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Abstract

The localization capability of a mobile robot is central to
basic navigation and map building tasks. We describe a
probabilistic environment model which facilitates global
localization scheme by means of location recognition.
In the exploration stage the environment is partitioned
into a class of locations, each characterized by a set
of scale-invariant keypoints. The descriptors associated
with these keypoints can be robustly matched despite
changes in contrast, scale and viewpoint. We demon-
strate the efficacy of these features for location recogni-
tion, where given a new view the most likely location
from which this view came is determined. The misclas-
sifications due to dynamic changes in the environment
or inherent appearance ambiguities are overcome by ex-
ploiting neighborhood relationships captured by a Hid-
den Markov Model. We report the recognition perfor-
mance of this approach on an indoor environment con-
sisting of eighteen locations and discuss the suitability
of this approach for a more general class of recognition
problems. Once the most likely location has been de-
termined we show how to compute the relative pose be-
tween the representative view and the current view.

1 Introduction and Related Work

The two main instances of mobile robot localization
problem are the continuous pose maintenance problem
and the global localization also known as ’robot kid-
napping’ problem. While the successful solution to the
localization problem requires addressing both, here we
concentrate only on the global localization aspect. The
problem of vision-based global localization shares many
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aspects of object recognition and hence is amenable to
use of similar methodologies. While several instances of
vision-based localization have been successfully solved
in smaller scale environments [1, 2, 3, 4], the applicabil-
ity of these methods to large dynamically changing en-
vironment poses additional challenges and calls for al-
ternative models. The methods for localization vary in
the choice of features and the environment model. The
two main components of the environment model are the
descriptors chosen to represent an image and the repre-
sentation of changes in image appearance as a function
of viewpoint. Similarly as in the case of object recogni-
tion, both global and local image descriptors have been
considered. The class of global image descriptors con-
sider the entire image as a point in the high-dimensional
space and model the changes in appearance as a func-
tion of viewpoint using subspace methods [5]. Given the
subspace representation the pose of the camera was typ-
ically obtained by spline interpolation method, exploit-
ing the continuity of the mapping between the object
appearance and continuously changing viewpoint. Ro-
bust versions of these methods have been applied in the
robot localization using omnidirectional cameras [1]. Al-
ternative global representations proposed in the past in-
clude responses to banks of filters [6], multi-dimensional
histograms [7, 8] or orientation histograms [9]. These
types of global image descriptors integrated the spatial
image information and enabled classification of views
into coarser classes (e.g. corridors, open areas), yielding
only qualitative localization. In the case of local meth-
ods, the image is represented in terms of localized image
regions, which can be reliably detected. The represen-
tatives of local image descriptors include affine or rota-
tionally invariant features [10, 11] or local Fourier trans-
forms of salient image regions [12]. Due to the locality of
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these image features, the recognition is naturally prone to
large amounts of clutter and occlusions. The sparser set
of descriptors were in case of both global and local meth-
ods, typically obtained by principal component analysis
or various clustering techniques.

Our approach is motivated by the recent advances in
object recognition using local scale invariant features
proposed by [10] and adopts the strategy for localiza-
tion by means of location recognition. The image se-
quence acquired by a robot during the exploration is first
partitioned to individual locations. The locations corre-
spond to the regions of the space across which the fea-
tures can be matched successfully. Each location is rep-
resented by a set of model views and their associated
scale-invariant features. In the first localization stage,
the current view is classified as belonging to one of the
locations using standard voting approach. In the sec-
ond stage we exploit the knowledge about neighborhood
relationships between individual locations captured by
Hidden Markov Model (HMM) and demonstrate an im-
provement in the overall recognition rate. The main con-
tribution of the presented work is the instantiation of the
Hidden Markov Model in the context of this problem and
demonstration of an improvement in the overall recogni-
tion rate. This step is essential particularly in the case of
large scale environments which often contain uninforma-
tive regions, violating the continuity the of the mapping
between the environment appearance and camera pose.
In such case imposing a discrete structure on the space
of continuous observations enables us to overcome these
difficulties while maintaining a high recognition rate.

