning. These meth-

2Some of the literature calls this “reinforcement learning”; but to
avoid confusion with a specific subsetalsocommonly called reinforce-
ment learning (including techniques such as Q Learning), wewill use
reward-basedto distinguish the superset from the subset. The term

ods are distinguished by what kind of feedback the critic
provides to the learner. In supervised learning, the critic
provides the correct output. In unsupervised learning, no
feedback is provided at all. In reward-based learning, the
critic provides a quality assessment (the “reward”) of the
learner’s output.

Because of the inherent complexity in the interactions
of multiple agents, various machine learning methods —
notably supervised learning methods — are not easily
applied to the problem because they typically assume a
critic which can provide the agents with the “correct” be-
havior for a given situation (a notable exception involv-
ing teaching in the context of mutual supervised learners
is presented in [78]). Thus the large majority of papers in
this field have used reward-based methods. The reward-
based learning literature may be approximately divided
into two subsets:reinforcement learningmethods which
estimate value functions; andstochastic searchmethods
such as evolutionary computation, simulated annealing,
and stochastic hill-climbing, which directly learn behav-
iors without appealing to value functions. In the stochas-
tic search literature, most multi-agent discussion concen-
trates on evolutionary computation.

Reinforcement Learning Reinforcement learning
(RL) methods are particularly useful in domains where
reinforcement3 information (expressed as penalties
or rewards) is provided after a sequence of actions
performed in the environment. Q-Learning and
Temporal-Difference (TD(λ)) Learning are two common
RL methods; the former learns the utility of performing
actions in states, while the latter usually learns the
utility of being in the states themselves. Reinforcement
learning methods are inspired by dynamic programming
concepts and require formulas for updating the expected
utilities and for using them for the exploration of the
state space. The update is often a weighted sum of
the current value, the reinforcement obtained when
performing an action, and the expected utility of the
next state reached after the action is performed. While
exploring, deterministic strategies may choose the
most promising action to be performed in each state
(according to the expected utilities). Other stochastic
techniques may lead to better exploration of the state
space. Reinforcement learning methods have theoretical
proofs of convergence; unfortunately, such convergence
assumptions do not hold for some real-world applica-
tions. For more information on reinforcement learning
techniques, [230, 14, 118] are good starting points.

“reward” is admittedly problematic though, as there exist “negative re-
wards” (punishments).

3In this survey, we use the termsreward and reinforcementinter-
changeably to denote the information the agents receive from the envi-
ronment as a consequence of their actions.
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Evolutionary Computation Evolutionary Computa-
tion (EC) (orEvolutionary Algorithms(EAs)) is a fam-
ily of techniques in which abstract Darwinian models of
evolution are applied to refine populations of candidate
solutions (known as “individuals”) to a given problem.
An evolutionary algorithm begins with an initial popula-
tion of randomly-generated individuals. Each member of
this population is then evaluated and assigned a fitness (a
quality assessment). The EA then uses a fitness-oriented
procedure to select, breed, and mutate individuals to pro-
duce children which are then added to the population,
replacing older individuals. One evaluation, selection,
and breeding cycle is known as ageneration. Succes-
sive generations continue to refine the population until
time is exhausted or a sufficiently fit individual is discov-
ered. Evolutionary computation methods includegenetic
algorithms(GA) andevolution strategies(ES), which are
usually applied to the search of multidimensional pa-
rameter spaces, andgenetic programming(GP), which
concerns itself with evolving actual computer programs.
There are many sources of additional information on EC;
good choices include [99, 77, 124, 9, 144, 74, 58, 59].

Coevolutionary algorithms (CEAs) represent a natural
approach to applying evolutionary computation to refine
multi-agent behaviors. In a CEA, the fitness of an indi-
vidual is based on its interaction with other individuals
in the population: thus the fitness assessment is context-
sensitive and subjective. Incompetitivecoevolution, in-
dividuals benefit at the expense of their peers; but in
cooperativecoevolution, individuals succeed or fail to-
gether in collaboration. A standard approach to applying
cooperative coevolutionary algorithms (or CCEAs) to an
optimization problem starts by decomposing the prob-
lem representation into subcomponents, then assigning
each subcomponent to a separate population of individu-
als [181, 178, 177, 179].

2 Team Learning

In team learning, there is a single learner involved: but
this learner is discovering a set of behaviors for a team
of agents, rather than a single agent. While this lacks
the game-theoretic aspect of multiple learners, we argue
that team learning is interesting in that because the team
of agents interact with one another, the joint behavior
arising from their interactions can be unexpected: this
notion is often dubbed theemergent complexityof the
multi-agent system.

Team learning is an easy approach to multi-agent
learning because it can use standard single-agent ma-
chine learning techniques: there is a single entity that
performs the learning process. This sidesteps the diffi-
culties arising from the co-adaptation of several learners

that we will later encounter in concurrent learning ap-
proaches. Another advantage of a single learner is that
the agents tend to act to maximize the team reward rather
than their individual rewards. This makes agents be-
have altruistically rather than greedily. As we will see
later, selfishness creates significant problems in concur-
rent learning. Finally, with a single learner, the issue of
credit assignment among the agents may generally be ig-
nored: it is often reasonable simply to divvy up credit
evenly throughout the team.4

Team learning has some disadvantages as well. A ma-
jor problem with team learning is the increasingly larger
state space for the learning process. For example, if agent
A can be in any of 100 states and agent B can be in any of
another 100 states, the team formed from the two agents
can be in as many as 10,000 states. This explosion in the
state space size can be overwhelming for learning meth-
ods that explore the space of state utilities (such as rein-
forcement learning), but it may not as drastically affect
techniques that explore the space of behaviors (such as
evolutionary computation) [192, 193, 208, 110].

A second disadvantage is the centralization of the
learning algorithm: all resources need to be available
in the single place where all computation is performed.
This can be burdensome in domains where data is inher-
ently distributed.

Team learning may be divided into two broad cate-
gories: homogeneousandheterogeneousteam learning.
Homogeneous learners develop a single agent behavior
which is used by every agent on the team. Heterogeneous
team learners can develop a unique behavior for each
agent. Heterogeneous learners must cope with a larger
search space, but hold the promise of better solutions
through agent specialization. There exist approaches in
the middle-ground between these two categories: for ex-
ample, dividing the team into squads, with squadmates
sharing the same behavior. We will refer to these ashy-
brid team learning methods.

2.1 Homogeneous Team Learning

In homogeneous team learning, all agents use the same
learned behavior. Because all agents have the same be-
havior, the search space for the learning process is dras-
tically reduced. The appropriateness of homogeneous
learning depends on the problem: some problems do
not require agent specialization to achieve good perfor-
mance. For other problem domains, particularly ones
with very large numbers of agents (“swarms”), the search

4It can be argued that assigning credit is essentially applying differ-
ent quality assessments to each agent, and if the learner tries to locally
improve each agent based on its quality assessment, then this is equiv-
alent to a multiple-learner (concurrent learning) situation. We have
chosen to put such gray-area models in the team learning category.
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space is simply too large to use heterogeneous learning,
even if heterogeneity would ultimately yield the best re-
sults. A large number of homogeneous team learning pa-
pers are concerned with communication issues; we dis-
cuss such literature in Section 5.

Haynes et al. [96, 95, 97], Haynes and Sen [90],
Haynes et al. [89] present a series of results obtained
by evolving behaviors for the predator-prey pursuit do-
main. When using fixed (random or greedy) algorithms
for the prey behavior, the papers report results compet-
itive with the best human-coded greedy predator algo-
rithms, both when using and when not using informa-
tion on the position of the other predators. However,
when coevolving the prey and predator behaviors, the
genetic programming system employed discovers a prey
that evades all previously reported hand-coded, greedy,
and evolved predators. The authors suggest that bet-
ter performance may be obtainable with communicating
agents. Jim and Giles [116] follow this direction and al-
low a genetic algorithm system to additionally evolve a
communication language. The authors experiment with
increasingly complex language constraints, and report
that the evolved communicating agents exhibit perfor-
mance superior to all previously reported work in this
domain.

Quinn et al. [185] investigate the use of evolution-
ary computation techniques for a team formation prob-
lem. Three agents start from random positions but close
enough to sense one another. They are required to move
the team centroid a specific distance while avoiding col-
lisions and remaining within sensor range. Quinn et al.
investigate the roles of team members by removing the
agents one at a time. They conclude that the rear agent is
essential to sustain locomotion, but it is not essential to
the other two agents’ ability to maintain formation. The
middle agent is essential to keep the two others within
sensor range, and the front agent is crucial to team for-
mation. Therefore, even though the agents are homoge-
neous, they specialize (based on their relative positions)
to perform better as a team.

