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Abstract 
Concurrent programs exhibit non-deterministic behavior, 
which makes them difficult to test. One approach to testing 
concurrent programs, called reachability testing, generates 
test sequences automatically, and on-the-fly, without 
constructing any static models. This approach guarantees 
that every partially-ordered synchronization sequence of a 
program with a given input will be exercised exactly once. 
Unfortunately, in order to make this guarantee all existing 
reachability testing algorithms need to save and search 
through the history of test sequences that have already been 
exercised, which is impractical for many applications. In 
this paper, we present a new reachability testing algorithm 
that does not save the history of test sequences. This new 
algorithm guarantees that every partially-ordered 
synchronization sequence is exercised at least once for an 
arbitrary program and exactly once for a program that 
satisfies certain conditions. We also describe a reachability 
testing tool called RichTest. Our empirical studies with 
RichTest indicate that our new algorithm exercises every 
synchronization sequence exactly once for many 
applications.  

1 Introduction 
Because of its ability to increase computational 

efficiency, concurrent programming has become an 
important technique in modern software development. 
However, concurrent programs behave differently than 
sequential programs. Multiple executions of a concurrent 
program with the same input may exercise different 
sequences of synchronization events (or “SYN-sequences”) 
and produce different results. (A SYN-sequence records the 
relative ordering of events that occur on a synchronization 
object such as a semaphore, monitor, or communication 
channel.) This non-deterministic behavior makes concurrent 
programs notoriously difficult to test. 

Reachability testing is one approach to testing 
concurrent programs. A novel aspect of reachability testing 
is that it adopts a dynamic framework in which test 
sequences are generated automatically, and on-the-fly, 
without constructing any static program models. In this 
framework, the synchronization events that occur during a 
test run are recorded in an execution trace. At the end of the 
test run, the trace is analyzed to derive SYN-sequences that 
are “race variants” of the trace. A race variant represents 
the beginning part of a SYN-sequence that definitely could 

have happened but didn’t, due to the way race conditions 
were arbitrarily resolved during execution. The race 
variants are used to exercise new behaviors, which are 
traced and then analyzed to derive more race variants, and 
so on. If every execution of a program P with input I 
terminates, and the total number of SYN-sequences is 
finite, then reachability testing will terminate and every 
partially-ordered SYN-sequence of P with input I will be 
exercised.  

One potential problem with reachability testing is that 
some SYN-sequences may be exercised many times. To 
prevent this problem, all existing reachability testing 
algorithms save the history of SYN-sequences that have 
already been exercised and search the history before using a 
race variant. For large programs, the cost of saving a test 
history can be prohibitive both in terms of the space to store 
the history and the time to search it.  

In this paper, we present a new reachability testing 
algorithm that does not save the test history. The main idea 
of our new algorithm is to enforce several constraints on 
how variants are generated so that a race variant is 
generated only if it can be used to exercise a SYN-sequence 
that has not been exercised before. This new algorithm is 
guaranteed to exercise every partially-ordered SYN-
sequence at least once for an arbitrary program and exactly 
once for a program that satisfies certain conditions. We 
describe a Java reachability testing tool, called RichTest, 
which requires no modification to the Java JVM or to the 
operating system. Our empirical results indicate that the 
new algorithm exercises every SYN-sequence exactly once 
for many applications. To make our presentation concrete, 
we will show how to apply our new algorithm to 
asynchronous message-passing programs, i.e., programs in 
which processes synchronize/communicate by exchanging 
messages. However, we note that the authors reported a 
general reachability testing model in [2] that allows the new 
algorithm to be directly applied to other types of programs, 
including synchronous message-passing programs and 
shared-memory programs in which thread 
synchronize/communicate using semaphores, locks, and 
monitors.  

The rest of this paper is organized as follows. The next 
section illustrates the reachability testing process. Section 3 
presents an execution model for message-passing programs 
and introduces the notion of event equality. Section 4 
provides an algorithm for generating race variants. Section 
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5 presents our new reachability testing algorithm. Section 6 
describes the RichTest tool and reports some empirical 
results. Section 7 briefly surveys related work. Section 8 
provides concluding remarks and describes our plan for 
future work. 

2 The Reachability Testing Process 
We use a simple example to illustrate the reachability 

testing process. Fig. 1 shows a program CP that consists of 
six threads. The threads synchronize and communicate by 
sending messages to, and receiving messages from, ports. 
Ports are communication objects that can be accessed by 
many senders but only one receiver. Each send operation 
specifies a port as its destination, and each receive 
operation specifies a port as its source.  A sequence of send 
and receive events is called an SR-sequence. 

Fig. 1 also shows one possible scenario for applying 
reachability testing to the example program. Each SR-
sequence and race variant generated during reachability 
testing is represented by a space-time diagram in which a 
vertical line represents a thread, and a single-headed arrow 
represents asynchronous message passing between a send 
and receive event. The labels on the arrows match the labels 
on the send and receive statements in program CP. Note 
that in each SR-sequence, the portion above the dashed line 
is the race variant used to collect the sequence. The 
reachability testing process in Fig. 1 proceeds as follows: 

First, sequence Q0 is recorded during a non-
deterministic execution of CP. Sequence V1 is a race 
variant of Q0 derived by changing the outcome of a 
message race in Q0. That is, in variant V1, thread T3 
receives its first message from T4 instead of T2. The 
message sent by T2 is left un-received in V1. 

During the next execution of CP, variant V1 is used for 
prefix-based testing. This means that variant V1 is replayed 
and afterwards the execution proceeds non-
deterministically. Sequence Q1 is recorded during this 
execution. Sequence Q1 is guaranteed to be different from 
Q0 since V1 and Q0 differ on the outcome of a race 
condition and V1 is a prefix of Q1. Variant V2 is a race 
variant of Q1 in which T5 receives its first message from 
T6 instead of T4.  

When variant V2 is used for prefix-based testing, 
sequence Q2 is collected. The variants and sequences 
derived after Q2 are shown in Fig. 1. Reachability testing 
stops after Q5 is recorded since Q0, Q1, Q2, Q3, Q4, and 
Q5 are all the possible SYN-sequences that can be 
exercised by this program.  

For a formal description of the above process, the reader 
is referred to a reachability testing algorithm that we 
reported in [7]. The challenge for reachability testing is to 
ensure that every sequence is exercised once and only once. 
This is discussed in the remainder of this paper. 

3 Preliminaries 
3.1 SR-sequences 
In this section, we describe how to model a program 
execution in which processes communicate and synchronize 
using asynchronous message passing. This model provides 
sufficient information for replaying an execution and for 
identifying the races in an execution. Also, this model is 
easily generalized to handle other synchronization 
constructs. In [2], the authors presented a general execution 
model for programs that use semaphores, locks, monitors, 
and asynchronous or synchronous message passing. Thus, 
the algorithms and techniques described in this paper can be 
applied without modification to programs that use any of 
the above constructs. 

     
Asynchronous message passing refers to non-blocking send 
operations and blocking receive operations. A thread that 
executes a non-blocking send operation proceeds without 
waiting for the message to be received. A thread that 
executes a blocking receive operation blocks until a 
message is received. We assume that asynchronous ports 
(see section 2) use a FIFO (First-In-First-Out) message 
ordering scheme, which guarantees that the messages 
passed between any two threads are received in the order 
that they are sent.  

A send or receive event refers to the execution of a send 
or receive statement, respectively. A send event s and the 
receive event r it synchronizes with form a synchronization 
pair <s, r>, where s is said to be the send partner of r, and r 
is said to be the receive partner of s. Let Q be an SR-
sequence and r a receive event in Q. We will use send(r, Q) 
to denote the send partner of r in Q.  

