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Abstract

In this report we study the problem of building recogni-
tion. Given a database of building images, we are inter-
ested in classifying a novel view of a building by finding
the closest match from the database. We examine the
efficacy of local scale-invariant features and their asso-
ciated descriptors as representations of building appear-
ance and use a simple voting scheme in the recognition
phase.

1 Introduction

Object recognition has been an active research area in
computer vision for a long time. Various approaches
have been proposed to recognize a variety of dissim-
ilar objects coming from different classes. Buildings
have several characteristics which make the recognition
more challenging. They are highly structured, with par-
allelism and orthogonality being the prevailing relation-
ships between lines. They typically have repeating struc-
tures, such as windows, pillars (see Figure 1). In im-
ages of buildings occlusions happen frequently, due to
trees around them or self-occlusions due to the change
of viewpoint. We consider scenarios where the dominant
structure in the image is due to buildings. This differs
from related work on detecting and recognizing build-
ings in aerial images.

In this report we are interested in investigating the ef-
ficacy of local image descriptors as building representa-
tions, their detection repeatability as a function of view-
point as well as discrimination capabilities. Given a
database of building images and a query image with a
novel view of a building, we want to find the closest

∗This work is supported by NSF IIS-0118732

Figure 1: Some examples with repeating structures
within each image.

match from the database.

2 Related work

The majority of approaches for dealing with classes of
objects which share common visual attributes such as
cars, faces or buildings focused mostly on the prob-
lem of detection and class classfication. In [18] authors
worked on locating buildings in a given image or classi-
fying images as building/no building images in the con-
text of CBIR application [7]. More challenging problem
of detection of man-made structures in cluttered scenes
has been addressed in [5], where the authors modelled
the image spatial dependencies using Markov Random
Fields.

The crucial part of a object recognition system is ob-
ject representation. Currently existing approaches can be
broadly divided into two categories: appearance based
and geometric techniques. Geometric techniques model
objects using geometric information such as shape [21],
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[2], [3], or coordinates of points [20]. Rather weak dis-
crimination capabilities of purely geometric methods as
well as difficulties of employing these techniques in the
presence of clutter make them mostly applicable in sce-
narios where detailed geometric models of objects (such
as provided by CAD models) are available.

Appearance based techniques represent objects by
their appearance, and can be further divided into global
or local appearance based methods. Principal Compo-
nent Analysis (PCA) [19], [12] has been traditionally
used in a glabal setting. The disadvantage of the stan-
dard PCA techniques is that they can’t tolerate occlu-
sions and clutter. In [6] authors propose to handle oc-
clusion problems of PCA by considering only subset of
image windows. Local appearance based methods rep-
resent objects by a set of local image descriptors [16]
associated with feature points. In [13] authors introduce
”eigen-windows” which are also based on eigen-space
analysis.

Recently several feature detectors and their associ-
ated local descriptors have been proposed in the liter-
ature. Mikolajczyk and Schmid [11] present an affine
invariant interest points detector. They initialize inter-
est points based on a multi-scale Harris corner detec-
tor, and iteratively modify the position, scale and shape
of those points. They use normalized Gaussian deriva-
tives as local descriptor, and get point to point correspon-
dences based on Mahalanobis distance between two de-
scriptors. Rothganger [14] extends their work to multi-
view case, by exploting multiview geometric constraints
between sets of matched interest points. Spin image is
used to represent the normalized image patch and nor-
malized cross-correlation of the descriptors is used for
matching. Lowe [10] introduced so-called SIFT features
by selecting stable features in the scale space. We de-
scribe SIFT features in greater detail in the next section.
Nelson and Selinger [17] employ a hierarchy of percep-
tual grouping process. Their basic primitives are keyed
context patches, which are square image region extracted
by taking prominent contour fragments, the orientation
and size of the regions are normalized by the contour.

To the best of our knowledge, the only work related to
building recognition is by Bohm and Haala [4]. They use
overall shape of the building to recognize buildings. The
requirement is much more than image, including CAD
model, GPS receiver and compass.

Approach In this report we evaluate the performance
of building recognition using the scale invariant features
introduced in [10]. The set of local descriptors for each
reference image represent model for each building. In
the recognition stage, each descriptor of a query image
is matched against the database of models. The number
of matches between the pair of query and model images

Figure 2: Examples of SIFT features. The size of the
circle is proportional to scale of the feature.

is then used determine the best match in the database. In
the following sections we briefly describe the process of
selecting the SIFT features, the distance metric used to
compare the descriptors and the final recognition stage.
The experiment has been carried out on the database of
36 buildings.

