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Abstract

The localization capability is central to basic navigation
tasks and motivates development of various visual nav-
igation systems. These systems can be used both as
navigational aids for visually impaired or in the con-
text of autonomous mobile systems. In this paper we
describe a two stage approach for localization in indoor
environments. In the first stage, the environment is par-
titioned into several locations, each characterized by a
set of scale-invariant keypoints and their associated de-
scriptors. In the second stage the keypoints of the query
view are integrated probabilistically yielding an estimate
of most likely location.

The emphasis of our approach in the environment
model acquisition stage is on the selection of discrimi-
native features, best suited for characterizing individual
locations. The high recognition rate is maintained with
only 10% of the originally detected features, yielding a
substantial speedup in recognition. The ambiguities due
to the self-similarity and dynamic changes in the envi-
ronment are resolved by exploiting spatial relationships
between locations captured by Hidden Markov Model.
Once the most likely location is determined, the relative
pose of the camera with respect to the reference view can
be computed.

1 Introduction

The problem of localization is of interest in several appli-
cations including augmentation of human navigation ca-
pabilities and mobile robot localization. Two main vari-
ations of the localization problem have long been estab-
lished in the robotics community and are known as global
localization (also known as robot kidnapping problem)
and pose maintenance.

In this paper we will focus on the global localization
aspect and demonstrate how to solve it by means of lo-
cation recognition. The approaches used to tackle the lo-
cation recognition problem vary depending on means of
acquiring the location database, representation of indi-
vidual locations and methods of recognizing them. Al-
though the location recognition problem shares many
common aspects with general object recognition, it also
differs in several important ways.

1.1 Related Work

Due to the different nature of the location recognition
task, several representations of locations were proposed
in the past. In the initial attempts to location recognition,
the locations were represented by multi-dimensional
color histograms [1]. Representations which enable
coarser classification of indoor and outdoor scenes used
responses to banks of filters with varying level of spa-
tial integration include [18, 17]. In the context of mo-
bile robot navigation robust versions of subspace meth-
ods, where individual views were represented as a points
in the high-dimensional space have been applied in case
omnidirectional cameras [2]. Given the subspace rep-
resentation the pose of the camera is typically obtained
by spline interpolation method, exploiting the continuity
of the mapping between the object appearance and con-
tinuously changing viewpoint. Approaches which used
local image descriptors for location representation have
chosen affine or rotationally invariant features [10, 20]
or local Fourier transforms of salient image regions [15].
Due to the locality of these image features, the recog-
nition can naturally handle large amounts of clutter and
occlusions. The sparser set of descriptors can be, in case
of both global and local features, obtained by princi-
pal component analysis or various clustering techniques.
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Several instances of pose maintenance and acquisition
of metric environment models have been successfully
solved in smaller scale environments [3, 14]. The appli-
cability of these methods to large dynamically changing
environment poses additional challenges and calls for al-
ternative models.

1.2 Approach Overview

We propose to tackle the location recognition and local-
ization problem by using a model of the environment rep-
resented by a set of locations and spatial relationships
between them. Each location is represented by a set
of views and their associated local scale invariant fea-
tures. We present a novel technique for identifying most
discriminative features for individual locations reducing
the feature database to10% of its original size, without
forgoing the recognition accuracy. An associated like-
lihood model characterizing each location is then used
in the Hidden Markov Model framework which enables
us to resolve misclassification due to the self-similarity
and dynamic changes in the environment. Once the most
likely location is determined we can compute the relative
pose of the camera, with respect to the reference view.
We will report on the localization experiments in indoor
environment with 18 locations and discuss current imple-
mentation efforts toward real-time demonstration of the
proposed system.