Salustowicz et al. [192, 193] compare PIPE and CO-
PIPE (population-based algorithms similar to evolution-
ary computation) and Q-learning in a simulated soccer
domain. The results show that Q-learning has serious
learning problems, attributed by the authors to the algo-
rithm’s need to search for a value function. On the other
hand, both PIPE and CO-PIPE search directly in the pol-
icy space and show good performance. The authors con-
clude that searching in policy space may be preferable in
other multi-agent domains as well. A similar result is re-
ported in [208], where a “Bucket-Brigade” evolutionary
algorithm proves competitive with Q-learning in a coor-

dinated navigation problem.5 A contradicting result is
reported in [261], where a modified Q-learning outper-
forms the methods earlier reported in [192, 193].

Cellular Automata A cellular automaton (CA) is an
oft-overlooked paradigm for homogeneous team learn-
ing6. A CA consists of a neighborhood (often a row or
grid) of agents, each with its own internal state, plus a
state-update agent behavior (therule) applied to all the
agents synchronously. This rule is usually based on the
current states of an agent’s neighbors. CAs have many
of the hallmarks of a multi-agent system: iteractions and
communications are local, and behaviors are performed
independently. A good survey of existing work in learn-
ing cellular automata rules is presented in [147].

One common CA problem, the Majority Classifica-
tion7 task, asks for an update rule which — given ini-
tial configurations of agents, each agent with an inter-
nal state of 1 or 0 — classifies correctly as many of
them as possible based on whether the initial configu-
ration had more 1’s than 0’s or more 0’s than 1’s. This
is done by repeatedly applying the update rule for some
N iterations; if the agents have converged to all 1’s, the
rule is said to have classified the initial configuration as
majority-1’s (similarly for 0’s). If it has not converged,
the rule has not classified the initial configuration. The
goal is to discover a rule which classifies most configura-
tions correctly given specific standard settings (in terms
of number of agents, size of neighborhood, etc). Due
to the complexity of the emergent behavior, it is ex-
ceptionally difficult to create good performing solutions
for this problem by hand. The best human-coded re-
sult, of 82.178% accuracy, was proposed by Das et al.
[55]. Much better results have been produced with evo-
lutionary computation methods: Andre et al. [3] report a
rule with accuracy 82.326% using genetic programming.
Several authors, including Werfel et al. [252], Pagie and
Mitchell [163], Juille and Pollack [117], suggest that co-
evolution8 might perform well in this problem domain;
at present the best known result, with accuracy 86.3%,
was obtained via coevolution [117].

5This paper is a concurrent learning paper, not a team learning one,
but we place it here as it supports the conclusions of Salustowicz et al.
[192, 193].

6There are a few CA papers examining heterogeneous agents.
7Also known as Density Classification.
8The papers refer to a particular case of coevolution, namelycom-

petitive coevolution, and a special setting containing twosubpopula-
tions. The first subpopulation consists of candidate solutions for the
problem (in this case, behaviors for the CA agents). The second sub-
population contains possible test cases – initial configurations that the
candidate solutions should solve. Candidate solutions in the first sub-
population are considered better fit when solving more test cases exist-
ing in the second subpopulation; meanwhile, the fitness of a test case is
based on how many candidate solutions it stumps.
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2.2 Heterogeneous Team Learning

In Heterogeneous Team Learning, the team is composed
of agents with different behaviors, with a single learner
trying to improve the team as a whole. This approach
allows for more diversity in the team at the cost of in-
creasing the search space. The bulk of research in Het-
erogeneous Team Learning has concerned itself with the
requirement for or the emergence of specialists.

When are specialists really needed in a team? Balch
[11]9 suggests that domains where single agents can per-
form well (for example, foraging) are particularly suited
for homogeneous learning, while domains that require
task specialization (such as robotic soccer) are more suit-
able for heterogeneous approaches. His argument is bol-
stered by Bongard [22],9 who hypothesizes that hetero-
geneity may be better in inherently decomposable do-
mains. Potter et al. [180]9 suggest that domain diffi-
culty is not a determinant factor requiring a heteroge-
neous approach. They experiment with increasingly dif-
ficult versions of a multi-agent herding domain obtained
by adding predators. Potter et al. argue that increasing
the number of different skills required to solve the do-
main is a determinant factor.

Luke and Spector [135] investigate possible alterna-
tives for evolving teams of agents. In their experiments,
Luke and Spector compare homogeneity, heterogeneity
with restricted breeding (agents could only breed with
like agents from other teams), and heterogeneity with
no breeding restrictions. The authors suggest that the
restricted breeding works better than having no restric-
tions for heterogeneous teams, which may imply that the
specialization allowed by the heterogeneous team rep-
resentation conflicts with the inter-agent genotype mix-
ture allowed by the free interbreeding. Similarly, Andre
and Teller [4] apply genetic programming to develop a
team of soccer playing agents for the RoboCup simula-
tor. The individuals encode eleven different behaviors
(one for each player). Andre and Teller mention that the
crossover operator (between teams of agents) was most
successful when performing restricted breeding.

Haynes and Sen [92, 98, 94] investigate the evolu-
tion of homogeneous and heterogeneous teams for the
predator-prey pursuit domain. The authors present sev-
eral crossover operators that may promote the appear-
ance of specialists within the teams. The results indicate
that team heterogeneity can significantly help despite ap-
parent domain homogeneity. The authors suggest that
this may be due to deadlocks generated by identical be-
haviors of homogeneous agents when positioned in the
same location. Haynes and Sen report that the most suc-

9These three papers are actually concurrent learning and hybrid
team learning papers, not heterogeneous team learning work. However
their arguments are germaine to the issue of heterogeneous specialists.

cessful crossover operator (TeamUniform) allows arbi-
trary crossover operations between behaviors for differ-
ent agents, a result contradicting Luke and Spector [135]
and Andre and Teller [4].

Another application of coevolution to team learning
treats each individual in the population not as a team
of agents but as a single agent; agents in the popula-
tion are evaluated by grouping them together to form
a team [41, 183]. Quinn shows a situation where this
method outperforms a homogeneous team learning ap-
proach. Similarly, Miconi [145] evaluates an individual
by forming a team from the population, then comparing
how much worse the team performs when the indivdiual
is not in it. Miconi reports the appearance of squads and
“subspecies” in this method.

2.3 Hybrid Team Learning

Luke [133], Luke et al. [134] report on a combination
of homogeneous and heterogeneous approaches to team
learning. Their work concentrates on evolving soccer
teams for the RoboCup competition, and they mention
that the limited amount of time available before the com-
petition diminished the probability of obtaining good
heterogeneous teams. Instead, they compare the fully
homogeneous results with a hybrid combination that di-
vides the team into six squads of one or two agents each,
and then evolves six behaviors, one per squad. The
authors report that homogeneous teams performed bet-
ter than the hybrid approach, but mention that the latter
exhibited initial offensive-defensive squad specialization
and suggest that hybrid teams might have outperformed
the homogeneous ones given more time.

Hara and Nagao [87] present an innovative
method for hybrid group learning. Faced with the
specialization/search-space tradeoff inherent in hetero-
geneity, the authors suggest an automated grouping
technique called Automatically Defined Groups (ADG).
They apply it successfully to a simple load transportation
problem and to a modified tile-world domain. In ADG,
the team of agents is composed of several groups of
homogeneous agents (similar to [133, 134]); however,
ADG automatically discovers the optimum number
of groups and their compositions. Additionally, the
acquired group structure may give insights into the
cooperative behavior that solves the problem. A similar
approach is reported in [22], where GP individuals
contain partitioning instructions used for the creation of
squads.
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3 Concurrent Learning

The most common alternative to team learning in cooper-
ative multi-agent systems isconcurrent learning, where
each agent on the team independently learns how to im-
prove its performance and the performance of the team
as a whole10. Whereas team learning decentralizes the
agents while they are acting in the environment, concur-
rent learning additionally decentralizes the agents’ learn-
ing procedures. Some research has presented domains
where concurrent learning outperforms both homoge-
neous and heterogeneous team learning [40, 108, 109].
However, other investigations suggest that team learning
may be preferable in certain situations [146]. Jansen and
Wiegand [113] examine when the one method outper-
forms the other and vice versa.

There are many concurrent learning papers in rein-
forcement learning, but the notion is of special interest to
evolutionary computation because of its close relation-
ship with thecoevolutionwith its multiple learners and
independent interacting agents.

The primary advantage of concurrent learning is that it
projects the large joint team search space onto separate,
smaller, individual search spaces. If the problem can be
decomposed such that individual agent behaviors are rel-
atively disjoint, then this can result in a dramatic reduc-
tions in search space and in computational complexity.
A second, related advantage is that breaking the learn-
ing process into smaller chunks permits more flexibility
in the use of computational resources to learn each pro-
cess because they may, at least partly, be learned inde-
pendently of one another. On the other hand, team learn-
ing experiments need only be concerned with a single
learner, simplifying the design of the learning process it-
self.