2 Scale-Invariant Features

The use of local features and their associated de-
scriptors in the context of object recognition has been
demonstrated successfully by several researchers in the
past [13, 14, 15]. In this paper we examine the effective-
ness of scale-invariant (SIFT) features proposed by D.
Lowe [10]. The SIFT features correspond to highly dis-
tinguishable image locations which can be detected ef-
ficiently and have been shown to be stable across wide
variations of viewpoint and scale. Such image loca-
tions are detected by searching for peaks in the image
D(x, y, σ) which is obtained by taking a difference of
two neighboring images in the scale space

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y)
= L(x, y, kσ)− L(x, y, σ). (1)

The image scale spaceL(x, y, σ) is first build by con-
volving the image with Gaussian kernel with varying
σ, such that at particularσ, L(x, y, σ) = G(x, y, σ) ∗
I(x, y). Candidate feature locations are obtained by

Figure 1: The circle center represents the keypoint’s lo-
cation and the radius the keypoint’s scale.

searching for local maxima and minima ofD(x, y, σ).
In the second stage the detected peaks with low contrast
or poor localization are discarded. More detailed discus-
sion about enforcing the separation between the features,
sampling of the scale space and improvement in feature
localization can be found in [10, 16]. Once the loca-
tion and scale have been assigned to candidate keypoints,
the dominant orientation is computed by determining the
peaks in the orientation histogram of its local neighbor-
hood weighted by the gradient magnitude. The keypoint
descriptor is then formed by computing local orientation
histograms (with 8 bin resolution) for each element of a
4 × 4 grid overlayed over16 × 16 neighborhood of the
point. This yields 128 dimensional feature vector which
is normalized to unit length in order to reduce the sen-
sitivity to image contrast and brightness changes in the
matching stage. Figure 1 shows the keypoints found in
the example images in our environment. In the reported
experiments the number of features detected in an im-
age of size480 × 640 varies between 10 to 1000. In
many instances this relatively low number of keypoints,
is due to the fact that in indoors environments many im-
ages have small number of textured regions. Note that
the detected SIFT features correspond to distinguishable
image regions and include both point features as well as
regions along line segments.

3 Environment Model

The environment model, which we will use to test our
localization method is obtained in the exploration stage.
Given a temporally sub-sampled sequence acquired dur-
ing the exploration (images were taken approximately
every 2-3 meters), the sequence is partitioned into 18 dif-
ferent locations. The exploration route can be seen in
Figure 2. Different locations in our model correspond to
hallways, sections of corridors and meeting rooms ap-
proached at different headings. In the current experi-
ment, the environment is mostly comprised of network
of rectangular corridors and hallways which are typically
traversed with four possible headings (N, S, W, E). The
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Figure 2: The map on the fourth floor of our building.
The arrows correspond to the heading of the robot and
the labels represent individual locations.

Figure 3: The number of keypoints matched between
consecutive views for the sequence comprised of 18 loca-
tions (snapshot was taken every 2-3 meters) captured by
a digital camera (left); the number of keypoints matched
between the first andi-th view for a video sequence com-
prised of 3 locations (right).

deviations from these headings can be handled as long
as there is a sufficient overlap between the model views
acquired during the exploration and current views. In
case the current view cannot be matched successfully,
a new location is added to the model. The number of
views per location vary between 8 to 20 depending on
the appearance variation within the location. The transi-
tions between the locations occur either at places where
navigation decisions have to be made or when the ap-
pearance of the location changes suddenly. The tran-
sitions between individual locations are determined de-
pending on the number of features which can be suc-
cessfully matched between the successive frames. These
are depicted in Figure 3 for a sequence captured by a
still digital camera along the path which visited all eigh-
teen locations (some of them twice) and for a video sub-
sequence along a path which visited three locations. The
transitions between individual locations are marked by
the peaks in the graph, corresponding to new locations.
In order to obtain a more compact representation of each
location a number of representative views is chosen per
location, each characterized by a set of SIFT features.
The sparsity of the model is directly related to the capa-
bility of matching SIFT features in the presence of larger
variations in scale. The number of representative views
varied between one to four per location and was obtained

by regular sampling of the views belonging to individual
locations. Examples of representative views associated
with individual locations are depicted in Figure??.