2 Location Representation

As a starting point of our method, we use the environ-
ment model obtained in the exploration stage. Given
a temporally sub-sampled sequence acquired during the
exploration, the sequence is partitioned intoN = 18 dif-
ferent locations. The locations in our model correspond
to hallways, sections of corridors and meeting rooms ap-
proached at different headings. The initial model was
obtained by a mobile robot, which was guided through
the environment. The path of the exploration route and
labels associated with the individual locations are in Fig-
ure 1. The number of views per location vary between
5 to 20 depending on the appearance variation within
the location. The transitions between the locations oc-
cur either at places where navigation decisions have to
be made or when the appearance of the environment
changes suddenly. The images were taken approximately
every 2-3 meters. The representative views of some lo-
cations in Figure 2 demonstrate the variability of our
dataset. More details about the model acquisition stage
can be found in [8].

Individual locations are represented by scale-invariant
(SIFT) keypoints described in [10]. The SIFT features

Figure 1: The map of the fourth floor of our building.
The arrows correspond to the heading of the robot and
the labels represent individual locations.

Figure 2: Examples of representative views of 12 out of
18 locations.

represent distinguishable image locations, which are sta-
ble across variations in scale. Each feature is endowed
with a 128 dimensional descriptor, which captures the
orientation information of local image region centered
at each keypoint, is rotationally invariant and has been
shown to be robust with respect to large variations in
viewpoint and scale.

Figure 3a and 3b show the features detected in one
of the representative views of locations 1 and 3. The
number of features detected in each image varies from
hundreds to thousands as shown in Figure 3c for the
training data set. Using the matching scheme proposed
in [10], the reliability of the match is measured by the ra-
tio between the Euclidean distance to the closest neigh-
bor and that to the second-closest neighbor. Figure 3d
shows the number of matched features between consec-
utive views of the training sequence. Despite the large
overlap between consecutive views, only a small number
of features detected in consecutive views are matched.
Some features have better capability to handle variations
in scale and viewpoint and match stably in several differ-
ent views of the same location. Selecting such features
can keep the environment model more compact and save
the computational cost for future localization. This ob-
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Figure 3: a) and b) 700 and 400 SIFT features detected
in representative views of location 1 and location 3. c)
Number of detected in the training sequence. d) Num-
ber of features matched between consecutive views in the
training sequence.

servation brings to forefront the issue of feature selection
in the model acquisition stage.

2.1 Feature Selection

Previously proposed techniques for reducing the feature
pool include k-means clustering, greedy techniques or
boosting [19, 4, 16, 7, 9]. Questions focusing on the
model compactness [5] as well as trade-off between the
complexity of features and the complexity of classifiers
were explored in [11]. In [11] authors selected fea-
tures with a greedy process, where only the features,
which can increase the information content of the fea-
ture set with respect to the object were selected. In [5]
authors estimate the posterior of each feature with re-
spect to each object and the Shannon entropy is used to
select the discriminative regions. Our method for fea-
ture selection is similar to the method proposed by [5]
but with a different selection criterion. Suppose loca-
tion Li has Ni training images with totalKi of de-
tected featuresGi = {gi

k}k=1···Ki . To obtain the in-
formation content of each featuregi

k with respect to lo-
cation identification, we need to estimate the posterior
probability P (Ll|gi

k), l = 1 · · ·N . The posterior prob-
ability at featuregi

k is estimated using only featuresgj

inside a Parzen window [9] of a local neighborhood
Z = {gj | ‖gi

k − gj‖ ≤ ε, j = 1 · · · z}, whereε de-
termines the size of the window. We weight the contri-
bution of specific featuregl

j in Z- labeled by location
Ll - that should increase the posterior estimateP (Ll|gi

k)

by a Gaussian kernel functionN(µ, σ) in order to favor
the features with smaller distance to the featuregi

k, with
µ = gi

k andσ = ε/2.5. Then the posterior probability at
featuregi

k is estimated as

P (Ll|gi
k) ∝

∑

gl
j
∈Z

exp(−‖g
l
j − gi

k‖2
2σ2

). (1)

There are two different ways how to determine the local
neighborhood for each feature. One, is settingε to some
predefined thresholdT , which may be estimated from
the pairwise distance distribution of all features in the
training images. In this case, the numberz of elements
in the setZ varies for each featuregi

k, while theσ is
constant for all features. Some features, however have a
large number of features in the neighborhood while some
have very few.