The central challenge for concurrent learning is that
with multiple learners, each learner is adapting its be-
haviors in the context of other co-adapting agents over
which it has no control. As the agents learn, they mod-
ify their behaviors, which in turn can ruin other agents’
learned behaviors by making obsolete the assumptions
on which they are based. Agents may then need to
re-explore the environment again and change their be-
haviors in this new agent context, but as soon as they
do so, their new learned behaviors may yet again make
obsolete each other’s learned assumptions (and so on).
The mutual co-adaptation inherent in concurrent learning
presents game-theoretic dynamics which are relatively
new to the machine learning field; and there is so far rel-
atively little agreement on how to deal with the problem,

10There are other degrees of granularity of course: the team may be
divided into “squads”, each with its own learner, for example. How-
ever, we are not aware of any concurrent learning literaturewhich as-
signs learners to anything but individual agents.

especially in multi-agent environments with little or no
communication.

Such co-adaptation creates many problems. One such
problem is keeping the agents focused on the perfor-
mance of the team, rather then on their individual perfor-
mance. This issue may be cast in game theoretic terms:
a multi-agent learning system can have multiple Nash
equilibria, and once the set of agents reaches one of the
equilibria, no single agent has a motivation to change its
behaviors “for the good of the team”. Only two or more
agents simultaneously changing to a new behavior can
get the team out of the equilibrium point. Such equilibria,
unfortunately, can also be suboptimal team behaviors.

Another problem: when centralized performance mea-
sures are used, how can the learning system(s) assess the
contribution of each agent to the joint measure? This
credit assignment problem may sometimes be very dif-
ficult to correctly solve or approximate. In some cases,
equal shares of reward are assigned to each agent. This
may slow down the learning process because “lazy”
agents receive rewards primarily due to other agents’ sus-
tained efforts, and so have little incentive to change their
ways. On the other hand, equal shares of global reward
can keep the agents focused on team (rather than indi-
vidual) performance. The other extreme is to locally as-
sess each agent’s performance based solely on its indi-
vidual behavior. This can lead to local, greedy behavior
rather than globally optimal behavior. Several papers,
discussed later, investigate the tradeoffs between these
the two approaches and middle-ground methods which
combine them.

Concurrent learning literature breaks down along dif-
ferent lines than team learning literature. Since each
agent is free to learn separately, heterogeneity versus ho-
mogeneity has been considered an emergent aspect rather
than a design decision in concurrent learning (for exam-
ple, Balch [10, 12] argues that the more local a reinforce-
ment signal, the more homogeneous the final team). Fur-
ther, relatively little concurrent learning work has been
done in the area of communication. Thus we have broken
the concurrent learning literature down into the following
three groups. First: papers which analyze thedynamics
of learning. The interest stems from the desire to better
understand the individual learning processes and their in-
fluences on one another. Second: papers dealing with the
impact oflocality of reinforcementon the learned behav-
iors. The locality of reinforcement, directly related to
the problem of credit assignment among agents, seems
to affect the heterogeneity of the learned behaviors and
their performance in different types of domains. Third:
papers which deal withmodeling other agentsin order to
improve the interaction with them.
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3.1 The Dynamics of Learning

Many studies in concurrent learning have investigated
the problem from a game-theoretic perspective, exam-
ining the game-theoretic dynamics of the learning algo-
rithms. A important concept for such investigations is
that of a Nash equilibrium, which is a joint strategy (one
strategy for each agent) such that no single agent has any
rational incentive (in terms of better payoff) to change
its strategy away from the equilibrium. Many of the in-
vestigations of learning algorithms are concerned with
proving that they converge to Nash equilibrium points.
However, especially in approaches specific to collabora-
tive multi-agent systems, an additional question regards
whether the agents actually found a globally-optimal col-
laboration, or only a suboptimal Nash equilibrium point.

Repeated games A repeated game consists of a se-
ries of interactions among two or more agents. After
each interaction, each agent may receive some reward
(or punishment). Reinforcements for interactions are in-
dependent of any previous interactions. When all agents
receive the same reinforcement each time (this may be
thought of as a “team reinforcement”), the domain is
called “fully cooperative”. Through repeated interac-
tions, each agent adjusts its strategy in order to maximize
its received reward. Claus and Boutilier [47] propose
two benchmark games (climbandpenalty) and show that
convergence to global optima is not always achieved in
these games even if agents use reinforcement learning
based on the joint-action information (rather than each
agent’s individual action). This result is disturbing, given
the fact that agents hadcomplete informationabout the
team and the environment, and provides a strong in-
centive for developing better multi-agent learning algo-
rithms with guarantees on convergence to optimal re-
sults. Boutilier [23], Chalkiadakis and Boutilier [46]
suggest a Bayesian learning method for approximating
the correct move each agent should make given a history
of past interactions with the other agents, even in cases
when the agent does not know the actions of the other
agents that led to its reward.

Lauer and Riedmiller [125] suggest updating an
agent’s policy (Q-values) by estimating the likely best
cooperation possible for the agent’s action, and prove
that this will converge to the optimum in determinis-
tic environments. Kapetanakis and Kudenko [120, 119]
point out possible flaws in Lauer’s approach when deal-
ing with stochastic domains, and present a modified ex-
ploration strategy that improves cooperation under these
new conditions. Panait et al. [166] point out that standard
coevolutionary approaches, when applied to the same
cooperative problem domains, are sometimes driven by
balanceconsiderations rather than performance. That is,

agents tend to co-adapt to one another (including very
poor collaborators) rather than trying to optimize their
performance when in ideal conditions. Similar to Lauer,
Panaitet al show that evaluating an agent in the context
with agents chosen as estimates of its best possible col-
laborators yields significantly improved results over the
standard coevolutionary methods.

Littman and Stone [130] propose an algorithm for
finding Nash equilibria points in two-player games. In
a first step of their method, a feasible and enforceable re-
ward combination for the two agents is identified. The
next step consists of the construction of strategies that
use punishments to avoid deviance from the specific re-
wards. The algorithm is polynomial in the number of
actions for the two agents, but it is not guaranteed to find
an optimal equilibrium. In the context of purely cooper-
ative repeated games, the stochastic sampling algorithm
proposed by Brafman and Tennenholtz [31] is the only
one to our knowledge with guaranteed convergence to
optimal Nash equilibria. The algorithm is polynomial in
the number of actions of the agents, but it assumesa pri-
ori coordination of the agents’ learning processes: the
agents agree to a joint exploration phase of some length,
then agree to a joint exploitation phase (agent settles on
the behavior that yielded maximum reward).

In [160], two agents with two actions each partici-
pate in a repeated game with two Nash-equilibria points.
However, each agent receives a different reinforcement
(it’s a non-symmetric game). In one of the Nash-
equilibrium points, one agent receives more reward that
the other agent, while in the other Nash-equilibrium
point the situation is reversed. Thus any one given co-
ordination strategy is unfair to one agent or to the other.
Nowe et al. propose a “homo-equalis” reinforcement ap-
proach, where communication is used to alternate be-
tween the two unfair optimal points in order to fairly
share the rewards received by the two agents.

Stochastic games Stochastic games are an extension
of repeated games where at any point in time the game
is in somestate. The game transitions to a new state
based on a stochastic function of the old state and the
interactions among the agents in the old state. Rein-
forcements are based both on the interactions of the
agents and the current state value. With a single state, a
stochastic game reduces to a repeated game; with a single
agent, a stochastic game reduces to a Markov decision
process. Boutilier [24] describesmulti-agent Markov
decision processes(a particular subclass of stochastic
games where all agents receive identical reinforcements)
and suggests using decompositions via imposed conven-
tions to simplify the coordination of individual learn-
ing processes. Bowling and Veloso [27] examine a
number of game theory and reinforcement learning ap-
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proaches to stochastic games, and describe the differ-
ences in assumptions they make. Hu and Wellman [103]
(revised and extended by Bowling [25]) introduce a rein-
forcement learning algorithm for solving general-sum11

stochastic games. Their learning algorithm assumes
that the other agents are also learning using Q-learning;
therefore, the agents do not learn just a single table of
Q-values, but rather one such table for each agent. This
extra information is used later to approximate the actions
of the other agents. Nagayuki et al. [157] present an alter-
native approach where agents approximate the policies,
rather than the tables of Q-values, of the other agents.
Suematsu and Hayashi [227] point out that the algorithm
of Hu and Wellman does not adapt to the other agent’s
policy, but only tries to converge to Nash equilibria. In
the case when the other agent has a fixed policy, reach-
ing a Nash equilibrium may be impossible. They then
introduce the EXORL algorithm which learns optimal
response policies12 to both adaptive and fixed policies
of the other agent. To our knowledge, Wang and Sand-
holm [241] present the only algorithm (Optimal Adaptive
Learning) guaranteed to converge to optimal Nash equi-
libria in stochastic games. Their algorithm createsvir-
tual gamesfor each state in order to eliminate all strict
suboptimal Nash equilibria.