Let r be a receive event and s be a send event in SR-
sequence Q such that <s, r> is a synchronization pair. 
Suppose some other send event s’ in Q could have been 
synchronized with r but wasn’t, due to the arbitrary way in 
which race conditions were resolved during execution. 
Then s’ is said to be in the race set of r. The authors have 
developed two schemes, a port-centric scheme and a thread-
centric scheme, that can be used to identify races in an 

         T1                        T2                            T3                          T4                         T5                           T6 
    s1: p2.send (a);   r1:  x = p2.recv ();   r2: y = p3.recv ();    s3: p3.send (c);    r4: u = p5.recv ();      s5: p5.send (e)  
                               s2: p3.send (b);       r3: z = p3.recv ();    s4: p5.send(d);     r5: v = p5.recv (); 
                                                                                                                              if (u == e) { 
                                                                                                                         s6:   p2.send (f); 
                                                                                                                              }       
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execution [2]. For example, applying either scheme, we can 
identify the race set for each receive event in sequence Q0 
in Fig. 1.b: race_set(r2) = {s3}, race_set(r4) = {s5},  
race_set(r1) = race_set(r3) = race_set(r5) = {}. Due to 
space limitations, the reader is referred to [2] for details 
about these race identification schemes 

3.2 Event Equality 
In this section, we introduce our notion of event 

equality, which allows us to draw a correspondence 
between events that occur in different SR-sequences. We 
first define the prime structure of an event and an 
isomorphism between two prime structures, both of which 
are needed for defining the notion of event equality.     

Assume that an event e is generated by an execution 
instance of a statement t. Informally, the prime structure of 
e contains all the events that could possibly affect the 
beginning of the execution of t. Note that if e is a receive 
event, then the send partner s of e is not included in the 
prime structure of e. The reason is because s only affects 
the end, rather than the beginning, of the execution of t.  

Definition 1: Let Q be an SR-sequence exercised by a 
program P with input I. Let e be an event in Q that is 
exercised by a process T in P. If e is not the first event 
exercised by T, then let f be the event that T exercises  
immediately before e. Set before(f) contains the events that 
happen before f, and set before+(f) = before(f) ∪ {f}.  Then, 
the prime structure of e in Q, denoted as p-struct(e, Q) or p-
struct(e) if Q is implied, is empty if f does not exist; 
otherwise, it is a prefix of Q that contains all the events in 
before+(f). 

As an example, consider sequence Q0 in Fig. 1.b, where 
p-struct(s1) is empty, p-struct(r1) is empty, p-struct(s2) is 
the portion of Q0 consisting of the single event r1, p-
struct(r2) is empty, p-struct(r3) is the portion of Q0 
consisting of the events s1, r1, s2, r2, p-struct(s3) is empty, 
p-struct(s4) is the portion of Q0 consisting of the single 
event s3, p-struct(r4) is empty, p-struct(s5) is empty, and p-
struct(r5) is the portion of Q0 consisting of events s3, s4 and 
r4. 

Definition 2: Let Q and Q’ be two SR-sequences of a 
program P with input I. Let e be an event in Q and e’ an 
event in Q’. Then, p-struct(e, Q) and p-struct(e’, Q’) are 
isomorphic, denoted as p-struct(e, Q) ∼ p-struct(e’, Q)’, if 
there exists a one-to-one mapping m from the events in p-
struct(e, Q) to those in p-struct(e’, Q)’ such that if <s, r> is 
a synchronization pair in p-struct(e, Q), then <m(s), m(r)> 
is a synchronization pair in p-struct(e’, Q’).. 

Informally, two prime structures are isomorphic if their 
space-time diagrams are the same except their event labels. 

Definition 3: Let P be a message-passing program. Let 
Q and Q’ be two SR-sequences of P with input I. Let e be 
an event in Q and e’ an event in Q’. Events e and e’ are 
equal, denoted as e = e’, if p-struct(e, Q) ∼ p-struct(e’, Q’). 

In Fig. 1.b, we have used the same event label to name 
equals events in different SR-sequences. As an example, 
event r1 in Q0 equals event r1 in Q1, because both p-
struct(r1, Q0) and p-struct(r1, Q1) are empty and thus are 
trivially isomorphic. In the remainder of this paper, we will 
consider equal events to be the same event and refer to 
them using the same label. We comment that the reason 
why the send partner s of e is not included in p-struct(e) is 
that otherwise, as soon as e is synchronized with a different 
send event, e becomes a different event. As a result, we 
would not be able to express the notion of a race set, where 
the same receive event can be synchronized with different 
send events. 

4 Computing Race Variants 
In Section 4.1, we define the notion of a race variant. In 

Section 4.2, we briefly explain an algorithm for computing 
the race variants of an SR-sequence.  
4.1 Race Variant 

Let P be a message-passing program. Let Q be the SR-
sequence exercised by an execution of P. Intuitively, a race 
variant of Q can be derived by changing the send partner of 
one or more receive events in a way that satisfies the 
following constraints: Whenever the send partner of a 
receive event is changed: (1) the new send partner must be 
in the race set of r in Q; and (2) all the send and receive 
events that happen after r must be removed from Q.  

Note that the second constraint is needed to ensure that 
a race variant is feasible (i.e., the variant can be exercised 
by at least one program execution), regardless of the 
program’s control and data flow. This is because a change 
to the send partner of a receive event r in Q could 
potentially affect all the events that happened after r. In 
particular, if P takes a different path after a different 
message is received at r, then some events that happened 
after r in Q may no longer happen along the new path. 

As an example, consider race variant V1 in Fig. 1.b, 
which is derived from SR-sequence Q0 by changing the 
send partner of r2 to s3, as s3 is in race_set(r2), and then 
removing r3, which is the only event that happens after r2.  

A formal definition of a race variant is presented below. 
Definition 4: Let Q be an SR-sequence. A race variant 

V of Q is another SR-sequence that satisfies the following 
conditions: 

� There exists at least one receive event r in Q and V 
such that send(r, Q) ≠ send(r, V). 

� Let r be a receive event in Q and V such that send(r, Q) 
≠ send(r, V). Then, send(r, V) must be in race_set(r, 
Q).  

� Let e be a send or receive event in Q. Then, e is in V if 
and only if for any receive event r in Q such that r →Q 
e, then send(r, Q) = send(r, V). 
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The first condition says that the send partner of at least 
one receive event needs to be changed. The second and 
third conditions are consistent with constraints (1) and (2) 
above, respectively. 

One interesting phenomenon, called event recollection, 
is that some of the events that have been removed from V 
(to satisfy the third condition) may be generated again 
during prefix-based testing with V. Below we present two 
important properties related to event recollection and 
equality. 

Proposition 1: Let Q be an SR-sequence and V a race 
variant of Q. Let e be an event in Q that was removed from 
V. Then, event e can be recollected during prefix-based 
testing with V if and only if there is no receive event in p-
struct(e, Q) whose send partner was changed in V.  

The above proposition is true because (1) if there is no 
receive event in p-struct(e, Q) whose send partner was 
changed, then p-struct(e, Q) is repeated in V; and (2) if V is 
forced to be exercised at the beginning of prefix-based 
testing with V, then p_struct(e, Q) will also be repeated 
during prefix-based testing with V. 

Proposition 2: Let Q be an SR-sequence. If a send 
event s in Q was removed from a race variant V of Q, then s 
cannot be recollected during prefix-based testing with V. 

The above proposition can be derived from Proposition 
1 for the following reasons: (1) Since event s in Q was 
removed from a race variant V of Q, there must exist a 
receive event r that happens before s in Q and whose send 
partner has been changed; (2) Any receive event that 
happens before a send event must also exist in the prime 
structure of the send event. 
4.2 An Algorithm for Computing Race Variants 

In [7], we reported an algorithm for computing the race 
variants of a semaphore-based execution. In [2], we 
reported a general model for reachability testing, which 
encapsulates the differences between the various types of 
synchronization constructs. The general model allows the 
algorithm in [7] to be applied to a message-passing 
execution. Below, we present a high-level description of 
this algorithm.  

The algorithm for computing race variants builds a 
“race table” for a given SR-sequence Q. Each row of the 
race table for Q can be used to derive a unique, partially-
ordered race variant of Q. The race table of Q consists of a 
column for each receive event in Q whose race set is non-
empty. Let r be the receive event corresponding to column 
j. Let V be the race variant to be derived from row i and v 
be the value in row i, column j.  

Value v indicates how receive 
event r in Q is changed to create 
variant V: 
� v = -1 indicates that r is 

removed from V; 

� v = 0 indicates that the send partner of r is left 
unchanged in V; and 

� v > 0 indicates that in V, the send partner of r is 
changed to the v-th event in race_set(r, Q), where the 
send events in race_set(r) are arranged in an arbitrary 
order and the index of the first event in race_set(r, Q) 
is 1.  