Since the thresholdT is not easily determined, we
choose the second approach where the number of ele-
ments in the feature neighbourhood is kept fixed. In this
case the Parzen window sizeσ varies for each featuregi

k,
whereσ is proportional to the largest distanceε from gi

k

to Z. We choosez = 200 and make the Parzen window
adaptive.

After the posterior probabilities of all features are ob-
tained, we could proceed by calculating the information
entropy of each feature and use it in the selection pro-
cess. In our data set, however, each location has differ-
ent number of training images and the number of fea-
tures detected in each image varies largely as it can be
seen in Figure 3c. If one locationl has few features de-
tected and the Parzen window size is not accurate, even
though a good featuregl

k has a large posterior probability
P (Ll|gl

k), it may also have a large posterior probability
with respect to another classP (Lm|gl

k), because location
m has large number of detected features. The posterior
probability estimates will hence be biased and the en-
tropy will not successfully capture the right information
content.

Due to this reason we use directly the estimate of
P (Ll|gl

k) in each image for ranking the features based
on their discrimination capability. The number of fea-
tures we keep is specified as a percentageη of detected
features. For a training image from locationLi with Mi

features detected, only topmax(Miη, N0) features are
selected based on their posteriorP (Ll|gi

k) ranking. N0

is the minimal number of features selected to avoid dis-
carding too many features from the images of locations
with few detected features. Because we select the fea-
tures based on the rank of their posterior, the feature with
high rank of posterior with respect to locationLi may
also have large posterior with respect to another location
Lj . That feature can be shared by several locations and
can distinguish them from others. At the same time it can
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introduce ambiguities in discriminating locations. Cur-
rently, instead of fully exploiting the shared features, as
it was done in the context of hierarchical object detection
approach proposed by [16], we properly account for their
contribution in the feature matching stage.

a) b)

Figure 4: a) The total of 480 features detected and b) 50
informative features selected by our method.

Location 1

Location 3

Location 10

Figure 5: The top 16 features selected for three of the
locations.

In our data set, there are 296 training images for 18
locations with 112,705 detected features. We choseη =
10% andN0 = 50 to select features from each image.
Each feature has the location(x, y), a scales, an orien-
tation and a 128 dimensional descriptor. Figure 4 shows
the total number of detected SIFT features and the infor-
mative features selected in the image by our method. The
features belonging to posters have good discrimination
capability. Figure 5 shows the top 16 selected features
for different locations. Each feature is cropped from the
training image centered at(x, y) with radiusr = 6 × s,
wheres is the scale of the SIFT feature. The patches are
normalized to64× 64.

Figure 6: The features discarded in the selection.

Note that the selected features often have large scale
and capture the global information about individual lo-
cations. For example for Location 1, which has large
depth variation some the selected discriminative features
are centered in the middle of the corridor and entail the
entire view of the corridor. This also demonstrates that
the suitable choice of the representation for a location
varies largely and for certain locations the global descrip-
tors are indeed highly discriminative. Figure 6 shows
some examples of discarded features. For example fea-
tures belonging to the ceiling lights are discarded except
when the feature contains multiple lights.

3 Reduced Feature Set Matching

In order to demonstrate the feature selection process is
effective, we compare the performance of location recog-
nition using the reduced feature set, with the standard
voting approach which uses all features. In this experi-
ment thei-th location is represented by a number of rep-
resentative views{Ii

n} and their associated original and
reduced SIFT feature sets{gk(Ii

j)} and{g̃k(Ii
j)}. For a

new query imageQ and its associated features{gQ
k }, a

set of matches betweenQ and each model viewIi
j is de-

termined by matching each feature in{gQ
k } against the

model database features and choosing the nearest neigh-
bor based on the Euclidean distance between two de-
scriptors. Only the point matches whose nearest neigh-
bor is at least0.6 times closer than the second nearest
neighbor are considered. More detailed justification be-
hind the matching strategy and the choice of the thresh-
old can be found in [10]. The model viewIi

j with the
highest number of matched keypoints withQ is consid-
ered to be the correct result. To evaluate the proposed
feature selection mechanism we compare the recognition
performance using the model database of all detected
features{gk(Ii

j)} and the reduced feature set{g̃k(Ii
j)}.