Bowling and Veloso [29] describe two desirable prop-
erties for learning agents, namely rationality (the agent
should converge optimally when the other agents have
converged to stationary strategies) and convergence (un-
der specified conditions, all agents should converge to
stationary strategies). They then present a learning al-
gorithm that exhibits these two properties. Bowling and
Veloso [28] investigate the existence of equilibria points
for agents with limitations which may prevent them from
reaching optimality. Bowling and Veloso [30] introduce
the WoLF algorithm (Win or Learn Fast), which varies
the learning rate from small/cautious values when win-
ning to large/aggressive values when losing to the other
agents.

Peshkin et al. [173] investigate a distributed reinforce-
ment learning approach to partially observable stochas-
tic games with identical reinforcement to each agent, and
show that their algorithm converges to local optima. Ad-
ditionally, they show that there are local optima that are
not necessarily Nash equilibria.

Other Analysis Coevolution may be cast into an evo-
lutionary game theoretic framework. Wiegand has an-
alyzed the conditions under which coevolutionary sys-
tems gravitate towards Nash optima rather than provid-

11i.e., non-constant-sum: the reinforcements do not have to sum to
the same constant value each time.

12At a Nash equilibrium point, all agents play optimal responses to
the other agents’ policies.

ing globally optimal solutions for the team as a whole;
and approaches to assessing the external performance of
the learners despite their sensitivity to the other agents
involved [256, 258, 259, 260, 257]. Bull [38, 39] ex-
amines different learning parameters in coevolutionary
algorithms. In [79, 182], a coevolutionary algorithm is
augmented with a “hall of fame” repository consisting of
theN best teams discovered so far. Individuals are eval-
uated by pairing them up with teammates chosen from
this hall of fame; this approach outperforms ordinary co-
operative coevolution methods.

Zhao and Schmidhuber [272], Schmidhuber [198],
Schmidhuber and Zhao [199] examine the rates of re-
wards received for a given policy. If new policies yield
lower reward rates over time, they are discarded and the
learning algorithm proceeds with earlier-attempted poli-
cies. They call this the “success-story algorithm”.

Last, Vidal and Durfee [238, 239] describe a frame-
work to model and predict the behavior of multi-agent
systems with learning agents. The system uses parame-
ters such as rate of behavior change, learning and reten-
tion rates, and the influence agents have on one another,
and then it charts the error in the agents’ decision func-
tion. The authors show good predictions when analyzing
learning algorithms introduced by other researchers.

Competition Though this survey focuses on coopera-
tive multi-agent learning, we would be remiss if we failed
to note some significant work on the game-theoretic dy-
namics ofcompetitivemulti-agent learning that may shed
light on cooperative issues. Much of this work has been
done in the realm of competitive coevolution (whereN
learners (subpopulations) compete, or where a single
learner (population) competes against itself).

The goal of competitive coevolution is to establish an
“arms race” among the agents that is beneficial to all of
them. But unforeseen circumstances may prevent this
from happening. One such problem arises from the sub-
jective nature (i.e., in the context of other agents) of qual-
ity assessment; even if a given agent improves in some
absolute sense, its performance metric relative to other
agents may not increase, or may evendecrease, depend-
ing on the gains made by its competitors. Many learning
methods are highly sensitive to this performance metric,
and so it can affect not only our external perception of
agent improvement, but in fact the actual final result of
the learning process. In competitive coevolution, this is-
sue is known as theRed-Queen effect[48, 242, 71]. The
name makes reference to Lewis Carroll’s story “Through
the Looking Glass”, where the Red Queen is running in
a moving landscape, and so appears not to be moving at
all.

Another problem,loss of gradient, occurs when one
learner comes to dominate the other learners in the sys-
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tem. In this situation, no learners receive sufficient feed-
back to improve — no matter what the dominant learner
does, it always wins, and no matter what the subjugated
learners do, they always lose [242, 176]. Last, compe-
tition can result incyclic behaviors, where agents cir-
cle about one another due to non-transitive relationships
between agent interactions. For example, in the rock-
scissors-paper game, Agent A picks Rock and Agent B
picks Paper. Agent A then adapts to Scissors, causing
Agent B to adapt to Rock. Then Agent A adapts to
Paper, Agent B adapts to Scissors, and Agent A adapts
again to Rock. If a multi-agent environment is fraught
with such non-transitive cycles, competing agents may
be caught in them, rather than building the desired arms
race [242, 71, 48, 191]

3.2 Credit Assignment and the Locality of
Reinforcement

One facet of the credit assignment problem is the de-
gree to which reinforcement should be local to individ-
ual agents. Consider a gold-mining problem, where re-
inforcement is given to agents based on how much gold
they extract. If an agent was rewarded only for his own
gold extraction, agents would revert to greedy behaviors,
having no incentive to inform other agents of rich loads
that the whole team could work on. On the other hand, if
all agents were rewarded equally for any gold extracted,
“lazy” agents would have no incentive to mine gold at all
— they would be rewarded regardless.

The “laziness” effect generally means that local rein-
forcement methods tend to result in faster learning rates
[10, 12]. But Balch shows that whether local or global
reinforcement mechanisms lead to better performance
tends to be problem-domain dependent. Balch [10, 12]
compares the use of global (Rglobal) and local (Rlocal)
reinforcement policies in foraging and simulated soccer
tasks;Rglobal depends on the team performance, while
Rlocal depends only on whether the agent scored a goal
or not. The results suggest that local reinforcements lead
to better performance in a foraging task [12], but better
results are obtained when using global reinforcements in
a simulated soccer domain [10]: teams of agents trained
using Rglobal outscore a control team by an average of
6 goals to 4 a fixed control team, while teams of agents
trained withRlocal lose by an average of 4 points to 6.

The previous two papers also suggest that the local-
ity of reinforcement affects the heteorgeneity (diversity)
of the learned behaviors. In both the foraging and simu-
lated soccer domains, using local reinforcements results
in homogeneous behaviors, while global reinforcements
lead to heterogeneous teams. This and other work sug-
gests that the degree of locality for the reinforcement
should depend on other characteristics such as domain

difficulty or number of skills required to solve the task
[183, 11, 22, 180].

Wolpert and Tumer [263], Tumer et al. [235] propose
a new method for assigning utility to individual agents
in such a way that agents learning to maximize individ-
ual reward also have a strong interest in maximizing the
global team reward. The new utility function is termed
theWonderful Life Utility(WLU) and approximates the
utility of an agent by the inverse of the utility of the en-
tire set of agents when the specific agent is not present.
There results show that local rewards lead to worse per-
formance than even selecting random strategies in some
domains. This is explained by the agents’ competition
for immediate local rewards. Additionally, increasing
the number of agents also increases their competition
for immediate rewards, resulting in very poor scalabil-
ity. Global rewards lead to slightly better performance
than local rewards do, but WLU is better still, and also
scales well with large numbers of agents. The authors
also show that local rewards may lead to convergence to
Nash equilibria that do not coincide with globally opti-
mal team performance; instead, WLU will usually pro-
duce Nash equilibria that coincide with optimal team be-
havior.

Mataric [138] argues that agents’ separate learning
processes can be improved by combining individual lo-
cal reinforcement information (based on some measure
of progress towards one’s own goals) with other types
of social reinforcement. One such type of information
is obtained by observing other agents and imitating their
behaviors; this may improve the overall team behavior
by reproducing rare behaviors. This leads to anobser-
vational reinforcementwhich agents receive whenever
repeating other agents’ behaviors.Vicarious reinforce-
ment, a third component of the individual agent rein-
forcement, consists of small agent reinforcements based
on those received by other agents; its purpose is to spread
individual reinforcement to other agents and to balance
local and global reinforcement information. Mataric
shows that a weighted combination of these three com-
ponents gives better results in a foraging application.

Tangamchit et al. [232] suggest that discounting re-
wards (considering immediate rewards to be more im-
portant than future ones) leads to robots learning greedy
actions designed for immediate reinforcement, hamper-
ing better collaborations. They compare local and global
reinforcements in combination with average (Monte-
Carlo) or discounted (Q-Learning) reinforcement in a
foraging domain. The results show that average rein-
forcement combined with global reinforcement leads to
much better results than discounting.
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3.3 Teammate Modeling

A final area of research is teammate modelling: learning
about other agents in the environment so as to make good
guesses of their expected behavior, and to act accord-
ingly. As other agents are likely modelingyou, modeling
themin turn brings up the spectre of infinite recursion:
“Agent A is doing X because it thinks that agent B thinks
that agent A thinks that agent B thinks that ...” This must
be rationally sorted out in finite time. Vidal and Durfee
[237] categorize agents based on the complexity they as-
sume for their teammates. A 0-level agent believes that
none of its teammates is performing any learning activ-
ity and it does not consider their changing behaviors as
“adaptive” in its model. A 1-level agent models its team-
mates as 0-level agents. In general, an N-level agent
models its teammates as (N-1)-level agents.