3 Building representation

The buildings are represented by a set of scale invariant
SIFT features and their associated descriptors. The SIFT
features correspond to highly distinguishable image lo-
cations which can be detected efficiently and have been
shown to be stable across wide variations of viewpoint
and scale. Such image locations are detected by search-
ing for peaks in the imageD(x, y, σ) which is obtained
by taking a difference of two neighboring images in the
scale space:

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y)
= L(x, y, kσ)− L(x, y, σ). (1)

The image scale spaceL(x, y, σ) is first build by con-
volving the image with Gaussian kernel with varying
σ, such that at particularσ, L(x, y, σ) = G(x, y, σ) ∗
I(x, y). This difference operation approximates the
convolution of an image with Laplacian of Gaussian
D(x, y, σ) ≈ σ2∇2G∗I(x, y), with additional scale nor-
malization [8]. Candidate feature locations are obtained
by searching for local maxima and minima ofD(x, y, σ).
In the second stage the detected peaks with low contrast
or poor localization are discarded. The location of key-
points can be further refined by fitting a 3D quadratic
function to local point neighborhood to get sub-pixel ac-
curacy in [9, 1].

3.1 Keypoint descriptor

Orientation of keypoint is determined by peaks in local
orientation histogram, which is formed around a circular
window of the keypoint. The window size is 3 times that
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of the scale of the keypoint. By assigning a dominant
orientation to each keypoint, the keypoint descriptor is
represented relative to this orientation in order to achieve
the invariance to image rotation.

After assigning scale and orientation to each keypoint,
a descriptor is created characterizing a local image area
around each keypoint: First, the gradient magnitude and
orientation are computed at each pixel. The local neigh-
borhood of each keypoint is then represented by 16 local
orientation histograms, each belonging to one of the4×4
sub-windows of the local keypoint neighborhood with 8
orientation bins in each. This forms a 128 (16 × 8) el-
ement feature vector for each keypoint. The boundary
effects between histograms are alleviated by distribut-
ing gradient value of each pixel to adjacent histogram
bins via linear interpolation. Although the descriptor is
not fully affine invariant, it has been shown to be robust
across a substantial range of affine distortions [10]. Ex-
amples of buildings and their associated scale invariant
features are in Figure 2. Given a database of reference
views of buildings each is characterized by a set of key-
points and their corresponding descriptors. The descrip-
tors are then normalized in order to tolerate moderate
changes in image contrast. The normalized descriptors
are saved in the model database.

3.2 Image Matching

Given a query image and model image, the matching
between the two is based on two criteria. As proposed
by Lowe, we first for each keypoint descriptord ∈ <n

find the two closest neighbors. As long as the ratio of
distances between the closest and second-closest key-
point descriptor is below certain threshold the match
has been successful. The lower the ratio, the better the
match. If the ratio is below some thresholdτr, the point
corresponding to the descriptor is labelled as matched.
In practice, we use the squared distance instead of Eu-
clidean distance so a point is labelled as matched when

d2(f ,m1st)
d2(f ,m2nd)

< τ2
r (2)

wheref is the descriptor to be matched andm1st and
m2nd ∈ <n are the closest and the second closest de-
scriptors from the model database. In our casen = 128.
In [9] Lowe suggests usingτr = 0.8. Generally, this
measure is effective because correct matches need to
have the closest neighbor significantly closer than the
closest incorrect match. In our case, it is not always
true, because there are many repeating patterns in build-
ings, such as corners of windows. Consequently it is very
likely that a keypoint has several close matches with the
distance ratio between the first and second neighbors be-
ing close to 1. In order to retain these matches we use

additional criterion related to the actual distance between
the descriptors. If the cosine of the angle between two
descriptors is above certain thresholdτc, we also label
them as matched. Given two descriptorsa and b their
cosine distance is defined as:

cos(a, b) =
aT b

‖a‖2‖b‖2 (3)

The cosine measure reflects the angle between two vec-
tors (descriptors). The square of Euclidean distance be-
tween two descriptors can be obtained directly from their
cosine value as:

d2(a, b) =
∑

i

a2
i +

∑

i

b2
i − 2

∑

i

aibi

= ‖a‖+ ‖b‖ − 2 cos(a, b) = 2(1− cos(a, b))

The using the second criterion we can retrieve larger
number of correct matches, which would otherwise be
rejected by the first criterion. Since we don’t want to
introduce many false matches the thresholdτc is rather
high.

