
Department of Computer Science
George Mason University
Technical Report Series

4400 University Drive MS#4A5
Fairfax, VA 22030-4444 USA
http://cs.gmu.edu/
703-993-1530

Can Good Learners Always Compensate for Poor Learners?

Keith Sullivan
ksulliv@cs.gmu.edu

Liviu Panait
lpanait@cs.gmu.edu

Gabriel Balan
gbalan@cs.gmu.edu

Sean Luke
sean@cs.gmu.edu

Technical Report GMU-CS-TR-2005-3

Abstract

Can a good learner compensate for a poor learner when
paired in a coordination game? Previous work has given
an example where a special learning algorithm (FMQ) is
capable of doing just that when paired with a specific less
capable algorithm even in games which stump the poorer
algorithm when paired with itself. In this paper, we argue
that this result is not general. We give a straightforward
extension to the coordination game in which FMQ can-
not compensate for the lesser algorithm. We also provide
other problematic pairings, and argue that another high-
quality algorithm cannot do so either.

1 Introduction

Concurrent learning is a subset of cooperative multi-
agent learning where the overall problem is divided
into simpler subcomponents such that each agent ex-
plores its space of actions with little or no control over
its teammate’s actions [16]. While concurrent learn-
ers may converge to suboptimal solutions due to co-
adaptation and other pathologies, many algorithms have
attempted to solve these problems without a clear answer
[3, 10, 12, 17, 21].

Concurrent learning introduces a new wrinkle to mul-
tiagent machine learning: what if learners used entirely
different algorithms? This is not implausible: for ex-
ample, an agent (on the web, say) may not have control
over the other learning agents. But while recent research
on learning in competitive games has addressed hetero-
geneous learners [2], the state of the art incooperative
scenarios still involves homogeneous learners.

We are aware of only one paper that focuses on con-
current heterogeneous cooperative learners: [11] ana-
lyze different combinations of a traditional reinforce-
ment learning algorithm and an extension called FMQ.
The authors report that a two agent team using the tra-
ditional algorithm cannot consistently learn the glob-
ally optimal solution; however, the optimal solution is
achieved when both agents use FMQ. Moreover, an agent
using FMQ can help another agent using the traditional
algorithm to learn the global optimum in several coordi-
nation games. The authors thus conclude that a “smart”
learner (FMQ) can still be successful even when it must
work with less smart learners (the traditional algorithm).

We will argue this is not so. We extend the research in
[11] by including a difficult coordination game, as well
as two new algorithms. One of these algorithms is a mod-
ified evolutionary algorithm: this extends our analysis to
combinations with agents that may useentirely differ-
ent learning techniques, not just variations of the same
learning method. The results of the experiments indi-
cate the opposite conclusion from that in [11]: in diffi-
cult domains, good results are usually obtained only if
both agents are “smart” enough. That is because it takes
both agents to converge to an optimal solution, and poor
learners may force “smart” ones to converge to subop-
tima.

This rest of this paper is organized as follows: Section
2 presents related work, followed by an introduction to
single-stage coordination games in Section 3. Section 4
introduces the learning algorithms used for our analysis.
The experiments and their results are detailed in Section
5. Finally, Section 6 offers some conclusions and direc-
tions for future research.

1

2 Related Work

Claus and Boutilier [3] show that a straightforward ap-
plication of reinforcement learning (RL) to concurrent
learning is not guaranteed to find the optimal solution,
even in the case when agents are able to observe the other
agents’ actions. The authors then suggest the search
could be improved by using more optimistic exploration
actions. This direction is further explored in [12], who
update the utilities of actions based in part on the max-
imum reward previously received when performing that
action. Kapetanakis and Kudenko [10] observe that such
biasing of utility computation may not work in domains
where the joint reward information is noisy. They pro-
pose an improved multiagent reinforcement learning al-
gorithm called FMQ that uses the maximum reward re-
ceived per action to bias the probability of choosing that
action. This improved algorithm shows advantages in
domains with limited amounts of noise, but crucially its
performance is poor when there is a lot of noise. In [11],
they apply FMQ to a concurrent environment, showing
that FMQ can compensate for a simple Q-learner in envi-
ronments where the Q-learner performs poorly. Finally,
Verbeeck et al [21, 22] propose coordinated restarts of
suboptimal learning algorithms in combination with ac-
tion exclusions (similar to tabu search) to guarantee con-
vergence to the globally optimal solution. But the restarts
may require a significant amount of time, and the conver-
gence to optima is guaranteed only if all Nash equilibria
are visited infinitely often.