Mundhe and Sen [155] present an initial investiga-
tion on the use of 0-level, 1-level and 2-level model-
ing agents. The authors report a very good performance
for the 0-level learners, suggesting that for some do-
mains teammate modeling may not be necessary. Sim-
ilar results showing good coordination without modeling
other agents are reported in [210, 209], where a couple
of robots successfully learn to cooperatively push a box
without either even being aware of the other’s presence.
Mukherjee and Sen [152], Banerjee et al. [13] present
experiments in which 1-level agents model each others’
action probability distribution; this produces a form of
mutual trust.

When dealing with larger numbers of teammates, a
simpler modeling approach is to presume that the entire
team consists of agents identical to the modeling agent.
Haynes and Sen [93, 91], Haynes et al. [89] use this ap-
proach complemented with a case-based learning mech-
anism for dealing with exceptions from this assumed be-
havior.

Hu and Wellman [102], Wellman and Hu [251] sug-
gest that, when learning models of other agents in a
multi-agent learning scenario, the resulting behaviors are
highly sensitive to the agents’ initial beliefs,. Depending
on these initial beliefs, the final performance may be bet-
ter or evenworse than whenno teammate modeling is
performed — agent modeling may prevent agents from
converging to optimal behaviors. A similar conclusion is
reported by Hu and Wellman [104]: the authors suggest
the best policy for creating learning agents is tominimize
the assumptions about the other agents’ policies.

Suryadi and Gmytrasiewicz [228] present an agent
modeling approach usinginfluence diagrams(similar to
belief networks). The approach consists of learning the
beliefs, capabilities and preferences of the teammates in
order to improve cooperation. As the correct model can-
not usually be computed, the system stores a set of such

models together with their probability of being correct.
Then the set of models is adjusted according to observa-
tions about the behaviors of the other agents.

One aspect of modeling is attempting to discover if
the other agents in the environment are cooperating with
you, competing with you, or in some other relationship
with you. Sekaran and Sen [203], Sen and Sekaran
[207] investigate the application of reciprocity concepts
to multi-agent domains where not enough information on
the intentions of other agents is knowna priori. They
apply a stochastic decision-making algorithm that en-
courages reciprocity among agents while avoiding be-
ing taken advantage of by unfriendly agents. The au-
thors show that the agents that prefer not to cooperate
end up with worse performance. Nowak and Sigmund
[159] mention two types of reciprocity: direct (agent A
helps another agent B and expects B to help him back
sometime in the future) and indirect (an agent helps an-
other in return for future help from other agents). Such
reciprocity improves an agent’s “reputation”. They ar-
gue that a necessary condition for cooperation is that
the “degree of acquaintanceship” (the probability that an
agent knows another agent’s reputation) should exceed
the ratio of cost of altruist help relative to the benefit
to the recipient. Similar analysis can be done without
the need to model the reputationper se: Ito [112] pit-
ted game-players against others in the population, where
each game player had access to a history of his oppo-
nent’s previous actions against other players.

We conclude this section with work in agent modeling
under communication. Ohko et al. [161] use a commu-
nication protocol for agents to subcontract subtasks to
other agents. In their approach, each agent tries to de-
compose tasks into simpler subtasks and broadcasts an-
nouncements about the subtasks to all other agents in or-
der to find “contractors” who can solve them more easily.
Ohko et al. investigate the use of case-based reasoning
to reduce the communication effort for task announce-
ments by enabling agents to acquire and refine knowl-
edge about other agents’ task solving abilities. With the
embedded learning algorithm, communication is reduced
from broadcasting to everyone to communicating exact
messages to only those agents that have high probabil-
ities to win the bids for the tasks. A related approach
is presented in [37, 36]: here, Bayesian learning is used
to incrementally update models of other agents to reduce
communication load by anticipating their future actions
based on their previous ones.
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4 Learning and Problem Decompo-
sition

The state space of a large, joint multi-agent task can be
overwhelming. An obvious way to tackle this is to use
domain knowledge to simplify the state space, often by
providing a smaller set of more “powerful” actions cus-
tomized for the problem domain. For example, Mataric
[143, 140] applies Q learning to select from hand-coded
reactive behaviors such asavoid, head-home, searchor
dispersefor robot foraging tasks.

An alternative, which we discuss through the remain-
der of this section, is to reduce complexity by heuristi-
cally decomposing the problem, and hence thelearned
behavior, into separate, simpler subtasks for the agents
to learn. Humans are not perfect, and our application of
domain-specific knowledge to perform such a heuristic
decomposition could inadvertantly bias the learning pro-
cedure so as to remove the optimal areas of the solution
space. However, for large and complex problems, the
savings in computational complexity is often worth it.

Squads One approach to decomposition is to group
agents into squads, with each squad following the same
behavior, rather than all the agents learning separate be-
haviors.13 Each squad may be endowed with a different
set of abilities to encourage the development of separate
behaviors believed necessary to solve the joint task. For
example, a team of eleven soccer-playing robots might
be grouped into squads of forwards, midfielders, attack-
ers, and a goalie [133, 134]. The number of such squads
can also be learned, giving the team some freedom in
problem decomposition [87, 22].

Layered Learning In layered learning, each individ-
ual behavior is decomposed into a hierarchy of sub-
behaviors, each sub-behavior using the ones beneath it.
Some of the behaviors may be hardcoded, while others
are modified by learning processes. This method was
proposed by Stone [223, 222] and successfully applied to
robotic soccer. Further applications of the technique are
reported by Gustafson [85], Gustafson and Hsu [86], Hsu
and Gustafson [101]: the authors present an applica-
tion of genetic programming to the Keep-Away Soccer
domain, where three learned offensive players face off
against a single hard-coded defender who can move at
twice their speed. The genotype of an individual en-
codes a single homogeneous behavior that is applied to
each offensive agent in the environment. Gustafson and

13Indeed one might argue that a homogeneous multi-agent behavior
approach is the extreme end of the squad method: by grouping all the
agents into a single “squad”, the experimenter is essentially heuristi-
cally betting that agents need only learn a single unified behavior to
solve the problem.

Hsu compare a layered learning approach to traditional
genetic programming techniques in learning this behav-
ior. The authors teach the offensive team the behaviors
for several basic subtasks, then teach it to solve a more
complex joint behavior which relies on them.

Hierarchical Learning Makar et al. [137] suggest a
different approach to simplifying the inter-agent coordi-
nation task. Each agent learns three interrelatedskills:
solving subtasks, ordering subtasks, and coordinating
with other agents. This hierarchical approach allows
agents to only coordinate based on information at higher
levels in the hierarchy: for example, instead of learning
what an agent should do for each combination of elemen-
tary actions the other teammates can perform, the agents
decide their strategies in the context of being aware of the
current higher-level subtasks of their teammates. This
implies that agents do not need to know details about
what other agents are currently doing, but only abstract
information about the subtasks they are trying to solve.
This approach dramatically reduces the communication
requirements and eases learning.

Behavior Decomposition Zhang and Cho [271] sug-
gest that the learning task may be simplified by decom-
posing the desired behavior into simpler components that
can be evaluated and learned separately; they term this
approachfitness switching. The algorithm assumes a ho-
mogeneous team of agents; the behavior of each agent
is separated into several simpler sub-behaviors. The per-
formance of a team is assessed based on a combination
(sum in their suggested algorithm) of performances to ac-
complishing the simpler sub-behaviors. The results sug-
gest that fitness switching is a better alternative to simple
genetic programming in domains where the task can be
decomposed. Behaviors may also be decomposed ver-
tically (into ordered sequences of sub-behaviors rather
than sets of them). To this end, Balch [12] uses a
shaped reinforcement reward function (Rshaped) (earlier
suggested by Mataric [139]) which depends on the num-
ber of partial steps fulfilled for accomplishing the task.
Balch shows that usingRshaped leads to similar results
to using a local reinforcement functionRlocal, but in
a significantly shorter time. The results are similar to
those of best hand-coded solutions, and also better than
those obtained when using a global reinforcement func-
tion Rglobal.

Team Behavior Decomposition Guestrin et al. [84]
note that in many domains the actions of some agents
may be independent. Taking advantage of this, they sug-
gest partially decomposing the joint Q-values of agents
based on acoordination graphthat heuristically spells
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out which agents must interact in order to solve the
problem. This partial decomposition permits a heuristic
middle-ground between learning a full joint utility table
and learning separate independent tables. The authors
propose a series of coordinated reinforcement algorithms
by which agents coordinate both their action selection
and policy updates.