3.3 Threshold selection

The choice of thresholds can significantly affect the
recognition rate. Ideally we would like to choose such
thresholds which would guarantee large number of cor-
rect classifications while keeping the number of false
positive matches low. The choice of suitable thresholds
is typically based in ROC (Receiver Operating Curve)
analysis. ROC curve capture the relationship between
the sensitivity (True Positive Rate) and thespecificity
(True Negative Rate). Its y-axis is the True Positive Rate
(TPR), and x-axis is False Positive Rate (FPR) which is
exactly 1-Specificity. The TPR are defined as follows:

TPR =
TP

P
=

TP

TP + FN
(4)

whereTP represents the number of true positives (in our
case the number of correct matches found given a thresh-
old), P represents the total number of positive (correct
matches), andFN represents the number of false neg-
atives (i.e. the number of correct matches that are not
found given a threshold). The FPR is defined as

FPR =
FP

N
=

FP

TN + FP
(5)

whereFP represents the number of false positives (in
our case, the number of incorrect matches found given
a threshold),N represents the total number of negatives
(incorrect matches), andTN represents the number of
true negatives (i.e. the number of incorrect matches that
are not found given a threshold).
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The values of the individual quantities are rather dif-
ficult to obtain in the context of our application. First,
numbersP andN are hard to determine. Given the fact
that number of keypoints in each image is around 800,
even for one image pair counting the number of correct
matches is nontrivial. The situation becomes worse be-
cause of the repeating structure which causes the key-
point to ”correctly” match to multiple positions. Further-
more in order to study how the thresholds affect the per-
formance, we need to identifyFP and TP for match
results returned by a range of thresholds. These in our
application can be determined only tediously by hand. In
order to determine the appropriate value of the thresholds
we approximate the ROC curve as follows. We randomly
choose one test image, and match it’s keypoints to all the
keypoints in the 36 models. For each model, a set of
matched keypoints is returned. All the matched pairs ex-
cept those from the correct model are false positives (FP).
For matched pairs from the correct model, we still need
identify the true positives (TP), because they can include
wrong matches. Once we know theFP andTP for the
chosen threshold, we need to obtainN andP . In fact
we are really interested in the ratio ofN andP . Once
their ratio is set, the shape of the ROC curve wouldn’t
change with regard to differentN andP . Let’s consider
P first, in order for the set of match pairs to include all
the true positive, the threshold should be minimal strict.
i.e. the similarity threshold should be 0, while the ratio
threshold should 1. Of course, false positives are also in-
cluded in the set, our observation shows that around 2/3
of matched pairs are true positives. Matched pairs pro-
duced from all the remaining 35 models are false posi-
tives. Let the number of keypoints in the test image be
Nq, theN ≈ (35 + 1/3)Nq andP ≈ 2/3Nq. The ra-
tio N/P is approximately 50. After all those parameters
are set, we can draw the ROC curve. Of course, one test
image is not enough to represent the variation of whole
dataset. In this experiment we use four test images to
study the behavior of the threshold, and use their average
to draw the approximate ROC curve. See Figure 3 and
4 for final result. The threshold we choose areτc = 0.97
andτr = 0.6.

3.4 Keypoint matching

Each keypoint is labeled as matched if either of the two
criterias is met, thus we get more correct matches. Figure
5 shows the benefit of combining the Lowe’s measure
and cosine measure.

Because of repeating patterns, each particular key-
point may not be matched to its exact position, as Fig-
ure 7 shows. For example a window corner may be
matched to a similar window corner with completely dif-
ferent location. The match is correct in the meaning of
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Figure 3: Approximate ROC curve forτc.
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Figure 4: Approximate ROC curve forτr.

local appearance matching, but the points are not in cor-
rect correspondence in the sense that they are not pro-
jections of same 3D point. Fortunately, this is not a big
problem for recognition purpose, because we only need
to know whether the point come from the building.

4 Building recognition

The building recognition is accomplished here by a sim-
ple voting scheme. Given a query image and sets of
matched keypoints pairs, with all existing models in the
database, the most likely model is the one with the largest
number of matches.

Although the geometric consistency between matched
keypoints can further improve the recognition result, the
complexity involved in achieving it hinders us from pur-
suing it. The robust technique like RANSAC is known
to handle50% outliers, in our case, there are often well
above50% outliers. Mismatches constitute part of out-
liers, furthermore, repeating patterns cause many locally
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Figure 5: (left) Match result using only Lowe’s crite-
ria (15 matches); (center) result using only cosine mea-
sure (9 matches); (right) result using both measure(22
matches).

correct yet globally mismatched keypoint. In the extreme
case, all the matched keypoints may belong to the later
category. Consequently, it’s hard to define geometric
consistence, yet recognition is still successful. The ex-
amples in Figure 7 show some extreme situations.