As an example, the race table for Q0 in Fig. 1.b is shown 
below. Variants V1, V2, and V3 are derived from rows 1, 2, 
and 3 in the table, respectively. 

r4 r2 
0 1 
1 0 
1 1 

  
One approach to building a race table is to enumerate all 

combinations of the possible values of v for the receive 
events and then remove the invalid combinations. Invalid 
combinations are combinations that are not consistent with 
Definition 4. The algorithm reported in [7] builds the race 
table more efficiently by preventing a large number of 
invalid combinations from being generated in the first 
place. Due to space limitations, we refer the reader to [7] 
for details about the algorithm.  

We stress that every row in a race table represents a 
unique, partially ordered variant [7]. Therefore, our 
algorithm deals with partial orders directly – test sequences 
are never totally ordered. 

5 A New Reachability Testing Algorithm 
In order to reduce test effort while maximizing test 

coverage, it is desirable to exercise every partially-ordered 
SR-sequence exactly once during reachability testing. 
However, if a newly derived race variant V is a prefix of an 
SR-sequence Q that has already been exercised, then prefix-
based testing with V could exercise Q again. To deal with 
this duplication problem, all existing reachability testing 
algorithms need to save the history of SR-sequences that 
have already been exercised. A newly derived variant is 
used for prefix-based testing only if it is not a prefix of any 
SR-sequence that is in the test history.  For large programs, 
the cost of saving a test history can be prohibitive both in 
terms of the space to store the history and the time to search 
it. As a result, the scalability of the existing reachability 
testing algorithms is limited.  

In this section, we present a new reachability testing 
algorithm that does not save the test history. The main idea 
is to enforce several constraints that will prevent a race 
variant from being generated in the first place if prefix-
based testing with this variant could cause duplicate SR-
sequences to be exercised. The new algorithm guarantees 
that every SR-sequence is exercised at least once for an 

rj 

i 

j 

v 
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arbitrary program and exactly once for a program that 
satisfies certain conditions.  
5.1 A Graph-Theoretic Perspective  

To help understand our new algorithm, we consider the 
reachability testing problem from a graph-theoretic 
perspective. Let P be a message-passing program. All 
possible SR-sequences that could be exercised by P with 
input I can be organized into a directed graph G, which we 
refer to as a Sequence/Variant graph or simply an S/V 
graph. Each node n in G represents an SR-sequence that 
could be exercised by P with input I. An edge e from node 
n to node n’ represents a race variant of n and indicates that 
n’ could be exercised by prefix-based testing with e. Note 
that a node n may have multiple outgoing edges which are 
labeled by the same variant of n. The reason is that prefix-
based testing with a race variant forces the variant to be 
exercised at the beginning of a test run and then lets the run 
continue non-deterministically, and the non-deterministic 
portion can exercise different sequences in different test 
runs. For example, in Fig. 2, node Q2 has two outgoing 
edges that represent the two sequences that can be exercised 
during prefix-based testing with variant V4.  

Definition 5: There is a race difference for a receive 
event r w.r.t. two SR-sequences if r exists in both sequences 
but has different send partners in these sequences. 

Note that Def. 1 focuses on differences that are directly 
caused by message races. If we assume that the order in 
which threads synchronize and communicate is the only 
source of non-determinism, then any difference between 
two SR-sequences can be traced back to a race difference. 
For this reason, we will only be interested in race 
differences and will refer to a race difference as a difference 
unless stated otherwise.   

Theorem 1: Let P be a message-passing program. Let G 
be the S/V graph of P with input I. Then, G is strongly 
connected. 

Proof: We show that given two arbitrary nodes n and n’ 
in G, where n ≠ n’, there exists a path from n to n’ and 
another path from n’ to n. By symmetry, we only need to 
show that there exists a path from n to n’. In the following, 
we demonstrate how to construct such a path step by step. 

Let D = {r | r is a receive event that exists in both n and 
n’ but r has different send partners in n and n’.}. Note that 
D is not empty, as otherwise n and n’ would be the same 
sequence. There must exist an outgoing edge e of node n in 
which the send partner of every receive event r ∈ D is 
changed to match the send partner of r in n’. Let n’’ be the 
destination node of e. If n’’ = n’, then there is a path from n 
to n’ which only consists of edge e. Otherwise, the longest 
common prefix between n’’ and n’ is longer than that 
between n and n’, This is because every receive event r ∈ D 
now has the same send partner s in n’’ and n’, and every 
event that happens before r must be the same in n’’ and n’ 
(otherwise r and s could not have the same prime structures 

in n” and n’ and thus could not both exist in n’’ and n’). 
This process can be repeated until we reach n’. 

From a graph-theoretic perspective, the goal of 
reachability testing is to construct a spanning tree of an S/V 
graph. Note that since an S/V graph is strongly connected, 
reachability testing can start from an arbitrary node. Also 
note that during reachability testing, each variant is used to 
conduct only one test run. Therefore, in a spanning tree 
constructed during reachability testing no two edges are 
labeled with the same variant. 

In Fig. 2, the left side shows the S/V graph of program P 
in Fig. 1.a, and the right side shows a spanning tree that can 
be generated during reachability testing of P. 

 

Figure 2: The S/V-graph of the program in Fig. 1 and a 
spanning tree of the S/V-graph 

Now it becomes clear that the purpose of saving the test 
history during reachability testing is to avoid visiting the 
same node more than once. Therefore, the main challenge 
for our new algorithm is to avoid visiting the same node 
(i.e., exercising the same sequence) more than once without 
saving a list of the nodes that have already been visited.  
5.2 Path Constraints 

Let G be the S/V graph of a program P with input I. The 
main idea of our new algorithm is as follows: If we can find 
several constraints on the paths through G such that given 
two arbitrary nodes n and n’ in G, there is exactly one 
acyclic path from n to n’ that satisfies these constraints, 
then we can construct a spanning tree of G by only 
generating those paths satisfying these constraints. In this 
section, we will define three such path constraints. Note that 
since it is possible that no path from one node to another 
satisfies these constraints, enforcing these constraints alone 
will not construct a spanning tree. This will be discussed in 
Section 5.3. In Section 5.4, we will show how these 
constraints are implemented in our new algorithm.  

Let n and n’ be two arbitrary nodes in G. Let H = 
n1e1n2e2 … nm, where n = n1 and n’ = nm, be a path from 
node n to node n’ in G. We consider each edge ei to 
represent a transformation of node ni into node ni+1. (Note 
that we will use node/sequence and edge/variant 
interchangeably.) This transformation is realized by 
changing the send partners of some of the receive events in 
node ni to derive a race variant ei and then performing 
prefix-based testing with variant ei. In this manner, 
sequence n is eventually transformed into n’. The path 

Q0 

Q1 Q2 Q3 

Q4 Q5 

V1 V2 
V3 

V4 

V5 

V4 

Q0 

Q1 Q2 Q3 

Q4 Q5 

V1 V2 
V3 
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constraints we present below impose restrictions on how the 
send partner of a receive event can be changed at each edge 
ei of path H. 

C1: The send partner of a receive event can be 
changed at most once along path H.     

Constraint C1 ensures that H is an acyclic path. Assume 
that there exists a cycle in H. Let nieini+1…nj be such a 
cycle, where 1 ≤ i, j ≤ m, i ≠ j, and ni = nj. Note that ei 
changes the send partner of at least one receive event r in ni. 
Assume that the send partner of r is s in ni. Since ni = nj, the 
send partner of r must have been changed back to s by some 
edge ek, i < k < j. This is impossible, since the send partner 
of r is already changed in ei, and it can be changed at most 
once along path H.    

Constraint C1 also implies that the send partner of a 
receive event cannot be changed to a send event other than 
its send partner in n’. In other words, if the send partner of 
a receive event r is changed in an edge ei, then the new send 
partner of r must match the send partner of r in n’. The 
reason is because otherwise, in order to reach n’, the send 
partner of r would have to be changed again sometime later, 
which is impossible. In the following, we will say “a 
difference is reconciled” between ni and n’, 1 ≤ i < m, if the 
send partner of a receive event r is changed in edge ei to 
match the send partner of r in n’.  

C2: Differences must be reconciled in happens-
before order.  

Let r1 and r2 be two receive events in node ni, 1≤  i < m, 
such that r1 happens before r2. Assume that both events also 
exist in node n’ but have different send partners in n’. Note 
that in this case, r1 must not be in p-struct(r2, ni). Otherwise, 
since p-struct(r2, ni) is not repeated in n’, r2 cannot exist in 
n’. Also note that these two differences cannot be 
reconciled at the same time (i.e., in the same edge), since 
when we reconcile the difference with r1 in one edge, r2 will 
be removed in that edge (see constraint (2) on deriving race 
variants in section 4.1). Therefore, constraint C2 dictates 
that if the difference with r1 is reconciled in edge ei and the 
difference with r2 is reconciled in edge ej, then i < j. 