5 Learning and Communication

For some problems communication is a necessity; for
others, communication may nonetheless increase agent
performance. We definecommunicationvery broadly:
altering the state of the environment such that other
agents can perceive the modification and decode infor-
mation from it. Among other reasons, agents communi-
cate in order to coordinate more effectively, to distribute
more accurate models of the environment, and to learn
subtask solutions from one another.

But are communicating agents reallymulti-agent?
Stone and Veloso [225] argue that unrestricted commu-
nication reduces a multi-agent system to something iso-
morphic to a single-agent system. They do this by not-
ing that without any restriction, the agents can send com-
plete external state information to a “central agent”, and
to execute its commands in lock-step, in essence acting
as effectors for the central agent. A central agent is not
even necessary: as long as agents can receive all the in-
formation they need to known about the current states
of all the other agents, they can make independent deci-
sions knowing exactly what the other agents will do, in
essence enabling a “central controller” on-board each in-
dividual agent, picking the proper sub-action for the full
joint action. Thus we feel that a true multi-agent problem
necessitates restrictions on communication. At any rate,
while full, unrestricted communication can orthogonal-
ize the learning problem into a basic single-agent prob-
lem, such an approach requires very fast communication
of large amounts of information. Real-time applications
instead place considerable restrictions on communica-
tion, in terms of both bandwidth and speed.

Explicit communication can also significantly increase
the learning method’s search space, both by increasing
the size of the external state available to the agent (it
now knows state information communicated from other
agents), and by increasing the agent’s available choices
(perhaps by adding a “communicate to agenti” action).
As noted in [66], this increase in search space can ham-
per learning an optimal behavior by more than commu-
nication itself may help. Thus even when communica-
tion is required for optimal performance, for many ap-
plications the learning method must disregard commu-
nication, or hard-code it, in order to simplify the learn-

ing process. For example, when learning in a predator-
prey pursuit domain, Luke and Spector [135] assume that
predators can sense each other’s position no matter what
distance separates them, and Berenji and Vengerov [20]
use a blackboard communication scheme to allow agents
to know of other agents’ locations.

5.1 Direct Communication

Many agent communication methods employ, or assume,
an external communication method by which agents may
share information with one another. The method may be
constrained in terms of bandwidth, locality, agent class,
etc. Examples of direct communication include shared
blackboards, signaling, and message-passing. The lit-
erature has examined both hard-coded communication
methods and learned communication methods, and their
effects on cooperative learning overall.

Tan [231] suggests that cooperating learners can use
communication in a variety of ways in order to improve
team performance. For example, agents can inform oth-
ers of their current state by sharing immediate sensor in-
formation. Another approach is for agents to share in-
formation about past experiences in the form of episodes
(sequences of〈state,action, reward〉 previously encoun-
tered by the agent) that others may not have experienced
yet. Yet another alternative is for agents to share knowl-
edge related to their current policies (for example, in
the form of 〈state,action,utility〉 for cooperating rein-
forcement learning agents). Tan suggests that cooper-
ating agents that share information about current sensor
readings, past experiences, and current learned policies,
significantly outperform independent learning agents. Of
course, this increased performance is obtained at the ex-
pense of increased communication usage necessary for
the exchange of information.

Some research, particularly in reinforcement learning,
has simply presumed that the agents have access to a
joint utility table or to a joint policy table to which each
may contribute in turn, even though the agents are sepa-
rate learners. For example, Berenji and Vengerov [19]
investigate a cooperative learning setting where multi-
ple agents employ communication to use and update the
same policy. Berenji and Vengerov suggest that the si-
multaneous update of a central policy reduces early ten-
dencies for convergence to suboptimal behaviors. We ar-
gue that this is an implicit hard-coded communication
procedure: the learners are teaching each other learned
information.

Much of the remaining research provides the agents
with a communication channel but does not hard-code
its purpose. In a simple situation, agents’ vocabulary
may consist of a single signal detectable by other agents
[240]. In other work (for example [269]) mobile robots
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in a cooperative movement task are endowed with a fixed
but undefined communication vocabulary. The robots
learn to associate meanings with words in various tri-
als. When circumstances change, the robots learn to
adjust their communication language as appropriate. A
similar approach is reported in [116], where a genetic
algorithm is used for language learning in a predator-
prey domain. The authors use a blackboard commu-
nication scheme and show that increasing the language
size improves performance. Additionally, they show that
evolved communicating predators perform better than all
previous reported results and present a rule for deter-
mining a pessimistic estimate on the minimum language
size that should be used for multi-agent problems. Steels
[216] reports the emergence of a spontaneous coherent
lexicon that may adapt to cope with new meanings dur-
ing the lifetime of the agents. Steels and Kaplan [221]
continue this investigation to show that agents are able
to create general words through collective agreement
on their meanings and coverage. Similar approaches
to evolving communication languages are presented in
[215, 217, 218, 195, 57, 219, 220, 42].

Many such methods provide an incentive to the agents
to communicate (perhaps by sharing the resulting re-
ward). However, Ackley and Littman [1] show that re-
ward incentives are not necessary for the agents to com-
municate: instead, agents learn to communicate even
when the agents receive no benefit from this action.

Many agent communication methods employ, or as-
sume, an external communication method by which
agents may share information with one another. The
method may be constrained in terms of bandwidth, lo-
cality, agent class, etc. Examples of direct communica-
tion include shared blackboards, signaling, and message-
passing. The literature has examined both hard-coded
communication methods and learned communication
methods, and their effects on cooperative learning over-
all.

5.2 Indirect Communication

We define indirect communication methods as those
which involve theimplicit transfer of information from
agent to agent through modification of the world envi-
ronment. Examples of indirect communication include:
leaving footsteps in snow, leaving a trail of bread crumbs
in order to find one’s way back home, and providing hints
through the placement of objects in the environment (per-
haps including the agent’s body itself).

Much of the indirect communication literature has
drawn inspiration from social insects’ use of pheromones
to mark trails or to recruit other agents for tasks [100].
Pheromones are chemical compounds whose presence
and concentration can be sensed by fellow insects [21],

and like many other media for indirect communication,
pheromones can last a long time in the environment,
though they may diffuse or evaporate. In some sense,
pheromone deposits may be viewed as a large blackboard
or state-utility table shared by all the agents; but they are
different in that pheromones can only be detected locally.

Several pheromone-based learning algorithms have
been proposed for foraging problem domains. A series of
reinforcement learning algorithms have adopted a fixed
pheromone laying procedure, and use current pheromone
amounts as additional sensor information while explor-
ing the space or while updating the state-action utility
estimates [126, 149, 151, 148, 150]. Evolutionary com-
putation techniques have also been applied to learn ex-
ploration/exploitation strategies using pheromones de-
posited by hardcoded mechanisms. For example, Sauter
et al. [197, 196] show how EC can be used to tune an
agent policy in an application involving multiple digital
pheromones. A similar idea applied to network routing
is presented in [255].

Another research direction is concerned with study-
ing whether agents can learn not only to use pheromone
information but to deposit the pheromones in a rational
manner. This question was first examined in AntFarm,
a system that combines communication via pheromones
and evolutionary computation [50, 49]. AntFarm ants
use a single pheromone to mark trails toward food
sources, but use a compass to point themselves along the
shortest path back to the nest. Panait and Luke [164]
present a related algorithm that exhibits good perfor-
mance at various foraging tasks in the presence of ob-
stacles. This algorithm uses multiple pheromones, and
in doing so it eliminates the explicit requirement for ants
to precisely know the direction towards the nest from any
point. Rather, ants use pheromone information to guide
themselves to the food source and back to the nest. The
authors note a hill-climbing effect that leads to straight
(and locally optimal) paths. In an extension of their
work, Panait and Luke [165] successfully apply evolu-
tionary computation to learn a pheromone-based forag-
ing task. The authors show that a colony of agents can
learn to both deposit pheromones and to use that infor-
mation in successful foraging behaviors. A comparison
of the results shows that behaviors learned for more com-
plex domains exhibit good performance in simpler prob-
lems as well.

Werger and Mataric [253] present another approach to
indirect communication among agents: using the agents’
body positions themselves to convey meaning. The au-
thors present a foraging application where a number of
robots need to collect items and deposit them at a pre-
specified location. The robots use their bodies to mark
the path for other robots to follow. In some sense, the
robots’ bodies are acting essentially as a pheromone trail

15



for the other robots.
Quinn [184] argues that this is a form of communica-

tion by citing Wilson’s statement that communication “is
neither the signal by itself, nor the response, [but] instead
the relationship between the two” [262]. This definition
suggests that a shared dedicated channel is not necessary
for communication. Quinn [184] investigates the evolu-
tion of strategies in a two-agent collaborative-movement
domain and reports that robots were able to coordinate
by communicating their adopted roles of leader or fol-
lower via sequences of moves. For example, after initial
phases of alignment, the robots use rotation and oscilla-
tory back-and-forth movements to decide who leads the
way and who follows. Quinn terms this “communicative
behavior”.