Table 1 shows the recognition rates for the training se-
quence and two test sequences using the original and re-
duced feature set, respectively. The results are reported
on the training sequence of 296 images from which the
model views and features were selected and two test se-
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sequence (# of frames)original set reduced set
No.1 (296) 100.0% 98.0%
No.2 (134) 82.1% 79.9%
No.3 (130) 83.1% 73.9%

Table 1: Recognition performance in term of percentage
of correct localization using voting scheme.

a) b)

Figure 7: a) Matching using all detected features and b)
using the selected features only. Top row: query image,
bottom row: representative view.

quences of 134 and 130 images. The two test sequences,
taken at different days and times of day, exhibit larger
deviation from the path traversed during the training
and several locations underwent dynamic changes which
changed their appearance. In most cases, the matched
features from the original set, were well preserved in
the reduced feature set as shown in Figure 7. The se-
lected features have enough discriminant ability to distin-
guish the locations. In few instances the reduced features
yields correct recognition, while the wrong decision was
made using the original feature set (see Figure 8). Rel-
atively poor performance on the test sequences was due
to several changes in the environment between the train-
ing and testing stage as demonstrated in Figure 11. Most
SIFT features belong to objects some of which are not
inherent to particular locations. In the next section we
describe how to replace the voting scheme by a simple
probabilistic model and propose how to resolve the re-
maining issues by explicitly modeling spatial neighbor-
hood relationships between individual locations.

a) b)

Figure 8: Selected features yield better matches than
original feature set. a) the misclassification using orig-
inal set b) correct recognition with one false match using
the reduced set.

4 Probabilistic Location Recogni-
tion

The results of voting approach described in the previ-
ous section demonstrate that the feature selection is very
effective. The misclassified locations are often due to
the self-similarity of the environment (e.g. similarity
of the appearance of corridors or hallways belonging to
different locations), large changes in the pose between
the query view and model views or dynamic environ-
ment changes. The classification performance can be im-
proved by either exploiting more elaborate recognition
scheme or additional information about the environment
which would help to reduce the ambiguities due to the
self-similarity of the environment. In the following sec-
tion we demonstrate how to improve the classification
by formulating the location recognition probabilistically
and by exploiting the spatial relationships between the
locations modeled by Hidden Markov Model.

In the voting framework, once the distance between
two feature descriptors is within a specified threshold
they are considered matched. The location with largest
number of matched features is then declared to be the
correct classification. The probabilistic formulation of
the classification prediction entails computation of the
posterior probabilityP (Ll|{gQ

k }) of each location given
the selected features from the query view. Such com-
putation requires likelihood model for the matched fea-
tures, which explicitly accounts for the quality of individ-
ual matches and hence is expected to be superior to the
simple voting approach. The likelihood model can then
be naturally used in the Hidden Markov Model (HMM)
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to achieve more reliable and robust system.
When local descriptors are used as observations, sev-

eral models of class posteriors have been proposed in
the context of probabilistic approaches to object recog-
nition [12, 13]. The proposed likelihood models account
for the feature density and spatial relationships between
features and have been shown to improve overall recog-
nition rate. In the context of global image descriptors
the locations were modeled in terms of Gaussian mixture
models proposed in [17]. Those approaches have very
complex parametric model and need large number of
training examples to learn parameters. Furthermore the
location recognition problem is notably simpler then the
object recognition problem due to the background clutter
not being so prominent1. We propose a non-parametric
method to estimate theP (Ll|{gQ

k }) from training data
directly without modeling the decision function. The es-
sential features of this probabilistic method, which we
describe next, is the selection of relevant features in the
matching stage and integration of the evidence they pro-
vide for individual locations through a strangeness mea-
sure. It is a probabilistic version of voting approach.