Let fi be the longest common prefix between ni and n’, 
1≤ i < m, where an event is included in fi if and only if it 
exists in both ni and n’ and it has the same send partner in ni 
and n’. We show that constraints C1 and C2 together ensure 
that if i < j, then fi is a proper prefix of fj. First we show that 
C1 ensures that fi is a prefix of fj. Assume that there is an 
event a in fi that does not exist in fj. Then, there must exist a 
receive event r such that r happens before a in ni, and the 
send partner of r is changed in some edge ek, i < k ≤ j. This 
is impossible, because r is in fi, which means that the send 
partner of r in ni is the same as that in n’, and the send 
partner of r is already changed in ek.  

Next we show that C2 ensures that fi is a proper prefix 
of fj. Observe that each edge e reconciles at least one 
difference. It suffices to show that the reconciliation of each 

difference adds one more receive event to the longest 
common prefix. Let r be a receive event in a node nk, i < k 
≤ j. Assume that the send partner of r in nk is different from 
that in n’. Also assume that the send partner of r in nk was 
changed in edge ek. By C2, all the receive events that 
happen before r must have the same send partners in nk as 
in n’; otherwise, the send partner of r cannot be changed in 
ek. This means that r must be in fk+1. 

C3: Each edge must reconcile as many differences as 
possible. 

Constraint C3 means that if a difference can be 
reconciled by an edge without violating C1 and C2, then the 
difference should be reconciled by that edge.  

The following lemma shows that given any two nodes n 
and n’ in an S/V graph, there is at most one path from n to 
n’ that satisfies all three constraints.  

Lemma 1: Let G be an S/V graph. Let n and n’ be two 
arbitrary nodes in G. Then, there exists at most one path 
from n to n’ that satisfies all the three constraints C1, C2 
and C3. 

Proof: Earlier we have shown that C1 can only be 
satisfied by an acyclic path from n to n’. Next we show that 
constraints C2 and C3 can be satisfied by at most one 
acyclic path. We proceed by contradiction. Assume that 
there exist two acyclic paths H1 and H2 from n to n’ that 
satisfy C2 and C3. Let n’’ be the first node where the two 
paths branch off. Let e1 and e2 be two outgoing edges of n’’ 
in paths H1 and H2, respectively. Then, there is at least one 
difference reconciled in one of the two edges but not in the 
other. Without loss of generality, let r be a receive event 
such that its send partner is changed in e1 but not in e2. 
Then, by C2, all the differences that happened before r must 
have already been reconciled before node n’’. Therefore, r 
could have been reconciled in e2, which means that e2 does 
not satisfy C3, leading to a contradiction.  

To illustrate the above constraints, consider the example 
program in Fig. 1. In the S/V graph in Fig. 2, there exists an 
edge from Q1 to Q0 that completes a cycle. Note that 
send(r2, Q0) = s2 and send(r2, Q1) = s3. Therefore, the edge 
from Q1 to Q0 must change the send partner of r2 from s3 to 
s2. However, we note that the send partner of r2 has already 
been changed once in V1. Therefore, the edge from Q1 to 
Q0 will be prevented by C1. 

As another example, consider path Q0Q3Q5 in Fig. 2.  
This path is excluded from the spanning tree because r1 
happens before r2 in Q0, however the difference with r1 is 
reconciled in the second edge and the difference with r2 is 
reconciled in the first edge, which violates C2. 

Finally, consider path Q0Q2Q3 in Fig. 2. This path is 
excluded from the spanning tree because the difference with 
r2 could have been reconciled in V2, but was not, which 
violates C3.   
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5.3 Tangled Cycles 
Unfortunately, in certain cases, there may be no path from 
one node to another that satisfies all three constraints. Fig. 
3.a shows a program involving threads T1, T2, T3, and T4. 
As usual, we assume that each thread Ti has port pi. Fig. 3.b 
shows all the possible SR-sequences of the program. Fig. 
3.c shows the S/V graph of the program. Assume that node 
Q0 is chosen as the start node. The dashed edges in Fig. 3.c 
will be suppressed by constraint C1. Then, the only path left 
in the S/V graph from Q0 to Q2 is Q0Q1Q2, which does not 
satisfy constraint C2, since r1 happens before r2 in Q0 but 
the difference with r2 is reconciled in V1 before the 
difference with r1 is reconciled in V2.  

 

We observe that since r1 happens before r2 in Q0, 
constraint C2 states that the difference with r1 should be 
reconciled before the difference with r2. However, in order 
to reconcile the difference with r1, we must first collect 
event s4, which is the send partner of r1 in Q2. But this can 
only happen after we have reconciled the difference with r2, 
since s4 occurs only after r2 receives the message sent by 
s3. This gives rise to a cycle of reconciliation, called a 
tangled cycle, which makes it impossible to find a path 
satisfying constraint C2. 

Our solution to this problem is to allow constraint C2 to 
be violated if and only if such a tangled cycle occurs. In the 
following discussion, we characterize such a cycle. As 
usual, let n and n’ be two arbitrary nodes in an S/V graph. 
Let H be a path from n and n’.  We will refer to a receive 
event r as a to-be-reconciled event w.r.t. n and n’, or simply 
a to-be-reconciled receive event when n and n’ are implied, 
if r exists in both n and n’ but has different send partners in 
them. 

Definition 6: Let r and r’ be two to-be-reconciled 
receive events w.r.t. n and n’. Then, (1) r should be weakly 
reconciled before r’ w.r.t. n and n’, denoted as r →wrb(n, n’) 
r’ or simply r →wrb r’ when n and n’ are implied, if r 
happens before r’ in n; (2) r should be strongly reconciled 
before r’ w.r.t. n and n’, denoted as r →srb(n, n’) r’ or simply 
r →srb r’ when n and n’ are implied, if r happens before the 
send partner of r’ in n’. 

Note that the weakly-reconciled-before relation is due to 
constraint C2. By “weakly”, we mean that this relation can 
be broken in certain cases. In contrast, the strongly-
reconciled-before relation is an absolute requirement of the 
process of reconciliation, which says that certain events 
must occur before a difference can be reconciled. By 
“strongly”, we mean that this relation must be maintained 
all the time.  

Definition 7: A tangled cycle w.r.t. n and n’ consists of 
a sequence of receive events r1, r2, …, rn, rn+1 = r1 in n and 
n’ such that r1 →wrb(n, n’)  r2 →srb(n, n’)  r3 →wrb(n, n’) … →srb(n, 

n’) rn+1, where 1 ≤ i ≤ n. 
Note that in a tangled cycle, weakly-reconciled-before 

and strongly-reconciled-before links must alternate. For 
example, in Fig. 3, there exists a tangled cycle w.r.t. Q0 and 
Q2: r1 →wrb r2 →srb r1.  

If there exists a tangled cycle between n and n’, then it 
is impossible to reconcile the receive events involved in the 
cycle in the happens-before order. In this case, the cycle 
must be broken at a weakly-reconciled-before link ri →wrb 
rj, i.e., we should allow rj to be reconciled before ri, which 
means that constraint C2 may not be maintained. Note that 
the cycle cannot be broken by reconciling the difference 
with ri. For this reason, we call ri as a non-cycle-breaking 
event and rj a cycle-breaking event. Also note that if a cycle 
has more than one weakly-reconciled-before link, then it 
could be broken in different ways, each of which will result 
in a different path from n to n’. In order to ensure that only 
one of these paths is generated, we add a restriction that a 
tangled cycle can only be broken at one of those links. To 
make our choice consistent, we place a total order on all the 
weakly-reconciled-before links based on the event ID of 
their cycle-breaking events, i.e., a link r1 →wrb r1’ is smaller 
than another link r2 →wrb r2’ if the event ID of r1’ is smaller 
than the event ID of r2’. (We assume that every event has a 
unique integer ID.) Then, a tangled cycle can only be 
broken at the smallest weakly-reconciled-before link.  

E1: Constraint C2 is allowed to be violated in order to 
break a tangled cycle. 

In Fig. 3, the only way to break the cycle is to reconcile 
r1 before r2. This allows path Q0Q1Q2 to be generated 
during reachability testing. Note that in this scenario, 
constraint C2 is not maintained due to exception E1. 