6 Two Challenges: Scalability and
Adaptive Dynamics

Multi-agent learning is a new field and as such its open
research issues are still very much in flux. However
we believe that two specific areas have proven them-
selves important challenges to overcome in order to make
multi-agent learning more broadly successful as a tech-
nique. Both of these challenges arise from themulti in
multi-agent learning, and may eventually require new
learning methods special to multiple agents, as opposed
to the more conventional single-agent learning methods
(case-based learning, reinforcement learning, traditional
evolutionary computation) now common in the field.

6.1 Scalability

Scalability is a problem for many learning techniques,
but especially so in multi-agent learning. The dimen-
sionality of the search space grows rapidly with the com-
plexity of possible agent behaviors, the number of agents
involved, and the size of the network of interactions be-
tween them. This search space grows so rapidly that it
seems clear that onecannotlearn the entire joint behav-
ior of a large, heterogeneous, strongly intercommunicat-
ing multi-agent system. Effective learning in an area this
complex requires some degree of sacrifice: either by iso-
lating the learned behaviors among individual agents, by
reducing the heterogeneity of the agents, or by reducing
the complexity of the agent’s capabilities. Techniques
such as learning hybrid teams, or partially restricting
the locality of reinforcement, provide promising solu-
tions in this direction, but it is not well understood under
which constraints and for which problem domains these
restricted methods will work best.

6.2 Adaptive Dynamics

Multi-agent systems are typically dynamic environ-
ments, with multiple learning agents vying for resources
and tasks. This dynamicism presents a unique chal-
lenge not normally found in single-agent learning: as the
agents learn, their adaptation to one another changes the
world scenario. How do agents learn in an environment
where the goalposts are constantly and adaptively being
moved? This dynamicism also presents the interesting
problem of quality assessment. In a decentralized do-
main, such quality assessment is relative to or in the con-
text of other agents in the environment. Thus in many
cases there isno absolute quality measurethat can be
assigned to an agent.

Co-adapting multi-agent systems may be thought of in
game-theoretic terms, suggesting a convergence to sta-
ble equillibria; as opposed to actual optima. Researchers
have argued that an important part of cooperative multi-
agent learning is figuring out how to adjust the learning
methods or the problem domain such that the agents are
likely to converge to desired Nash equilibria, especially
ones which are near-optimal [241, 31, 260]. For exam-
ple, cooperative coevolution has revealed that the multi-
agent learning process is sometimes guided by “balance”
considerations, rather than performance improvements.
The adaptation of single-agent learning algorithms to the
multi-agent domain neglects an important fact: how well
an individual performs in atypical team is not well-
related to the individual’s performance in agood team,
much less an optimal one. Panait et al. [166] show that
when an agent is evaluated in the context of its ideal col-
laborators, the dynamics of a coevolutionary appracoh
reduce to a simple evolutionary algorithm for learning
multi-agent teams. That is, the closer one can get to as-
sessing individuals with their optimal collaborators, the
more likely one is to optimizing the system in an evolu-
tionary computation sense.

7 Problem Domains and Applica-
tions

Despite the relative young age of the field, the multi-
agent systems area contains a very large number of prob-
lem domains. The list in this survey is far from com-
plete, but it contains many of the common problems. The
problem domains are divided in three classes: embodied
agents, game-theoretic environments, and applications to
real-world problems.
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7.1 Embodied Agents

The cost of robots has decreased significantly, making
it feasible to purchase and use several (tens, hundreds,
or even thousands of) robots for a variety of tasks. This
drop in cost has spurred research in multi-agent cooper-
ative robotics. Additionally, computer hardware is cheap
enough that what cannot be performed with real robots
can now be done in simulation; though the robotics com-
munity still strongly encourages validation of results on
real robots.

Predator-Prey Pursuit This is one of the most com-
mon environments in multi-agent learning research, and
it is easy to implement. Pursuit games consist of a num-
ber of agents (predators) cooperatively chasing a prey.
Individual predator agents are usually not faster than the
prey, and often agents can sense the prey only if it is
close by. Therefore, the agents need to actively cooper-
ate in order to successfully capture the prey. The earliest
work using this domain is [18], but many there are many
variations of the problem [63].

Foraging The domain consists of a large map with
agents (robots) and items to forage (pucks or cans). The
task is to carry the items to specially designated ar-
eas. Variations may include multiple item locations, item
types, and drop location. The efficiency of an approach
may be defined by how quickly it completes the forag-
ing task [142, 54], or by the number of items collected
in a fixed amount of time. Ostergaard et al. [162] pro-
vide an extended survey of previous work in this do-
main. A variation of the problem allows agents to com-
municate by depositing pheromones in the environment
to mark trails connecting rich pick-up and drop-off areas
[21, 164, 165]. In a related problem domain,clustering,
the agents have no pre-specified drop locations; rather,
they only need to pile all the items together [17], or sort
them by class into separate piles [62].

Box Pushing This domain involves a two-dimensional
bounded area containing obstacles and a number of
boxes. Agents in this environment need to arrange
the boxes to specified final positions by pushing them.
Sometimes a robot is capable of pushing one box by itself
(see for example the single-agent experiments reported in
[136, 35]). A more complicated version requires two or
more agents to cooperate in order to move a single box
in simulation [271], or on real robots [141, 140]. Buf-
fet et al. [34], Dutech et al. [69] present reinforcement
learning approaches for a similar problem domain where
agents receive rewards only when they merge together
pucks of different colors.

Soccer The game of soccer, both in simulation and
with real robots, is one of the most widely used domains
for research in multi-agent systems [123]. The domain
consists of a soccer field with two goals, a ball, and two
teams with a number of agents (from 5 to 11, depending
on the sizes of the robots and of the field). The perfor-
mance of a team is usually assessed based on the dif-
ference in number of goals scored. Other performance
metrics have included length of time in control of the
ball, successful interceptions, and average location of the
ball. Successful applications of learning techniques to
this domain are reported in [134, 222, 11, 225, 189]. The
strong interest in this domain has led to several annual
“world cup” robot soccer championships. The most well-
known such competition, RoboCup, has different leagues
divided by continent and by type of robot or simulation
environment. RoboCup’s goal is “by the year 2050, de-
velop a team of fully autonomous humanoid robots that
can win against the human world soccer champion team”
(seewww.robocup.org).

Keep-Away Soccer Gustafson and Hsu [86] use a sim-
pler version of theSoccerdomain which contains only
one offensive and three defensive players and a ball. The
defensive player is twice as fast than the offensive ones,
and the ball, when passed, can move at twice the speed
of the defensive player. The objective is to keep the ball
away from the defensive player by moving and passing;
there is a penalty each time the defensive player is within
one grid unit away from the ball. A similar domain is
presented in [224].

Cooperative Navigation The task, as described in
[11], is to have a team of agents move across a field in
minimal time without colliding with obstacles or other
robots. Each agent selects from a number of predefined
behaviors, and the performance is assessed based on the
maximum time necessary for the agents to accomplish
the task. The questions investigated by Balch include
benefits from formation participation and the impact of
diversity on performance. The Opera Problem, discussed
in [51], represents another challenge problem in coop-
erative navigation: a large number of agents located in
a bounded space need to coordinate in order to quickly
leave it through a small fixed exit area. An initial homo-
geneous team learning approach to this problem is pre-
sented in [190].

Cooperative Target Observation Introduced in [167],
this domain involves a two dimensional bounded area in
which a number of robots have to keep several moving
targets under observation. Performance is based on the
total number of targets within the “observable” distance
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to any team-member robot during the time period. Parker
investigates an initial approach to learning behaviors for
this domain and reports improvements over naive, ran-
dom approaches, but also notes the superiority of the
hand generated solutions. Additional research investiga-
tions using this domain include [70, 168, 170]. A related
problem domain is described in [268, 16, 15]: a team of
agents needs to perform a surveillance task in a region
of space. The agents coordinate to avoid collisions, and
their reward is further increased when discovering and
observing areas of high interest. Because of constraints
placed on flying unmanned vehicles, the agents need to
maintain a minimal speed that would keep them in the
air.