As the result of the feature selection stage the fea-
tures from the representative views of locationi are
joined to form a model of that location denoted by
G̃i = {g̃i

k}. Given the query imageQ with detected
features{gQ

k } in order to determine most probable lo-
cation, we need to compute the posterior probabilities
P (Li|Q) = P (Ll|{gQ

k }) for l = 1 · · ·N . Similarly as
in the model building stage, many features in{gQ

k } are
not informative and have no evidence for classification
label. They may confuse the prediction if such features
are considered during prediction, especially when clut-
tered background are present. We need to selectgoodand
relevant features from{gQ

k } for estimation of the poste-
rior. The selection criterion not only gives the number
of matched feature, but also yields the confidence of the
match. The procedure is based on the hypothesis test.

Given a set of features in the query image{gQ
k }, we

first define the so called strangeness parameterαi
k, which

characterizes the discrimination capability ofk-th fea-
ture, with respect toi-th location

αi
k =

mingj∈G̃i
(‖gQ

k − gj‖)
mingj /∈G̃i

(‖gQ
k − gj‖)

. (2)

αi
k is the ratio of minimal intra-distance within the

class and minimal inter-distance to features from other
classes. Ifαi

k is greater than 1, the featuregQ
k is not

contributing to classification ofQ as labelLi. The

1The probabilistic models used in the object recognition, must also
account for the fact that large number of detected features comes from
background and not the object.

Sequence Maximal Likelihood HMM
(# of frames)
No.1(296) 99.0% 100.0%
No.2(134) 85.8% 95.5%
No.3(130) 80.8% 95.4%

Table 2: Recognition Performance in term of percentage
of correct localization based onα-values.

smaller theαi
k is, the more discriminative is the fea-

ture for the purpose of classifyingQ as i-th location.
If g∗j = argmingj∈Gi

(‖gQ
k − gj‖) is a shared feature

among a set of locationsS, the strangeness is very close
to 1. Since we want the shared features to be considered,
in the selection stage the strangeness of the shared fea-
turegQ

k with putative labell is re-computed as follows

αl
k =

mingj∈G̃l
(‖gQ

k − gj‖)
mingj /∈G̃l∧gj /∈G̃i∈S

(‖gQ
k − gj‖)

. (3)

Hence in the case of shared features we do not consider
the inter-distance from the features in shared locations
t ∈ S in this special case. The shared features can help to
distinguish the location subsetS from other locations but
are useless for discriminating the locations in subsetS.
The computation ofα-values has the same computational
complexity as the nearest neighbor ratio computation in
the standard voting scheme.

For the computation of the likelihoodP ({gQ
k }|Ll) we

select only topR features from the query image, ranked
by their strangeness, under current hypothesis test. Note
that don’t consider the features who have strangeness
measureαl

k ≥ 1. The likelihood of featuregQ
k has the

putative labelLl is defined as

P (gQ
k |Ll) = P (αl

k|Ll) = exp(−αl
k

2

2σ2
). (4)

Since we do not know how many features belong to lo-
cationLl among topR features, we need to integrate the
evidence over all possible hypotheses. A hypothesis in
our case indicates that a subsethj 6= ∅ of top R fea-
tures is classified as locationLl. Assuming the selected
features are independent, we can now compute the prob-
ability of a single hypothesishj conditioned on location
Ll

P (hj |Ll) =
∏
m

P (αl
m|Ll)

∏
n

(1− P (αl
n|Ll)). (5)

Indexm ranges over features which belong to locationl
with certain probability,n ranges over features which do
not belong to locationLl, wherem + n = R is the num-
ber of selected features, i.e. the length of a hypothesis.
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Then the probabilityP (Ll|{gQ
k }) can be computed as

P ({gQ
k }|Ll) =

∑

hj

∏
m

P (αl
m|Ll)

∏
n

(1− P (αl
n|Ll)).