As discussed in Section 5.4, our new reachability testing 
algorithm needs to solve the following problem. Let Q and 
T be two SR-sequences. Let r and r’ be two to-be-
reconciled events w.r.t. Q and T. Assume that r happens 
before r’ in Q, i.e., r →wrb r’. Now we want to determine 
whether r →wrb r’ is a weakly-reconciled-before link in a 
tangled cycle. Let R be the set of all the to-be-reconciled 
receive events w.r.t. Q and T. We can organize all the 
events in R into a graph G, where each node represents a to-
be-reconciled receive event. There are two types of edges 
in G. Let r1 and r2 be two receive events in G. There is a 

          T1                        T2                            T3                          T4                         
s1: p2.send (a);   r1:  x = p2.recv ();    r2: y = p3.recv ();    s3: p3.send (c);     
                            s2: p3.send (b);            if (y == c) { 
                                                            s4:   p2.send (d); 
                                                                 } 
                                                            r3: z = p3.recv (); 

(a) 

T1 T2 T3 T4 

s1 
r1 

s2 
r2 

s3 

r3 

Q0 

T1 T2 T3 T4 

s1 
r1 

s2 
r2 

s3 

r3’ 

s4 

V1/Q1 

T1 T2 T3 T4 

s1 

r1 
s2 

r2 
s3 

r3’ 

s4 

V2/Q2 

(b) 

 
Q0 

Q1 Q2 

(c) 

Figure 3.  A tangled cycle 

V1 

V2 
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weak edge from r1 to r2 if r1 →wrb r2, and a strong edge 
from r1 to r2 if r1 →srb r2. Therefore, r →wrb r’ is involved 
a tangled cycle if and only if r can be reached from r’ in G, 
which can be accomplished by a modified depth-first search 
algorithm that restricts that weak and strong edges must 
alternate. 

 
5.4 The Algorithm 

Fig. 4 shows algorithm GenerateVariants. Given an SR-
sequence Q and the race variant that was used to collect Q, 
this algorithm generates a subset of the variants of Q. In 
algorithm GenerateVariants, the receive events in 
sequences Q and V are colored either white, black or gray. 
The color of a receive event r in V is inherited by the 
equivalent event r in Q. (Recall that V is a prefix of Q so 
each event in V is also in Q.) Receive events that are in Q 
but not in V are colored white. The color of receive event r 
restricts how r can be changed when deriving variants: 
white indicates that the send partner of r can be changed; 
black indicates that the send partner of r cannot be changed; 
and gray indicates that the send partner r may be changed, 
but only under certain conditions.  More details about 
assigning and using colors are provided below. 

Next we use the example programs in sections 2 and 5.3 
to illustrate how algorithm GenerateVariants enforces the 
three path constraints C1, C2, and C3, and the exception 
rule E1. A more detailed explanation on this can be found 
in [14].  

C1: The send partner of a receive event can be changed 
at most once. 

The method for enforcing this constraint is simple. In 
step 3, if the send partner of a receive r in Q is changed to 
derive a race variant V’, then the color of r in V’ is set to 
black (due to statement (*) in GenerateVariants). In step 2, 
black receive events are excluded from the heading of the 
race table, which prevents the send partners of black 
receives from being changed again. For example, in Fig. 
1.b, variant V1 (the portion of Q1 that is above the dashed 
line) was derived by changing the send partner of r2 from 
s2 to s3. Therefore, the color of r2 in V1 will be black, 
which is inherited by r2 in Q1. Thus, r2 will be excluded 
from the heading of the race table, which prevents the send 
partner of r2 from being changed, when we derive the race 
variants of Q1.   

Note that it is possible for a black receive r in sequence 
Q to be removed when deriving variant V’ of Q. (If the send 
partner of a receive event in Q is changed to generate 
variant V’, then the events in Q that happen after the 
changed event are not included in V’ (see section 4.1).) If r 
were recollected in an SR-sequence Q’ derived from V’, the 
color of r in V’ would not be inherited, which means that r’s 
color would be white in Q’. As a result, the send partner of 
r could be changed again. This scenario violates constraint 
C1 and is prevented by statement (**), which sets the color 

of a receive event r’ to black in V’ if (i) r’ happened before 
r in V’ and (ii) r’ is not in p-struct(r, V’). This means that 
the send partner of r’ cannot be changed in sequences 
derived from V’. By Proposition 1, the only way to recollect 
r is to change the send partner of such a receive event as r’. 
Therefore, the fact that we cannot change the send partner 
of r’ means that r cannot be recollected, which prevents the 
above scenario. 

C2:  Differences must be reconciled in happens-before 
order, with the following exception E1: Constraint C2 is 
allowed to be violated in order to break a tangled cycle.  

Constraint C2 is enforced by coloring some receive 
events as gray. Essentially, if the send partner of a receive 
event r is changed to derive variant V’, then the color of r’ 
is set to gray if r’ happens before r in V’ but r’ is not in p-
struct(r, V’). The send partner of a gray receive cannot be 
changed unless they complete a tangled cycle that was 
broken earlier due to Exception E1. This is because 
otherwise the difference with r’ was reconciled after the 
difference with r was reconciled, which violates C2. Note 
that the color of a receive event r’ is not changed if r’ is in 
p-struct(r, V’). This is because if the send partner of r’ is 
ever changed, then r will not exist (since changing r’ 
changes r’s prime structure).  Thus, it is impossible to 
reconcile the difference with r before the difference with r’. 
This implies that C2 can never be violated and thus the 
color of r’ does not need to be changed. 

Consider the program in Fig. 3. Variant V1 is derived by 
changing the send partner of r2. Note that r1 happens 
before s2 in V1 but is not in p-struct(r2, V1). Thus, the 
color of r1 will be set to gray in V1 by statement (***) in 
GenerateVariants. Note race variant V2 is derived from Q1 
by changing the send partner of r1, which is a gray receive 
event. The reason why V2 is not discarded is because 
changing r1 completes the tangled cycle consisting of r1 
and r2, which was broken earlier when the send partner of 
r2 was changed in V1.   

Constraint 3: Each edge in the S/V graph must 
reconcile as many differences as possible. 

This constraint is enforced in an implicit manner. Let n 
and n’ be two nodes in the S/V graph. If a difference w.r.t. 
n and n’ could be reconciled by an edge e, but is not, then 
this difference will be marked and can never be reconciled 
afterwards. Therefore, no path from n to n’ can be 
generated if it contains any such edge as e, since there 
exists at least one difference that cannot be reconciled 
between n and n’. This is equivalent to saying that if we 
generate a path from n to n’, then each edge in the path 
must reconcile as many differences as possible.  

The above idea is implemented by step 1 in 
GenerateVariants, which removes “old” send events from 
the race sets of “old” receive events. A send or receive 
event in an SR-sequence Q is “old” if it also appears in the 
variant V used to collect Q. For example, consider SR-
sequence Q2 in Fig. 1.b. Note that events r2 and s3 are old 
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events because they appear in both V2 (the prefix of Q2 
which is above the dashed line) and Q2. Therefore, s3 will 
be removed from the race set of r2, which means that if we 
did not change the send partner of r2 from s2 to s3 in V2, 
then we would never be able to do that in the future.  

The complexity of algorithm GenerateVariants is 
dominated by the second step. The original table-based 
algorithm is in O(Nv * Ne

3), where Nv is the number of race 
variants of Q, and Ne the number of events in Q. The 
modification for black receives does not change the 
complexity. In the modification for gray receives, it takes 
O(Ne) to determine if the change completes a tangled cycle.  
Therefore, the complexity of this modification is O(Nv * 
Ne

2). Note that this modification can be performed after the 
first modification was completed. Therefore, the complexity 
of the second step, and thus the complexity of the 
algorithm, is O(Nv * Ne

3). As mentioned below, reachability 
testing exercises every SR-sequence exactly once for many 
applications. Since this algorithm is used to generate 
variants for each sequence, in the average case, the 
complexity of the entire testing process is O(NQ * Nv * Ne

3), 
where NQ is the number of all possible SR-sequences. 

    

We note that the new reachability testing algorithm may 
exercise the same SR-sequence more than once if some 

tangled cycles are interconnected. Two tangled cycles are 
interconnected if one or more receive events are involved in 
both cycles. This is because unlike for a regular cycle, it is 
difficult to determine whether a change completes a tangled 
cycle that was broken at an early point. However, our 
empirical studies indicate that interconnected cycles are not 
common.  