4 Location recognition

The environment model obtained in the previous section
consists of a database of model views1. The i-th lo-
cation in the model, withi = 1, . . . N is represented
by n views Ii

1, . . . , I
i
n with n ∈ {1, 2, 3, 4} and each

view is represented by a set of SIFT features{Sk(Ii
j)},

wherek is the number of features. In the initial stage
we tested the location recognition by using a simple vot-
ing scheme. Given a new query imageQ and its as-
sociated keypoints{Sl(Q)} a set of corresponding key-
points betweenQ and each model viewIi

j , {C(Q, Ii
j)},

is first computed. The correspondence is determined by
matching each keypoint in{Sl(Q)} against the database
of {Sk(Ii

j)} keypoints and choosing the nearest neighbor
based on the Euclidean distance between two descriptors.
We only consider point matches with high discrimination
capability, whose nearest neighbor is at least 0.6 times
closer then the second nearest neighbor. More detailed
justification behind the choice of this threshold can be
found in [10]. In the subsequent voting scheme we deter-
mine the location whose keypoints were most frequently
classified as nearest neighbors. The location where the
query imageQ came from is then determined based on
the number of successfully matched points among all
model views

C(i) = max
j

|{C(Q, Ii
j)}| and [l, num] = max

i
C(i)

wherel is the index of location with maximum number
num of matched keypoints. Table 1 shows the location
recognition results as a function of number of represen-
tative views per location on the training sequence of 250
views and two test sequences of 134 and 130 images

1It is our intention to attain a representation of location in terms
of views (as opposed to some abstract features) in order to facilitate
relative positioning tasks in the later metric localization stage.
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(# of views) #1 (250) #2 (134) #3 (130)
one 84% 46% 44%
two 97.6% 68% 66%
four 100% 82% 83%

Table 1: Recognition performance for one training and
two test sequences in terms of % of correctly classified
views as a function of number of representative views.

L4 train L4 test

L6 train L6 test

Figure 4: Changes in the appearance of locationL4 and
L6 between the training and testing. In the left image
pair the bookshelve was replaced by a table and couch
and in the right pair recycling bins were removed.

each. All three sequences were sparse with images taken
2-3 meters apart. The two test sequences were taken at
different days and times of day, exhibiting larger devi-
ations from the path traversed during the training. De-
spite a large number of representative views per location
relatively poor performance on the second and third test
sequence was due to several changes in the environment
between the training and testing stage. In 5 out of 18
locations several objects were moved or misplaced. Ex-
amples of dynamic changes can be seen in Figure 4.
The poorer performance due to dynamic changes is not
surprising, since the most discriminative SIFT features
often belong to objects some of which are not inherent to
particular locations. In the next section we describe how
to resolve these issues by modelling the neighborhood
relationships between individual locations.

5 Modelling spatial relationships
between locations

We propose to resolve these difficulties by incorporat-
ing additional knowledge about neighborhood relation-
ships between individual locations. The rationale behind

this choice is that despite the presence of ambiguities
in recognition of individual views the temporal context
should be instrumental in resolving them. The use of
temporal context is motivated by the work of [17] which
addresses the place recognition problem in the context of
wearable computing application. The temporal context
is determined by spatial relationships between individual
locations and is modelled by a Hidden Markov Model
(HMM). In this model the states correspond to individ-
ual locations and the transition function determines the
probability of transition from one state to another. Since
the locations cannot be observed directly each location is
characterized by The most likely location is at each in-
stance of time obtained by maximizing the conditional
probabilityP (Lt = li|o1:t) of being at timet and loca-
tion li given the available observations up to timet. The
location likelihood can be estimated recursively using the
following formula

P (Lt = li|o1...t) ∝ p(ot|Lt = li)P (Lt = li|o1:t−1)
(2)

wherep(ot|Lt = li) is the observation likelihood, char-
acterizing how likely is the observationot at time t to
come from locationli. The choice of observation like-
lihood depends on the available observations and the
matching criterion. When local descriptors are used as
observations, several such choices have been proposed in
the context of probabilistic approaches to object recogni-
tion [18, 19]. The proposed likelihood functions prop-
erly accounted for the density and spatial arrangements
of features and improved overall recognition rate. In
the context of global image descriptors the locations
were modelled in terms of Gaussian mixtures proposed
in [17]. Since the location recognition problem is notably
simpler then the object recognition problem due to occlu-
sions and clutter not being some prominent, we used a
simpler form of the likelihood function. The conditional
probabilityp(ot|Lt = li) that a query imageQt at time
t characterized by an observationot = {Sl(Qt)} came
from certain location, is directly related to the cardinality
of the correspondence setC(i), normalized by the total
number of matched points across all locations

p(ot|Lt = li) =
C(i)∑
j C(j)

.