Evolutionary computation (EC) has also been applied
to multiagent learning in domains such as RoboCup [14],
iterated prisoner’s dilemma [1], single stage coopera-
tive games [19] and predator prey pursuit [5]. Coop-
erative coevolutionary algorithms (CCEAs) [7, 18] are
a common approach to concurrent evolutionary learning
agents. Weigand analyzed the conditions under which
coevolutionary systems gravitate towards suboptimal so-
lutions [23]. Panait et al [17] show that biasing the
CCEA to search for maximal rewards improves perfor-
mance on three problem domains, including two games:
Climbing and Penalty, which we discuss in the next sec-
tion.

3 Single-Stage Cooperative
Games

Markov decision processes (MDPs) are widely used in
multiagent reinforcement learning to account for the
presence of other agents in the environment [6, 13].
Single-stage cooperative games1 are a variation of MDPs

1Sometimes referred to as common interest games, cooperative
games, or coordination games.

where all agents receive the same reward [3]. More
specifically, each agent independently chooses an action
from its action set, and the actions from all the agents
are combined into ajoint action. All agents receive the
same reward or penalty depending on the joint action.
This process is repeated until (hopefully) agents learn
to select better actions due to past interactions. We as-
sume that agents do not explicitly communicate or ob-
serve teammates’ actions; the only feedback mechanism
is the reward received for the agent’s action.

Table 1 shows four single-stage cooperative games:
the Climbing game and the Penalty game introduced in
[3], and partially stochastic and the fully stochastic vari-
ations of the Climbing game as proposed in [10]. Re-
searchers have used these games extensively to highlight
the advantages of certain multiagent learning algorithms
(for example, [3, 10, 12, 17]). In the regular, partially
stochastic, and fully stochastic Climbing games, the op-
timal joint action is(a,a), while the Penalty game has
two optimal joint actions,(a,a) and(c,c); we do not dis-
tinguish between these two global optima in the Penalty
game. Note that in the partially stochastic and fully
stochastic games, the average reward for a joint action
is the same as the plain reward for that same action in the
regular Climbing game.

Each of these games is challenging due to misco-
ordination penalties. The Climbing game has a se-
vere penalty for choosing actiona when the other agent
chooses actionb. However, there are no major misco-
ordination penalties associated with actionc, potentially
making it tempting for the agents. The Penalty game in-
troduces another miscoordination issue due to the pres-
ence of multiple optimal joint actions. Simply choosing
the optimal action is no guarantee that the other agent
will choose the same optimal action. If agents decide on
a third equilibrium,(b,b), they avoid low rewards asso-
ciated with miscoordination.

The stochastic variations of the Climbing game add
more complications due to the noisy reward function. As
agents cannot perceive their teammates’ actions, the dif-
ferent rewards they observe for the same action may be
due to either (1) the other agent experimenting with mul-
tiple actions, or (2) the noisy reward function. While the
highest reward of 14 is sometimes achieved when both
agents choose actionb, they need to learn to separate the
effects of (1) and (2), and to realize that the average re-
ward for the joint action(b,b) is lower than that of(a,a).