Herding Schultz et al. [201] introduce a new domain
where a robot must herd another robot into a designated
area. The second robot (the sheep) will avoid obstacles
and the “shepherd” robot, but otherwise may either move
randomly or try to avoid the herding area. The shepherd
moves close to the sheep robot to encourage the sheep
to move in the desired direction. Potter et al. [180] try a
multi-shepherd version of the domain, where many faster
and “stubborn” sheep require coordination from the sev-
eral herding agents. Additionally, predators may exist
in the environment and try to kill the sheep while avoid-
ing the shepherds, thus complicating the shepherds’ task.
Another application of learning techniques to a herding
domain is presented in [254].

7.2 Game-Theoretic Environments

As discussed in Section 6.2, many multi-agent systems
may be cast in game-theoretic terms; essentially as strat-
egy games consisting of matrices of payoffs for each
agent based on their joint actions. In addition to game-
theoretic analysis of multi-agent systems, some common
problem domains are also taken from game theory.

Iterated Prisoners’ Dilemma In the classic Prisoner’s
Dilemma domain, two prisoners are questioned about the
crime they jointly committed. Each has the opportunity
to either cooperate with the other (not say anything) or to
defect (squeal on him) without knowing about the other
agent’s action. The reward or punishment for coopera-
tion or defection is described numerically, with higher
numbers being better. If both cooperate, they each re-
ceive a reward of 3. If one defects and the other co-
operates, the defector receives a reward of 5, while the
cooperator receives 0. If both defect, they each receive
a reward of 1. In the iterated version of the game, the
scenario repeats a number of times, enabling each agent
to learn from the other’s behavior and to adapt its ac-
tions appropriately. The Iterated Prisoner’s Dilemma is

considered acooperativegame because the better pairs
of agents tend to cooperate with one another [7, 8]. A
three-person coordination game inspired by the Iterated
Prisoner’s Dilemma is presented in [2].

Coordination Games Various repeated games de-
scribed in terms of joint reward matrices have been previ-
ously introduced in the literature to highlight specific is-
sues associated with multi-agent learning. For example,
Claus and Boutilier [47] introduce two simple 3x3 matrix
games: a coordination game with two optima and high
penalties for miscoordination; and a second game with
two Nash-equilibrium points, one of them corresponding
to a suboptimal collaboration. These games are later used
in [125, 120, 166] to investigate multi-agent reinforce-
ment learning and evolutionary computation approaches.

Social Dilemmas These problems concern the indi-
vidual decisions of several agents, all of which receive
a joint reward [75]. TheTragedy of the Commons,
Braess ParadoxandSanta Fe Barare examples of social
dilemma games. In the Tragedy of the Commons, a num-
ber of agents share a resource of limited capacity. When
the joint usage of the resource exceeds the capacity, the
service deteriorates, and so do the rewards received by
the agents. In the Braess Paradox problem, agents share
two resources. The dilemma arises when agents must de-
cide to start accessing the less utilized of resources: if all
agents decide to do so, it will become overwhelmed and
rewards will drop. Further details on these two problems,
accompanied by a coevolutionary approach to learning
solutions to them, can be found in [156]. In the Santa Fe
Bar problem, a large number of agents individually must
decide whether to go to a bar in Santa Fe. If too many or
too few agents opt to go, their satisfaction is lower than
when a reasonable number of them decide to go [6, 265].

7.3 Real-World Applications

This section describes a set of problems drawn from real-
world domains previously used in MAS investigations.
Many of the described problem domains are logistics,
planning, and constraint-satisfaction problems requiring
real-time, distributed decision making. Because the ap-
plications are often very complex and highly distributed,
learning techniques have rarely been applied to them, and
so they are presented here primarily as example chal-
lenge problems for multi-agent learning.

Distributed Vehicle Monitoring The task in this do-
main is to maximize the throughput of cars through a
grid of intersections. Each intersection is equipped with
a traffic light controlled by an agent. The agents need to
coordinate to deal with fluctuations in traffic [128].
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Air Traffic Control For security purposes, the
airspace is divided into three-dimensional regions used
by air traffic controllers to guide the airplanes to their
final destination. Each such region has an upper bound
(called thesector capacity) on the number of airplanes
it can hold at any time. The task is to guide the planes
from sector to sector along minimal length routes, while
ensuring that constraints are met; the solution needs to
be fast to handle real-time data. A multi-agent approach
for this domain is reported in [214].

Network Management and Routing This domain
consists of a large, distributed network. Agents are de-
ployed to distributively and cooperatively control and
manage the network, handle failures, and balance its load
[243]. Littman and Boyan [129], Subramanian et al.
[226], Wolpert et al. [264] introduce various learning ap-
proaches to network routing.

Electricity Distribution Management Here the prob-
lem is to maintain an optimal power grid configuration
that keeps all customers supplied and minimizes losses;
while at the same time dealing with possible damage to
the network, variable demand from customers, scheduled
maintenance operations, and equipment failures and up-
grades [236]. Schneider et al. [200] present a reinforce-
ment learning approach to managing a power grid.

Distributed Medical Care This domain applies AI to
assist clinical staff in making diagnoses, decide on ther-
apy and tests, determine prescriptions, and perform other
health care tasks [105]. The problem is particularly
suited for multi-agent systems because of the decentral-
ization of data and resources, high costs for obtaining
comprehensive information, and stochasticity and dy-
namicity of data.

Factory Production Sequencing This classic plan-
ning and scheduling problem involves managing the pro-
cess of producing complex items through a series of
steps, where there are different constraints and costs as-
sociated with each step. The task consists of building
a plan (aproduction sequence) that specifies the order
of operations for different items such that the produc-
tion costs are minimized while satisfying customer or-
ders [266]. Brauer and Weiß [32] present a learning ap-
proach for such a domain.

Hierarchical Multi-Agent Systems Problems Some
multi-agent domains are of particular interest because of
the different levels at which problems can be formulated.
For example, in the “Transportation” problem, several
trucking companies transport goods between locations.

Depending on problem formulation, agents may repre-
sent whole companies, sets of trucks from the same or
from different companies, or even individual trucks. The
task is to complete requests from customers under spe-
cific constraints (maximum time required to finish the
job, minimal cost of delivery, etc.). A multi-agent ap-
proach to this domain is reported in [72]. The “Loading
Dock” is a similar problem, where several forklifts load
and unload trucks according to task requirements; either
individual forklifts or groups of forklifts may be modeled
as an agent [154]. A related “Factory Floor” problem is
investigated in [172], where products are manufactured
from raw material by several machines under time and
cost minimization constraints, and agents can represent
individual machines or groups of machines.

Models of Social Interaction Many natural and social
systems have very large numbers of interacting agents.
Accordingly, such interactions need also be present in
simulations of these natural phenomena. Examples of
work in this area include hard-coded and learned col-
lective behaviors such as flocking [188, 186, 212, 213],
learning of dispersion and aggregation [270], learning
social behaviors in virtual worlds [80, 81], and the mod-
eling of the formation of early countries [45].

Other multi-agent systems domains investigated in-
clude particle accelerator control [115], intelligent docu-
ment retrieval [153], spacecraft control [202], and con-
current engineering [53]. Further applications of Dis-
tributed AI in industry are reported in [171].

8 Resources

Machine learning in multi-agent systems has seen a large
increase in the number of research papers published in
the last few years. General material on the topic can be
found in [245, 111, 250, 204, 246, 107, 247, 206, 248].
Other surveys of existing work in multi-agent learn-
ing and related domains include [61, 68, 33, 67, 244,
171, 43, 205, 132, 249, 60, 127, 225, 169]. There
are also several PhD theses investigating different as-
pects of the multi-agent learning field: [76, 142, 64, 52,
177, 44, 82, 158, 11, 223, 26, 257] Good pointers for
news, conferences and journals, courses, people, com-
panies, and laboratories may be found on the web sites
http://www.multiagent.com and http://agents.umbc.edu.

9 Conclusions

Cooperative multi-agent learning is a relatively new area,
fraught with complex and rich dynamics and with scal-
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ability problems, but which also holds the promise of
widespread applicability. This paper surveyed the multi-
agent learning area, presenting a novel categorization of
previous work, accompanied by discussions on key as-
pects of interest. We argued that learning in multi-agent
systems can be done at a “team” level, where a single
learner improves the behavior of the entire team, and
at a “teammate” level, where individual agents conduct
their own learning processes. The existence of, or lack
of, multiple learners is of enough impact on the method
that the team learning and concurrent learning literature
break down along rather different lines.

We chose to divide the team learning literature into
approaches to learn behaviors for homogeneous, hetero-
geneous, and hybrid homogeneous/heterogeneous teams.
We then surveyed concurrent learning, dividing the liter-
ature into papers investigating the optimality of various
learning approaches, the impact of locality of reinforce-
ment information, cooperation or competition among
agents, and modeling other agents in the domain. Later
sections dealt with the issues of problem decomposition
and communication. We then finished with some chal-
lenge issues, problem domains, and resources for the
multi-agent learning community.
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