In order to explicitly incorporate the location neighbor-
hood relationships, the second term of equation (2) can
be further decomposed

P (Lt = li|o1:t−1) =
N∑
j

A(i, j)P (Lt−1 = lj |o1:t−1)

(3)
whereN is the total number of locations andA(i, j) =
P (Lt = li|Lt = lj) is the probability of two locations
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Seq. 2 with and without HMM

Seq. 3 with and without HMM

Figure 5: Classification results with for Sequence 2 and
Sequence 3 with and without considering the spatial re-
lationships. The black circles correspond to the labels of
most likely locations.

being adjacent. In the presence of a transition between
two locations the corresponding entry ofA was assigned
a unit value and in the final stage all the rows of the ma-
trix were normalized. The results of location recognition
employing this model are in Figure 5. The recognition
rate for Sequence 2 was96.3% and for Sequence 3 it
was95.4%. The location label assigned to each image is
the one with the highest probability. While in both cases
some images were misclassified the overall recognition
rates are an improvement compared to the rates reported
in Table 1. Despite the classification errors in Sequence
2, the order of visited locations was correctly determined.
For Sequence 3, where we exhibited some intentional de-
viations between the path taken during training and test-
ing, the classification of location 14 was incorrect. The
effect of HMM model can be examined by making all
the probabilities in the transition matrixA uniform es-
sentially neglecting the knowledge of location neighbor-
hood relationships. The assigned location labels for this
case are in the right column of Figure 5, with noticeably
degraded recognition performance.

6 Pose Estimation

Once the most likely location and best matched view has
been found we can compute the relative displacement be-
tween the current view and model view. Prior to compu-
tation of the displacement the matches are refined in or-
der to establish exact correspondences between matched

Figure 6: Correspondences between the two views and
associated scale ratios of corresponding points. Note that
the scale ratios of correspondences2, 3 and7 are notice-
ably above median value indicating inconsistent match.

keypoints. In the first stage we use the ratio of intrin-
sic scale between two corresponding keypoints to reject
the mismatches. The ratios between all matches is com-
puted and those matches who’s ratio is above threshold
related to the median ratio of all matches are discarded
first. This enables us to discard matches due to some
repetitive structures in the environment. See Figure 6
for example. From Table 6 we can see the scale ratio

index scale1 scale2 scale ratio
1 4.0700 9.8300 0.4140
2 2.4100 3.2500 0.7415
3 1.7800 2.8500 0.6246
4 1.2300 3.2400 0.3796
5 1.2300 2.7300 0.4505
6 1.1400 2.5100 0.4542
7 1.0500 1.0000 1.0500
8 1.2600 2.4600 0.5122

Table 2: Scales of individual keypoints in two views and
scale ratios of corresponding matches.

(scale1/scale2) values for matches 2,3 and 7 are notice-
ably larger than median scale ratio. Additional match
outliers are rejected in the process of robust computation
of the relative displacement between the current (query)
image and the representative view.

The current view and the matched model view are re-
lated by a rigid body displacementg = (R, T ) repre-
sented by a rotationR ∈ SO(3) and translationT =
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[tx, ty, tz]T ∈ R3. Provided that the camera is calibrated,
g can be estimated from the epipolar geometry between
the two views. This recovery problem can be further sim-
plified taking into account the fact that the motion of the
robot is restricted to a plane. Here we outline an algo-
rithm for this special case and demonstrate how to re-
cover the displacement in case of unknown focal length.
The case of general motion and unknown focal length
was studied by [20] and the solution for the case of pla-
nar motion case has been proposed by [21] in the context
of uncalibrated stereo. Here we demonstrate a slightly
different, more concise solution to the problem. Con-
sider the perspective camera projection model, where 3D
coordinates of pointX = [X, Y, Z]T are related to their
image projectionsx = [x, y, 1]T by an unknown scale
λ; λx = X. In case the camera is calibrated the two
views of the scene are related byλ2x2 = Rλ1x1 + T ,
where(R, T ) ∈ SE(3) is a rigid body transformation
andλ1 andλ2 are the unknown depths with respect to
individual camera frames. After elimination of the un-
known scales from the above equation, the relationship
between the two views is captured by so-called epipolar
constraint

xT
2 T̂Rx1 = xT

2 Ex1 = 0, (4)

whereE = T̂R is the essential matrix2 In case of planar
motion, assuming translation inx− z plane and rotation
aroundy−axis by an angleθ, the essential matrix has the
following sparse form