(6)
It can be simplified to

P ({gQ
k }|Ll) = 1−

R∏

k=1

(1− exp(−αl
k

2

2σ2
)). (7)

In our experiments we useσ = 1/3. Assuming the
location prior is uniform andR = 10, we tested the
training and two test sequences again using the above
maximum likelihood criterion. The recognition rates are
shown in Table 2. The performance is very close to the
one using the original training feature set while reducing
the matching computational cost by about 90%. If we
consider the informative factor of each training feature
and can reliably estimate their likelihood, we can esti-
mate the posterior by

P (Ll|{gQ
k }) ∝ P (Ll)(1−

R∏

k=1

(1− P (g∗k|Ll)×

exp(−αl
k

2

2σ2
))), (8)

whereg∗k = argmingj∈Gl
(‖gQ

k − gj‖) is the feature

from locationl matched withgQ
k .

In our method, the minimal number of features se-
lectedN0 in each representative view is an important pa-
rameter to make the feature selection reliable. We vary
N0 from 20 to 70 and test the recognition performance
again. The results are shown in Figure 9. It demon-
strates that the feature selection process is very effective.
The recognition rates will be almost constant afterN0 is
greater than 60, which means using more features helps
little in increasing the performance.

4.1 Exploiting Neighborhood Relation-
ships

We propose further to deal with the dynamic changes in
the environment by incorporating additional knowledge
about neighborhood relationships between individual lo-
cations. The rationale behind this choice is, that despite
the presence of ambiguities in recognition of individ-
ual views the temporal context should be instrumental
in resolving them. The use of temporal context is mo-
tivated by the work of [17] which addresses the place
recognition problem in the context of wearable comput-
ing application. The temporal context is determined by
spatial relationships between individual locations and is
modeled by a Hidden Markov Model (HMM). In this
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Figure 9: The recognition rates with different minimal
numberN0 of feature selected.

model the states correspond to individual locations and
the transition function determines the probability of tran-
sition from one state to another. We have already ex-
plored the use of this representation using original fea-
ture set and slightly different likelihood function [8].
Since the locations cannot be observed directly, each lo-
cation is characterized by the location observation like-
lihood P (ot|Lt = Ll), l = 1 · · ·N at timet during the
exploration. The most likely location is at each instance
of time obtained by maximizing the conditional proba-
bility P (Lt = Ll|o1:t) of being at timet and location
Ll given the available observations up to timet. The lo-
cation likelihood can be estimated recursively using the
following formula

P (Lt = Ll|o1:t) ∝ P (ot|Lt = Ll)P (Lt = Ll|o1:t−1)
(9)

where P (ot|Lt = Ll) is the observation likelihood,
characterizing how likely is the observationot at time
t to come from locationLl. The conditional probability
P (ot|Lt = Ll) that a query imageQt at timet charac-
terized by an observation{gQt

k } comes from the location
l is simply the likelihoodP ({gQt

k }|Lt = Ll) introduced
in Equation 4

P (ot|Lt = Ll) ∝ 1−
R∏

k=1

(1− exp(−αl
k

2

2σ2
)). (10)

The second term of equation (9) can be further decom-
posed to explicitly incorporate the location neighborhood
relationships

P (Lt = Li|o1:t−1) =
N∑

j=1

A(i, j)P (Lt−1 = Lj |o1:t−1),

(11)
whereN is the total number of locations andA is a
N × N matrix, whereA(i, j) = P (Lt = Li|Lt = Lj)
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a) Testing 1 without HMM b) Testing 2 without HMM
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c) Testing 1 with HMM d) Testing 2 with HMM

Figure 10: Classification results with for Test Sequence 1
and Sequence 2 with (bottom row) and without (top row)
considering the spatial relationships modeled by HMM.
The black circles correspond to the location labels as-
signed to individual frames of the video sequence.

is the probability of two locations being adjacent. In the
presence of a transition between two locations the corre-
sponding entry ofA was assigned a unit value and in the
final stage all the rows of the matrix were normalized.

a)L15 training b)L15 test

Figure 11: Appearance changes of location 15 between
training and testing. There is no chair and the door is
closed in the training view. The posters on the board are
different between training and testing.