4 Learning Algorithms

We experiment with four learning algorithms: three vari-
ations of reinforcement learning, and a genetic algorithm
with a novel evaluation procedure. Two of these algo-

2

A
g

en
t1

Agent 2
a b c

a 11 -30 0
b -30 7 6
c 0 0 5

(a)
A

g
en

t1

Agent 2
a b c

a 10 0 k
b 0 2 0
c k 0 10

(b)

A
g

en
t1

Agent 2
a b c

a 11 -30 0
b -30 14/0 6
c 0 0 5

(c)

A
g

en
t1

Agent 2
a b c

a 10/12 5/-65 8/-8
b 5/-65 14/0 12/0
c 5/-5 5/-5 10/0

(d)

Table 1: Joint reward matrices for the Climbing Game
(a), Penalty Game (b), Partially Stochastic Game (c), and
the Fully Stochastic Game (d). In the stochastic games,
the first reward is returned with probabilityp, and the
second reward is returned with probability 1− p.

rithms are not new: reinforcement learning and FMQ
have been previously analyzed, in particular in [10]. We
chose reinforcement learning as a standard benchmark,
while FMQ appears to be one of the stronger algorithms
to date. We devised the other two algorithms based on
the notion of lenience of an agent towards its teammates.

4.1 Reinforcement learning

Reinforcement learning techniques are concerned with
maximizing an agent’s reward as it interacts with com-
plex and possibly unknown environments [20]. RL takes
inspiration from dynamic programming to define formu-
las to update the utility of performing actions while in
various states. In the case of onlyonestate (as in the
Climbing and Penalty games), [11] reduces RL’s update
equation to:

U(αi) = λ ∗U(αi)+ (1−λ)∗R(αi) (1)

αi is the agent’s chosen action,R(αi) the reward it re-
ceives,U(αi) is the utility of actionαi , and 0≤ λ ≤ 1 is
the learning rate.

Agents employ Boltzman action selection to balance
between exploration of alternatives and exploitation of
actions with higher utility [8]. Each actionαi is chosen
with a probability based on the estimated utility of that
action:

P(αi) =
eU(αi)/T

∑

α ′ eU(α ′)/T

whereT is a temperature parameter that starts high and
decreases with time. High temperatures allow for more
exploration as the contribution of the utility estimate is
minimized, while very low temperatures result in the
agent always selecting its better action.

4.2 FMQ Heuristic

The Frequency Maximum Q-Value (FMQ) heuristic is an
extension of reinforcement learning that alters the prob-
abilities of selecting actions [9]. The algorithm uses an
optimistic estimation (EV) for the utility of an action,
defined as

EV(α) = U(α)+c∗ f req(max(R(α)))∗max(R(α))

wheremax(R(α)) is the maximum reward receivedso
far for choosing actionα, f req(max(R(α))) is the frac-
tion of times thatmax(R(α)) has been received over all
the times that actionα was executed, andc is a weight
that controls the importance of the FMQ heuristic in
the action selection. An agent learning using the FMQ
heuristic chooses his actions according to the Boltzman
action selection procedure updated to use the optimistic
evaluations of utilities:

P(αi) =
eEV(αi)/T

∑

α ′ eEV(α ′)/T

If the two FMQ agents miscoordinate, not only will they
receive a suboptimal reward, but they also decrease the
frequency of observing the maximum reward for the ac-
tions they have chosen. This decreases the likelihood that
that action will be selected in the future.

4.3 Lenient Multiagent Reinforcement
Learning

In an accompanying paper, we propose another RL algo-
rithm , the Lenient Multiagent Reinforcement Learning
(LMRL), which selectively updates the utilities of ac-
tions based onsomeof the rewards. It is implemented
as follows. We always update the utility of the action if
the current reward exceeds the utility of the action. Oth-
erwise, the utility is update with a probability based on

3

a current per-actiontemperature. If the temperature as-
sociated with an action is high, then agent is “lenient”
towards low-reward pairings and so it does not update
its utility to reflect them. At a lower temperature, low-
reward pairings are added to the utility with greater fre-
quency.