E =

 0 −tz 0
tzcθ + t1sθ 0 tzsθ − t1cθ

0 tx 0

 (5)

wheresθ(cθ) denotesin θ(cos θ) respectively. Given at
least four point correspondences, the elements of the es-
sential matrix[e1, e2, e3, e4]T can be obtained as a least
squares solution of a system of homogeneous equations
of the form (4). Once the essential matrixE has been
recovered, the four different solutions forθ and T =
±[tx, 0, tz] can be obtained (using basic trigonometry)
directly from the parametrization of the essential matrix
(5). The physically correct solution is then obtained us-
ing the positive depth constraint. In the case of unknown
focal length the two views are related by so called funda-
mental matrixF

x̃T
2 F x̃1 = 0 with x = K−1x̃. (6)

The fundamental matrixF is in this special planar, par-
tially calibrated case related to the essential matrixE as
follows

F = K−T EK−1 with K =

 f 0 0
0 f 0
0 0 1

 (7)

2T̂ denotes a3 × 3 skew symmetric matrix associated with vector
T .

Location 1 Location 2

Location 1

Location 2

Figure 7: Relative positioning experiments with respect
to the representative views. Bottom: Query views along
the path between the first view and the representative
view for two different locations. Top: Recovered mo-
tions for two locations.

wheref is the unknown focal length. The remaining in-
trinsic parameters are assumed to be known. In the planar
motion case the matrixF = [0, f1, 0; f2, 0, f3; 0, f4, 0]
can be recovered from the homogeneous constraints of
the form (6) given a minimum of four matched points.
Given the planar motion case the focal length can be
computed directly from the entries of the fundamental
matrix as

f =

√
f2
1 − f2

3

f2
2 − f2

4

. (8)

For more details of the derivation see [22]. Oncef is
computed, the relative displacement between the views
can be obtained by the method outlined for the calibrated
case. Additional care has to be taken in assuring that the
detected matches do not come from a degenerate config-
uration. We have used RANSAC algorithm for the robust
estimation of the pose between two views, with slightly
modified sampling strategy. Figure 7 shows two exam-
ples of relative positioning with respect to two different
representative views. The focal length estimates obtained
for these examples aref = 624.33 andf = 545.30. The
relative camera pose for individual views is represented
in the figure by a coordinate frame.
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7 Conclusions and Future Works

We have demonstrated the suitability and the discrimi-
nation capability of the scale-invariant SIFT features in
the context of location recognition and global localiza-
tion task. Although the matching and location recogni-
tion methods can be accomplished using an efficient and
simple voting scheme, the recognition rate is affected by
dynamic changes in the environment and inherent am-
biguities in the appearance of individual locations. We
have shown that these difficulties can be partially re-
solved by exploiting the neighborhood relationships be-
tween the locations captured by Hidden Markov Models.

Since the notion of location is not defined precisely
and is merely inferred in the learning stage the presented
method enables only qualitative global localization in
terms of individual locations. Following the global lo-
calization we compute the relative pose of the robot with
respect to the closest reference view [23] found in the
matching stage. This enables us to achieve metric local-
ization with respect to the reference view, which can be
followed by relative positioning tasks. More extensive
experiments as well as integration with the exploration
and navigation strategies on-board of mobile robot plat-
form are currently underway.
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9 Appendix

9.1 Environment Model Acquisition

The following appendix describes the process of acqui-
sition of the model in the exploration stage. While
at the moment the exploration stage and naviga-
tion/localization stage are separate we are in the process
of integrating the two so as to enable the simultaneous
map building and localization. Given the sequence taken
in the exploration stage we start initially with an empty
model and add new locations, while matching the new lo-
cations to the existing locations in the database. In case
new location is encountered the representative views of
the location and their associated SIFT features are added
to the model. The transition matrix is updated accord-
ingly. Tables??, 4 and 5 show the result of the model
construction stage. From Table 4, we can see that frames
1 to 10 belong to locationL1, frames 123-165 also be-
long to locationL1, etc. The representative views of the
individual locations are in Table 5. In the transition ma-
trix table,A[i][j] = 1 represents the existence of a tran-
sition from locationLi to locationLj .



1 1 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 1 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 1


Table 3: Transition Matrix.

begin frame # end frame # location label
1 10 L1

11 23 L2

24 35 L3

36 50 L4

51 91 L5

92 101 L6

102 111 L7

112 122 L8

123 165 L1

166 174 L9

175 188 L10

189 200 L11

201 226 L5

227 239 L12

240 249 L13

250 258 L14

259 290 L1

Table 4: Exploration Route.
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