The results of location recognition employing this
model are in Figure 10. For each frame of two test se-
quences, Figure 10 shows the location label which had
the highest probability. The recognition rate with HMM
for sequence 1 was95.5% and for sequence 2 it was
95.4%. While in both cases some images were mis-
classified the overall recognition rates are a great im-
provement compared to the rates of single view loca-
tion recognition. The dynamic changes, which make the

single view recognition fail are resolved successfully us-
ing HMM model. Figure 11 shows the example of dy-
namic changes. Despite some classification errors in test
sequences, the order of visited locations was correctly
determined. For test sequence 2, where we exhibited
some intentional deviations between the path taken dur-
ing training and testing, the classification of frames 69-
70 as location 14 is incorrect (Figure 10d) . The effect of
HMM model can be examined by making all the proba-
bilities in the transition matrixA uniform and essentially
neglecting the knowledge of location neighborhood rela-
tionships. For comparison this is depicted in Figure 10a
and 10b. Once the most likely location has been deter-
mined, we can estimate the relative pose of the cam-
era with respect to the most likely representative view.
This can be done by exploiting geometric relationship
between two views captured by epipolar geometry. The
detailed description of this stage in the context of the pro-
posed application can be found in our earlier work [8].

4.2 Implementation and Experiments

The proposed approach for location recognition and lo-
calization has been tested in indoors environments and
can operate both with or without the knowledge of the
spatial relationships between the locations. Note that
the recognition rate reported in Table 2 is relatively high
even in the absence of HMM. The prerequisite of the ap-
proach is an off-line acquisition of the location database
and the feature selection stage. In the testing stage the
images can be acquired with a camera phone or camera
equipped PDA, with the matching and recognition done
at the location database server. The feature detection and
matching, which is in our case optimized by making the
model compact, has been already demonstrated in real-
time in [6]. The SIFT feature extraction takes on av-
erage 150 ms for 640 x 480 image. Since the number
of features in our model is significantly reduced, we ex-
pect the matching and recognition time to be superior to
the previously reported results [6]. Currently the algo-
rithm and model we proposed can recognize more than 4
frames per second without any special purpose optimiza-
tion. Given the current implementation, an alternative
mode of operation is to use the mobile robot platform as
a guide to visually impaired person, where all the com-
puting can be done on-board of the mobile platform. The
advantage of this type of system is the fact that it can be
integrated with additional guidance capabilities, such as
obstacle avoidance and path finding.

We would also like to point out that the representation
of locations which we proposed corresponds to semanti-
cally meaningful entities (e.g. corridors, hallways, con-
ference rooms) or indoors environments. This may pose
additional advantage in terms of facilitating better inter-

8



face between the PDA and visually impaired person.

5 Summary and Conclusions

We have demonstrated an approach for location recog-
nition in indoor office like environments. The model
of the environment is partitioned to individual locations
and neighborhood relationships between them in the ex-
ploration stage. The individual locations were repre-
sented by SIFT features and location recognition was ap-
proached by feature matching between query and model
views. We have presented a novel feature selection strat-
egy, which exploited local information content and dis-
criminability of the individual features and their associ-
ated descriptors. We have shown that by reducing the
feature pool to 10% of the original size, we can achieve
comparable performance to methods which use the origi-
nal feature set. Further improvements were demonstrated
by interpreting the quality of the features matches prob-
abilistically and by endowing the environment with the
HMM structure which exploits spatial relationships be-
tween locations. We are currently evaluating the effec-
tiveness of the feature selection strategy in the context of
other object and category recognition data sets.
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