The temperature of an action is decreased slightly ev-
ery time that action is selected. As a consequence, ac-
tions that have been chosen more often have their util-
ities updated more often as well, while the utilities for
actions that have been chosen rarely are mainly updated
in response to higher rewards. This initially leads to an
overoptimistic evaluation of the utility of an action. An
agent may thus be temporarily fooled into choosing sub-
optimal actions. However, the utilities of such actions
will decrease with time, and the agent is more likely to
end up choosing the optimal action. There is also a small
(0.01) probability of ignoring small rewards at all times:
we found this to work in our experimental setup because
the agents have non-zero probabilities of selecting an ac-
tion at each time step.

Aside from these enhancements, the algorithm follows
a traditional RL approach, including the Boltzman action
selection based on the utility of each actions. The pseu-
docode for the algorithm is as follows:

Lenient Multiagent RL
Parameters

MaxTemp: maximum temperature
α: temperature multiplication coefficient
β : exponent coefficient
δ : temperature decay coefficient
λ : learning rate
N: number of actions

Initial Settings
For each actioni

Ui = random()∗0.001
Tempi = MaxTemp

Algorithm
Repeat

// Action Selection
T = 10−6+minN

i=1Tempi
Wi = e(Ui/T)

PN
j=1 e(Uj /T)

Use probability distributionW1, ...,WN

to select actioni
Tempi = Tempi ∗ δ

// Utility Update
Perform actioni and observe rewardr
If (Ui ≤ r) or

(

random() < 10−2+ β−α∗Tempi
)

Then
Ui = λ ∗Ui +(1−λ)∗ r

4.4 Lenient Evolutionary Algorithm

Evolutionary algorithms (EAs) are stochastic search
techniques inspired by natural evolution [4]. EAs main-
tain a set of samples in the search space (typically re-
ferred to as a “population” of “individuals”). Each such
individual is assigned a “fitness” (the quality of the indi-
vidual). EAs then form a new population by repeatedly
selecting, copying and modifying the highly fit individ-
uals in the current population. The new population re-
places the old one, and the cycle of fitness assessment
and breeding continues until a termination criterion is
met. Each iteration of this cycle is known as a “gen-
eration.” See [4, 15] for a more detailed discussion of
evolutionary algorithms.

Cooperative Coevolutionary Algorithms (CCEAs) ap-
ply EAs to concurrent learning processes. A CCEA em-
ploys not one but multiple (for our purposes, two) pop-
ulations, each evolving independently. CCEAs team up
populations to evaluate them together. We propose a new
EA that, like CCEAs, evaluates individuals (representing
actions) in combination with actions not just the other
populations, but from other learning algorithms (such as
RL or another EA).

This EA also allows an agent (individual) to show
varying degrees of lenience to its teammate. For this
purpose, the entire population is cloned multiple times
and shuffled, and each clone is evaluated with an ac-
tion chosen by the teammates. As the teammate is also
co-adapting, the particular action it chooses may change
at any time. The extra clones of the population are re-
quired only for evaluations and may be discarded after-
wards. After each clone of an action receives multiple
rewards, these rewards are aggregated into a single fit-
ness for the original action. This fitness is computed as
the average of the betterK rewards that were obtained.
Varying degrees of lenience are implemented by using
the average of fewer of the better rewards at early gen-
erations (thus ignoring more of the rewards observed for
an action). Initially, the best reward is used. As learn-
ing progresses, we compute the fitness as the average of
more and more “top” rewards, thus reducing the lenience
towards the teammate.

Fitness Assessment
Parameters

C : number of clones
K : lenience parameter (K ≤C)

Clone populationC times and perform shuffling
For each cloned action

Agent chooses that action and receives a reward
For each actioni

Fitness(i) = average of betterK rewards
received byi’s clones

4

5 Experimental Results

We ran each combination of learning algorithms in the
four cooperative games. Experiments consisted of 30 tri-
als of 1000 runs each. Each run lasted for 7500 joint
action selections and their rewards. We setk = −10 in
the Penalty game. For all the reinforcement learning al-
gorithms,T = T ∗ 0.9995 andλ = 0.95. For FMQ, we
set c = 10; LMRL usedα = 2 andβ = 2.5. For the
lenient evolutionary algorithm, we used a population of
size 10, and the evolution lasted for 150 generations; we
also setC = 5 clones per population, andK started at
1 and increased every 15 generations until reaching the
maximum value of 5. The lenient EA employed selec-
tion via binary tournament, and breeding randomized the
action with probability 0.001.