Theorem 2: Let P be a message-passing program and I 
an input of P. Let � be the set of all the feasible SR-
sequences of P with input I. Then, our new reachability 
testing algorithm based on algorithm GenerateVariants has 
the following properties: 

I. It exercises every SR-sequence in � at least once. 

II. It exercises every SR-sequence in � exactly once if 
there is no interconnected cycles w.r.t. any two SR-
sequences in �. 

The formal proof of Theorem 2 is presented in 
Appendix. 

6 Empirical Results 
 We implemented our reachability testing algorithms in 

a prototype tool called RichTest. RichTest provides a Java 
class library that contains a race variant generator class, a 
test driver class, a class for tracing and replaying SR-
sequences, and synchronization classes for simulating 
semaphores, locks, monitors, and message passing with 
selective waits. RichTest is implemented entirely in Java 
and does not require any modifications to the JVM or the 
operating system. We are applying this same approach to 
build portable reachability testing tools for multithreaded 
C++ programs that use thread libraries written for 
Windows, Solaris, and Unix. 

As a proof-of-concept, we conducted an experiment in 
which RichTest was used to apply reachability testing to 
several programs: (1) BB – a solution to the bounded-buffer 
problem where the buffer is protected using either 
semaphores, a Signal-and-Continue (SC) monitor, a Signal-
and-Urgent-Wait (SU) monitor, or a selective wait; (2) RW 
– a solution to the readers/writers problem using either 
semaphores, an SU monitor, or a selective wait; (3) DP – a 
solution that uses an SU monitor to solve the dining 
philosophers problem without deadlock or starvation.  

Table 1 summarizes the results of our experiment. The 
first column shows the name of the program. The second 
column shows the test configuration for each program. For 
BB, it indicates the number of producers (P), the number of 
consumers (C), and the number of slots (S) in the buffer. 
For RW, it indicates the number of readers and the number 
of writers (W). For DP, it indicates the number of 
processes. The third column shows the number of 
sequences generated during reachability testing. There were 
no interconnected cycles found for any of these programs. 
As a result, RichTest was able to exercise every SYN-

VariantList GenerateVariants (SR-sequence Q, Variant V) 
// Q was collected during prefix-based testing with V 
begin 
// 1: prune “old” send events from the race sets of “old” receive 
//    events in Q.   
    for each receive event r in V (and thus in Q too) do 
      race_set(r, Q) = race_set(r, Q) - race_set(r,V) 
 
// 2: generate the race variants of Q, variants(Q), using the  
// table based algorithm in section 4.2 with the following  
// modifications for handling black and gray receive events: 
a. modification for black receives: exclude black receives from 
     the heading of the race table to prevent their send partners  
     from being changed; 
b. modification for gray receives: the send partner of a gray 
     receive r  cannot be changed unless the change reconciles 
     the last deifference of a tangled cycle C that was broken at  
     an early point and r is the non-cycle-breaking event of the 
     smallest weakly-reconciled-before link in C  
 
// 3: set the colors of receive events in the variants 
   for each variant V’ in variants(Q) do 
       for each receive r  whose send partner is changed do  
         r.color = black;  … (*) 
          for each receive r'  that is not in p-struct(r, V’) do 
            if r' happens before r in V’  
            then r'.color = black;  … (**) 
            else if r' happens before send(r, Q) in V’  
                       and r’.color ≠ black  
                    then r'.color = gray; … (***) 
    return variants(Q); 
end 
 Figure 4. Algorithm GenerateVariants 
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sequence of these programs exactly once. To shed some 
light on the total time needed to execute these sequences, 
we observe that, for instance, the total execution time for 
the DP program with 5 philosophers is 7 minutes on a 
1.6GHz PC with 512 MB of RAM.   

Program Configuration # of Seqs 
BB-Select 3P + 3C + 2S 144 
BB-Semaphore 3P + 3C + 2S 324 
BB-MonitorSU 3P + 3C + 2S 720 
BB-MonitorSC 3P + 3C + 2S 12096 
RW-Semaphore 2R + 2W 608 
RW-Semaphore 2R + 3W 12816 
RW-Semaphore 3R + 2W 21744 
RW-MonitorSC 3R + 2W 70020 
RW-MonitorSU 3R + 2W 13320 
RW-Select 3R + 2W 768 
DP-MonitorSU 3 30 
DP-MonitorSU 4 624 
DP-MonitorSU 5 19330 

Table 1. Experimental Results 

The results in Table 1 show that the choice of 
synchronization construct has a big effect on the number of 
sequences generated during reachability testing. SC 
monitors generate more sequences than SU monitors since 
SC monitors have races between signaled threads trying to 
reenter the monitor and calling threads trying to enter for 
the first time. SU monitors avoid these races by giving 
signaled threads priority over calling threads. Selective 
waits generated fewer sequences than the other constructs. 
This is because the guards in the selective waits are used to 
generate open-lists that reduce the sizes of the race sets. 

7 Related Work 
One approach to testing concurrent programs is non-

deterministic testing, which executes the same program with 
the same input many times and hope that faults will be 
exposed by one of these repeated executions [3][10]. The 
main problem with this approach is that because of lack of 
control, some SYN-sequences may be exercised many times 
while others are never exercised.  

An alternative approach is deterministic testing, which 
forces test runs to exercise selected SYN-sequences. The 
SYN-sequences are usually selected from a global state 
graph of a program (or of a model of the program) [11][12]. 
This approach suffers from the state explosion problem. 
Moreover, it may select totally-ordered SYN-sequences that 
are different linearizations of the same partial order, which 
is inefficient.  

Reachability testing combines non-deterministic and 
deterministic testing. In [5] a reachability testing algorithm 
for multithreaded programs that use shared variables was 
described. In [9] a reachability testing algorithm for 
asynchronous message-passing programs was reported, 
which was later improved in [6]. The authors have recently 
reported two reachability testing algorithms, one for 

semaphore-based programs [7] and the other for monitor-
based programs [8], and a general model for reachability 
testing [2]. All the existing algorithms need to save the 
history of test sequences and thus have limited scalability. 

Recently, there is a growing interest in techniques that 
can directly explore the state space of actual programs 
without constructing any models. Tools such as Java 
PathFinder [13], VeriSoft [4] and ExitBlock [1] use partial 
order reduction methods to reduce the chances of executing 
totally-ordered synchronization sequences that only differ 
in the order of concurrent events. In contrast, our 
reachability testing algorithm deals with partial orders 
directly – no totally-ordered sequences are ever generated. 
In addition, the SYN-sequence framework used by 
reachability testing is highly portable. This is because the 
definition of a SYN-sequence is based on the language-
level definition of a concurrency construct, rather than the 
implementation details of the construct. Our reachability 
testing tool requires no modification to the thread scheduler 
and is completely portable, while Java PathFinder, 
VeriSoft, and ExitBlock all require access to the thread 
scheduler to control program execution, and have limited 
scalability.  

8 Conclusion and Future Work 
In this paper, we have described a new algorithm for 

reachability testing of concurrent programs. For many 
practical applications, this new algorithm can exercise 
every possible SYN-sequence exactly once, without saving 
the history of test sequences. This represents a significant 
reduction in memory requirements and thus allows 
reachability testing to be applied to large programs. We 
note that since reachability testing is implementation-based, 
it cannot by itself detect “missing SYN-sequences”, i.e., 
sequences that are valid according to the specification but 
are not allowed by the implementation. In this respect, 
reachability testing is complimentary to specification-based 
approaches that select valid sequences from a specification 
and determine whether they are allowed by the 
implementation. 