5 Experimental results

The image database used in the experiment consists of
36 buildings, with several images for each building. The
images are taken from different viewpoints and have dif-
ferent scales. We use one image as reference image and
two other images for testing. All of the buildings are
listed in Tables 6, 7 and 8.

In the experiment 53 out of 72 test images are correctly
recognized (listed as first candidate), the rest of them are
misclassified. But 10 out of them have correct answer
listed in top 5 list, so the results are still useful for further
processing. The detailed results are listed in Table 1 and
Table 2. For the test images which get completely wrong
results (the correct answers are not shown in the top 5
list), possible reasons are either too large out-of-plane
rotation (e.g. image 25) or scale change (e.g. image 14).
In addition, the lighting conditions maybe rather differ-
ent between reference and test images. We are currently
in the process of extending our database and carrying out
additional experiments. We plan to further investigate the
alternative choice of features, their descriptors as well as

Figure 6: Keypoints match results to incorrect models.

Figure 7: Repeating structures cause mismatches, al-
though in term of local appearance, they are correct.

means of modelling spatial relationships between the lo-
cal keypoints.

6 Conclusion and future work

In this report we have presented initial experiments in
building recognition using scale invariant features and
their associated descriptors. We examined two different
criteria for matching and demonstrated that their combi-
nation yields favorable results in the context of our do-
main. Currently we can only deal with single building
in the image and do not exploit spatial relationships be-
tween buildings. We are currently extending the database
of features and developing the additional stage which
would enable robustly estimate the pose of the camera
with respect to the building.
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First Second Third Fourth Fifth Correct?
1 1 29 5 26 11 1
2 2 9 29 1 5 1
3 3 29 1 23 11 1
4 4 5 8 2 29 1
5 5 7 6 12 24 1
6 6 5 11 29 1 1
7 7 2 8 5 28 1
8 8 29 28 17 24 1
9 5 9 29 2 28 0
10 10 29 9 4 5 1
11 11 5 1 29 4 1
12 5 12 28 6 9 0
13 13 9 4 29 5 1
14 14 1 29 2 9 1
15 15 5 8 28 2 1
16 16 5 29 9 2 1
17 17 15 5 29 11 1
18 18 5 11 6 28 1
19 19 5 1 3 23 1
20 20 5 8 11 1 1
21 21 7 2 29 6 1
22 22 5 28 2 29 1
23 23 29 2 5 6 1
24 29 28 24 5 2 0
25 2 5 29 7 1 0
26 29 26 28 5 11 0
27 27 5 2 29 23 1
28 28 29 5 1 9 1
29 29 2 1 4 5 1
30 30 5 8 14 20 1
31 31 11 1 5 4 1
32 5 20 26 32 1 0
33 34 1 26 35 28 0
34 34 26 35 11 1 1
35 35 34 26 17 29 1
36 36 35 34 29 5 1

Table 1: Recognition results with top 5 list for first test
image

First Second Third Fourth Fifth Correct?
1 1 29 2 5 20 1
2 2 29 5 4 13 1
3 3 29 2 11 34 1
4 4 5 26 28 2 1
5 2 5 29 4 20 0
6 6 2 29 26 34 1
7 7 8 26 28 29 1
8 8 29 2 6 1 1
9 2 29 11 34 1 0
10 10 11 20 29 27 1
11 11 1 29 5 20 1
12 5 20 30 2 29 0
13 13 2 23 29 9 1
14 1 29 11 23 34 0
15 29 1 15 5 28 0
16 29 20 16 23 11 0
17 29 11 23 6 18 0
18 2 11 27 26 20 0
19 19 34 26 5 23 1
20 20 35 29 5 28 1
21 29 4 35 28 2 0
22 22 35 2 31 9 1
23 23 29 5 26 35 1
24 35 29 28 2 24 0
25 2 25 12 7 29 0
26 26 35 2 11 29 1
27 27 5 29 28 2 1
28 28 35 29 6 2 1
29 29 35 2 23 28 1
30 30 29 5 28 2 1
31 31 35 5 23 1 1
32 32 35 5 34 26 1
33 35 29 1 2 9 0
34 35 34 29 2 26 0
35 35 29 2 5 28 1
36 36 5 28 35 29 1

Table 2: Recognition results with top 5 list for second
test image
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Reference image Test image

1

2

3

4

5

6

7

8

9

10

11

12

Table 3: Image data set

Reference image Test image

13

14

15

16

17

18

19

20

21

22

23

24

Table 4: Image data set continue
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Reference image Test image

25

26

27

28

29

30

31

32

33

34

35

36

Table 5: Image data set continue
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