Tables 2, 3, 4, and 5 show the results for the Climb-
ing and the Penalty domains, as well as for the partially
and fully stochastic versions of the Climbing domain, re-
spectively. The tables are symmetric — the values under
the main diagonal are left blank for increased clarity. At
the end of each run we determined if the converged joint
action was optimal. We then computed the number of
runs (out of 1000) that converged to the joint action, and
averaged over 30 trials.

In the Climbing game (Table 2), all but three learning
teams discovered the optimal action more than 91% of
the time. The reasons: RL-RL’s use of all rewards caused
it to be attracted occasionally to(b,c). RL-LMRL in
turn was attracted to(c,c) and EA-EA to(b,b). Overall,
FMQ and LMRL were the best learners in the Climbing
domain, and they also did well when combined with one
another. FMQ had a slight edge over LMRL as it also
performed very well when teamed with RL.

All teams discovered the optimal strategy more than
98% of time in the Penalty game (Table 3). This im-
provement in performance was partly due to the fact that
the Penalty game has twice the number of optimal solu-
tions to which learning may converge.

The results for the partially stochastic Climbing game
(Table 4) were similar (although more extreme) to the
ones in the deterministic Climbing game from Table 2.
FMQ and LMRL were again the “smarter” algorithms:
they found the optimal joint action in almost all runs
when paired with themselves or each other. FMQ was
also able to help RL converge to the optimum, but LMRL
could achieve that in almost any run. The EA algorithm
deteriorated significantly across the board.

So far, FMQ has done well when partnered with most
other algorithms. But Table 5 shows a different re-
sult. Only one pair (LMRL-LMRL) efficiently solved
this problem. But more importantly,every method but
EA did best by far when paired with itself.In general,
heterogeneous parings performed very poorly! Notably,

RL FMQ LMRL EA

RL 462.7 999.8 468.9 913.5
FMQ – 999.9 999.9 910.2
LMRL – – 991.6 913.4
EA – – – 837.3

Table 2: Average number of iterations (out of 1000) that
converged to the joint action for the Climbing game.

RL FMQ LMRL EA

RL 999.8 1000.0 999.5 998.2
FMQ – 1000.0 1000.0 998.3
LMRL – – 1000.0 997.4
EA – – – 985.3

Table 3: Average number of iterations (out of 1000) that
converged to the joint action for the Penalty game.

while FMQ helped RL in the partially stochastic game, in
the fully stochastic game FMQhindersRL compared to
RL-RL (and for that matter, FMQ-FMQ). That is to say,
the claim in [11] that the “smarter” FMQ algorithm can
help poorer RL find the optima must change to “FMQ
hinders RL’s attempts to converge to the optimum for this
problem domain (and vice-versa).”

We finish with illustrations of miscoordination. Figure
1 shows an example run from the generally failed pairing
of LMRL and RL in the partially stochastic game. RL
incorporates all rewards into the utility estimates, which
results in early convergence to low utilities for both the
a and b actions, and a preference forc throughout the
search. LMRL is initially optimistic abouta and espe-
cially aboutb, but if cannot recover from RL’s lock onto
c and it eventually settles onc itself.

In Figure 2, LMRL in the fully stochastic game is sim-
ilarly unable to recover from FMQ’s premature conver-
gence to low (optimistic) estimations for the utilities of
botha andb. Compare this to the typical successful pair-
ing of LMRL with itself in this game (Figure 3). Here,
both agents explore the space long enough that, after re-
covering from initial over-optimism due to exaggerated
lenience, they correctly identify the true utility of the op-
timal joint action(a,a).