We are continuing our work on reachability testing in 
the following three directions. First, exhaustive testing is 
not always practical due to resource constraints. To seek a 
trade-off between test effort and test coverage, we are 
developing algorithms that can selectively exercise a set of 
SYN-sequences according to some test coverage criteria. 
Second, we are addressing the test oracle problem. 
Reachability testing frequently executes a large number of 
sequences, which makes it impractical to manually inspect 
the output of all the test executions. At present, properties 
such as freedom from deadlock and assertion violations can 
be checked automatically in RichTest.  We plan to build  
new RichTest components so that advanced temporal 
properties can be checked automatically as well. Third, 
there is a growing interest in combining formal methods 
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and testing. Formal methods are frequently model based, 
which means that a model must be extracted from a 
program. Since reachability testing is dynamic and can be 
exhaustive, we are investigating the use of reachability 
testing to construct complete models of the communication 
and synchronization behavior of a concurrent program. 
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Appendix 

1 Correctness Proof of Theorem 2 
Notations: Let P be a message-passing program. Let Q 

be an SR-sequence of P with input X. Let Send(Q) be the 
set of send events in Q. Let send(r, Q) be the send partner 
of a receive event r in Q. Let Recv(Q) be the set of receive 
events in Q. Let Sync(R, Q) = {<s1, r1>, ..., <sn, rn>}, 
where R = {r1, ..., rn} is a subet of Recv(Q), and si = send(ri, 
Q). Let Min(R, Q), where R is a subset of Recv(Q), be a 
subset of R consisting of receive events that are minimal 
w.r.t. the happens-before relation of Q, i.e., Min(R, Q) = {r 
∈R | no receive event r' ∈R such that r' →Q r}. Let Q1 and 
Q2 be two SR-sequences, and let Diff(Q1, Q2) = {r ∈ 
Recv(Q1) ∩ Recv(Q2) | send(r, Q1) ≠ send(r, Q2)}, and 
Cut(Q1, Q2) = Min(Min(Diff(Q1, Q2), Q1), Q2). 
1.1 Part I of Theorem 2 

Fig. 5 presents a procedure called Guided-RT, which 
selects a race variant at each step to guide the testing 
process until a given SR-sequence is eventually exercised. 
We show that the race variant selected by Guided-RT is 
generated by algorithm GenerateVariants at each step and 
that procedure Guided-RT terminates. 

http://cm.bell-labs.com/who/god/public_psfiles/popl97.ps
http://cm.bell-labs.com/who/god/public_psfiles/popl97.ps
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Lemma 1: In Guided-RT, the variant V at each iteration 

is generated by algorithm GenerateVariants. 
Proof: Let Qi, Vi, RTRi, RTCi, RTUi be the SR-sequence, 

variant, RTR, RTC, and RTU at iteration i. Let r ∈ RTRi. 
We show that (1) send(r, T) exists in Qi and send(r, T) ∈ 
race(r, Qi); (2) if r exists in Vi-1, then (2.1) send(r, T) does 
not exist in Vi-1 (so that send(r, T) is not pruned from the 
race set of r) (2.2) r.color != black; (2.3) if r.color = gray, 
then changing the send partner of r to send(r, T) reconciles 
the last difference in a tangled cycle in which r is the non-
cycle-breaking event of the smallest weakly-reconciled-
before link.  

Case 1: First we show send(r, T) exists in Qi. This is 
because otherwise, there must exist a receive event r' in T 
so that r' →T send(r, T) (and thus r) but receives different 
messages in T and Qi. This implies that r cannot be in 
Cut(T, Qi), leading to a contradiction. 

Next we show that (a) r does not happen before send(r, 
T) in Qi and (b) letting r’ be the receive event with which 
send(r, T) is synchronized in Qi, then r happens before r’.  

Case 1.a: Assume that r happens before send(r, T) in Qi. 
Since send(r, Qi) ≠ send(r, T), send(r, T) cannot exist in T 
(by Proposition 2), leading to a contradiction. 

Case 1.b: Assume that r’ happens before r. (Note that r’ 
and r must belong to the same process and thus cannot be 
concurrent.) Since in T, send(r, T) is synchronized with r, 
i.e., no longer with r', send(r', T) ≠ send(r, T) = send(r', Qi). 
Thus r can't be in Cut(T, Qi), leading to a contradiction. 

Case 2.1: Assume that send(r, T) also exists in Vi-1. We 
show that r ∈ RTRi-1, which means that r will be reconciled 
at iteration i - 1. Therefore, r cannot be in Cut(T, Qi), 
leading to a contradiction. 

First, we show that r ∈ Cut(T, Qi-1). Assume otherwise, 
and consider two cases: (2.1.a) r is not in Min(Diff(T, Qi-1), 
T); (2.1.b) r is in Min(Diff(T, Qi-1), T).  

Case 2.1.a: There must exist a receive event r' such that 
r' →T r and r' ∈ Min(Diff(T, Qi-1), T). If r' is in p-struct(r, 
T), then r could not exist in Qi-1 (by event equality), leading 
to a contradiction. If r' is not in p-struct(r, T), then r’ →T 
send(r, T). Since send(r’, T) ≠ send(r’, Qi-1), send(r, T) 
could not exist in Qi-1 (by Proposition 2), also leading to a 
contradiction. 

Case 2.1.b: There must exist a receive event r' happens 
before r in Qi-1 such that r' ∈ Cut(T, Qi-1).  (Otherwise, r ∈ 
Cut(T, Qi-1).)  If r' is in RTRi-1, then r cannot exist in Vi-1 
since r' will be reconciled in Vi-1, which will remove r from 
Vi-1, leading to a contradiction. Otherwise, r' will not be 
reconciled in Vi-1. Thus, r' ∈ Cut(T, Qi). This means that r 
cannot exist in Cut(T, Qi), leading to a contradiction. 

Next, we show r ∈ RTRi-1. Assume otherwise. Then, 
there exists at least one receive event r' in Qi-1 such that r' 
happens before r in Qi-1 and send(r', Qi-1) != send(r', T). 
Since r ∈ Cut(T, Qi-1), r' is not in Cut(T, Qi-1). Therefore, r' 
will not be reconciled at iteration i - 1. This implies that r is 
not in RTCi. Further, since each iteration introduces no new 
differences, if r is not in RTUi-1, then r is not in RTUi. It 
follows that r is not RTRi, leading to a contradiction. 

Case 2.2: Assume that r.color = white at iteration j - 1 
and r.color = black at iteration j, j < i. Then, either (a) 
send(r, Vj) != send(r, Qj) or (b) there exists a receive event 
r' ∈ RTRj so that send(r', Vj) != send(r', Qj) and r happens 
before r’ in Vj. 

Case 2.2.a: In Guided-RT, the race outcome of r can be 
changed only in (*). Thus, send(r, Vj) = send(r, T). This 
means that r is not in Cut(T, Qi), leading to a contradiction. 

Case 2.2.b: Note that r ∈ Diff(T, Qj). Since r happens 
before r’ in Vj, r' cannot be in Cut(T, Qj), leading to a 
contradiction. 

Case 2.3: Assume that r.color = white at iteration j - 1 
and r.color = gray at iteration j, j < i. Then, there exists a 
receive event r' in RTRj so that send(r', Vj) != send(r', Qj), 
and r happens before send(r', Qj) in Vj but is not in p-
struct(r’, Vj).  

Procedure Guided-RT  
// Input: A message-passing program P, an input X of P, and  
//           an SR-sequence T of P with input X  
//Output: T is exercised by an execution of P with X 
begin   
 execute P with X non-deterministically to collect an  
  SR-sequence Q0  
 Q = Q0; 
   while Cut(T, Q) is not empty do 
   begin 
  // 1: select a subset of events to reconcile 
  // a. Ready-To-Change: receives that can be reconciled in 
  // the happens-before order 
      RTC = { r ∈ Cut(T, Q) | ∀r' ∈ Q: r' →Q r �  send(r', Q) =  
                   send(r', T) }; 
      // b. Ready-To-be-Untangled: receives that need to be  
      // untangled 
      RTU = {}; 
      for each receive event r ∈(Cut(T, Q) - RTC) do 
         if (∀ r’ ∈ Diff(T, Q), r’ →Q r � both r’ and r are involved 
              in a tangled cycle w.r.t. Q and T) 
             AND  
             (r is the smallest cycle-breaking event of a tangled 
              cycle w.r.t Q and T) 
         then RTU = RTU + r; 
      // c. Ready-To-be-Reconciled: the union of RTC and RTU 
      RTR = RTC ∪ RTU; 
 
      // 2. select a race variant which reconciles the differences  
      // with the receives in RTR 
      find a variant V in variants(Q) so that 
       (1) Sync(RTR, V) = Sync(RTR, T);  ... (*) 
       (2) Sync(Recv(V) - RTR, V) = Sync(Recv(V) - RTR, Q)   
       
      // 3: perform prefix-based testing 
      perform a prefix-based testing of P with X using V, and let 
Q  
          be the new sequence 
      end 
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First, we show that r’ must be in RTUj. It suffices to 
show that send(r', Qj) exists in both Vj and Q, and thus r 
also happens before send(r', Qj) in Qj (since the prime 
structure send(r', Qj) in Qj must be the same as that in Vj. 
Assume otherwise. There must exist a receive event r'' in 
RTRj such that r'' →Q send(r', Qj). This implies that r' 
cannot be in RTRj, leading to a contradiction.  

Next we show that changing the send partner of r to 
send(r, T) reconciles the last difference of a tangled cycle. 
Assume that r and r’ are involved in a tangled cycle C. 
Since r’ is in RTRj, r’ is reconciled at iteration j. This means 
that C is broken at iteration j. Since r is in Cut(Q, T) at 
iteration i, all the differences in C must have been 
completed between iteration j and iteration i. Therefore, 
changing the send partner of r to send(r, T) reconciles the 
last difference of C. 

Lemma 2: Let Q1 and Q2 be two SR-sequences of 
program P with input X. If Cut(Q1, Q2) is empty, then Q1 
and Q2 are the same SR-sequence. 

Proof: This lemma can be easily established, 
considering that any difference between Q1 and Q2 can be 
traced back to a message race. 

Lemma 3: Algorithm Guided-RT must terminate. 
Proof: We show that RTR must be non-empty at each 

iteration. This implies that at least one difference between 
Q and T will be reconciled at each iteration. Since the 
number of differences between Q and T is finite, Guided-RT 
must terminate. 

We proceed by contradiction. Assume that both RTC 
and RTU are empty at iteration i. Let r1 ∈ Cut(T, Qi). There 
must exist a receive event r1' ∈ Diff(T, Qi) such that r1' 
happens before r1 in Qi and r1 and r1’ are not involved in a 
tangled cycle. Note that r1’ must not be in Min(Diff(T, Qi)), 
as otherwise, r1 cannot be in Cut(T, Qi). Therefore, there 
exists a receive event r2 ∈ Cut(T, Qi) such that r2 →T r1

’. 
Note that r2 ≠ r1. Similarly, there must exist a receive event 
r2' ∈ Diff(T, Qi) such that r2' happens before r2 in Qi and r2 
and r2’ are not involved in a tangled cycle, and a receive 
event r3 ∈ Cut(T, Qi) such that r3 is different from r1 and r2.  
Assume that the number of receive events in Cut(T, Qi) is n. 
We can repeat the above procedure to derive a sequence of 
events r1, r2, ..., rn, rn+1, where rn+1 must be different from 
r1, ..., rn, leading to a contradiction. 
1.2 Part II of Theorem 2 

We first introduce some definitions that are needed in 
our proof. 

Definition 1: Let Q1 and Q2 be two SR-sequences 
exercised during reachability testing. Q1 is the parent of Q2 
if Q2 is an SR-sequence exercised by prefix-based testing 
with a variant V of Q1. In this case, it is also said that V 
leads to Q2. Q1 is an ancestor of Q2 if Q1 is the parent of Q2 
or there exists an SR-sequence Q3 such that Q1 is the parent 
of Q3 and Q3 is an ancestor of Q2. 

Definition 2: Let Q1 and Q2 be two SR-sequences 
exercised during reachability testing. Q1 and Q2 are siblings 
if neither Q1 is an ancestor of Q2 nor Q2 is an ancestor of 
Q1. 

Definition 3: Let Q1 and Q2 be two SR-sequences such 
that Q1 is an ancestor of Q2. Then, between(Q1, Q2) = {Q | 
Q1 is an ancestor of Q and Q is an ancestor of Q1 }. 

The main idea of our proof is to show that given two 
sequences Q1 and Q2 exercised by reachability testing, there 
exists a race difference between Q1 and Q2, in the following 
two cases: (1) Q1 is an ancestor of Q2 or Q2 is an ancestor 
of Q1; (2) Q1 and Q2 are siblings.  

Lemma 1: Let Q1 and Q2 be two SR-sequences 
exercised by our reachability testing algorithm. There exists 
at least one race difference between Q1 and Q2 if Q1 is an 
ancestor of Q2 or Q2 is an ancestor of Q1. 

Proof: By symmetry, it suffices to show that if Q1 is an 
ancestor of Q2, then there exists at least one race difference 
between Q1 and Q2. 

Let V be the variant of Q1 that leads to Q2. There must 
exist one race difference between Q1 and V. Let r be a 
receive event in Q1 and V so that send(r, Q1) ≠ send(r, V). 
Therefore, the color of r in V is black. According to our 
algorithm, the race outcome of r will never be changed in 
subsequent iterations. In addition, ∀r': r' →V r � the color 
of r in V is black. This means that we cannot change the 
race outcome of any receive happening before r in V in 
subsequent iterations either. Therefore, r will never be 
removed. Hence, r must exist in both Q1 and Q2 and send(r, 
Q1) ≠ send(r, Q2). 

Lemma 2: Let Q1 and Q2 be two sibling sequences. 
Then, there must exist at least one race difference between 
Q1 and Q2. 

Proof: Let Q be the youngest common ancestor of Q1 
and Q2. Let V1 and V2 be the two variants of Q that lead to 
Q1 and Q2, respectively. There must exist at least one race 
difference between V1 and V2. Let r be a receive event in V1 
and V2 so that send(r, V1) ≠ send(r, V2). We consider the 
following cases: (1) send(r, V1) ≠ send(r, Q), and send(r, 
V2) ≠ send(r, Q); (2) send(r, V1) = send(r, Q) (of course, 
send(r, V2) ≠ send(r, Q).) (3) send(r, V2) = send(r, Q) (of 
course, send(r, V1) ≠ send(r, Q).). By symmetry, we only 
need to consider cases (1) and (2). 

Case (1): According to our algorithm, the color of r in 
V1 and V2 is black. This means that the race outcome of r 
will never be changed in V1 and V2. In addition, the color of 
any receive event r’ that happens before r in V1 and V2 is 
also black. This means that the race outcome of any receive 
event happening before r will not be changed in both V1 and 
V2. Therefore, r will never be removed from V1 and V2. 
Hence, the race difference with r will be preserved in Q1 
and Q2. 



 14 

Case (2): Note that the color of r in V2 is black, and the 
color of r in V1 is either gray or white. Also note that since 
send(r, V2) ∈ race(r, Q), send(r, V2) is also in V1.  

Let Q’ be an arbitrary sequence in between(Q, Q1). 
Then, send(r, V2) is an old send event in Q’ (because a send 
event can never be recollected by Proposition 2). If r is an 
old receive event in Q’, then send(r, V2) will be removed 
from race(r, Q’). As a result, we will not be able to change 
the send partner of r in Q1 to send(r, V2). Therefore, send(r, 
Q1) ≠ send(r, Q2). (Note that send(r, V2) = send(r, Q2), 
because the color of r in V2 is black, which means its send 
event can never be changed afterwards.) 

In the following, assume that r was removed in a race 
variant V’ and then recollected in the SR-sequence Q'  ∈ 
between(Q, Q1), which was collected from prefix-based 
testing with V’. Therefore, there exists a receive event r' in 
Q such that r' happens before r, r' is not in p-struct(r, Q), 
and send(r', Q) ≠ send(r', Q'). Then, if send(r’, Q1) ≠ 
send(r’, Q2),  there exists a race difference between Q1 and 
Q2. Otherwise, we show that there must exist another race 
difference between Q1 and Q2. 

Note that send(r’, Q) = send(r', V1) = send(r', V2), 
send(r', V1) ≠ send(r', Q'), and send(r', Q') = send(r', Q1). 
Thus, send(r', V2) ≠ send(r', Q1). By assumption, send(r’, 
Q1) = send(r', Q2). Thus, there must exist a sequence Q'' ∈ 
between(V2, Q2) such that send(r', V2) != send(r', Q'') (= 
send(r’, Q2)). Note that the color of r' in V2 is gray (since 
send(r, Q) ≠ send(r, V2)).  Therefore, changing the send 
partner of r’ to send(r', Q'') must reconcile the last 
difference of a tangled cycle C w.r.t. Q and Q’’ (and thus 
Q2) in which r’ is the non-cycle-breaking event of the 
smallest weakly-reconciled-before link. If there exists no 
race difference between Q1 and Q2, then C is also a tangled 
cycle w.r.t. Q and Q1, and the last difference of C must be 
completed at another receive event r''. This is impossible, 
because by assumption, there is no interconnected cycle and 
the only way to break a tangled cycle is to reconcile the 
difference with the smallest cycle-breaking event.  