6 Conclusions

We extended the work in [11] to include two new learn-
ing algorithms that exhibit lenience toward teammates,
as well as a difficult coordination game characterized by
stochastic rewards for every joint action. The experi-
ments indicate that only the lenient multiagent reinforce-
ment learning algorithm can achieve near-optimal perfor-

5

RL

-30

-25

-20

-15

-10

-5

 0

 5

 10

 15

 0 1000 2000 3000 4000 5000 6000 7000 8000

U
til

ity
 V

al
ue

Number of Moves

a
b
c

LMRL

-30

-25

-20

-15

-10

-5

 0

 5

 10

 15

 0 1000 2000 3000 4000 5000 6000 7000 8000

U
til

ity
 V

al
ue

Number of Moves

a
b
c

Figure 1: Utility of each agent’s three actions for a pair of RL-LMRL learners in an instance of the partially stochastic
version of the Climbing domain. The team of agents convergesto the suboptimal joint action(c,c) which avoids
miscoordination penalties; each agent’s estimated utility for actionc reflects the correct reward of 5 for this joint
action.

LMRL

-30

-25

-20

-15

-10

-5

 0

 5

 10

 15

 0 1000 2000 3000 4000 5000 6000 7000 8000

U
til

ity
 V

al
ue

Number of Moves

a
b
c

FMQ

-30

-25

-20

-15

-10

-5

 0

 5

 10

 15

 0 1000 2000 3000 4000 5000 6000 7000 8000

U
til

ity
 V

al
ue

Number of Moves

a
b
c

Figure 2: Utility of each agent’s three actions for a pair of LMRL-LMRL learners in an instance of the partially
stochastic version of the Climbing domain. LMRL starts withoptimistic estimations for the utilities of the actions;
as lenience toward the teammate is decreased, so do some of the utilities. Ultimately, the two learning algorithms
converge to the(b,c) joint action. Both agents have an accurate estimate of 6 for the utility of this joint action.

LMRL

-30

-25

-20

-15

-10

-5

 0

 5

 10

 15

 0 1000 2000 3000 4000 5000 6000 7000 8000

U
til

ity
 V

al
ue

Number of Moves

a
b
c

LMRL

-30

-25

-20

-15

-10

-5

 0

 5

 10

 15

 0 1000 2000 3000 4000 5000 6000 7000 8000

U
til

ity
 V

al
ue

Number of Moves

a
b
c

Figure 3: Utility of each agent’s three actions for a pair of LMRL-LMRL learners in an instance of the fully stochastic
version of the Climbing domain. The team of agents convergesto the optimal joint action(a,a); each agent’s estimated
utility for actiona reflects the correct reward of 11 for this joint action.

6

RL FMQ LMRL EA

RL 468.5 998.4 0.8 218.5
FMQ – 999.8 998.1 419.9
LMRL – – 998.0 214.7
EA – – – 303.8

Table 4: Average number of iterations (out of 1000) that
converged to the joint action for the partially stochastic
game.

RL FMQ LMRL EA

RL 464.4 3.3 2.6 230.9
FMQ – 141.5 4.3 108.0
LMRL – – 928.5 235.1
EA – – – 197.0

Table 5: Average number of iterations (out of 1000) that
converged to the joint action for the stochastic game.

mance, and only when paired with itself. A good learner
cannot compensate if its teammate converges to a subop-
timal action. Contrary to the findings in [11], we find that
a pair of traditional RL algorithms performs better than
both an FMQ-FMQ pair, as well as a combination of an
FMQ and an RL learner. It isnot the case that FMQ, or
even the often-better LMRL, can compensate for a mis-
matched teammate algorithm.

The issue that remains is: are there well-defined
classes of problems and subsets of learning algorithms
for the teammate with which a given learning algorithms
works well? For example, exactly where and why does
FMQ pair well with various learners? This is not an easy
question to answer, but investigation along these lines
may reveal more clues about the relationship classes of
algorithms have with one another, and why some features
of algorithms may be at odds with features of other algo-
rithms. Until then we must recommend a homogeneous
approach to multiagent learning, if given the choice.

References

[1] R. Axelrod. The evolution of strategies in the iter-
ated prisoner’s dilemma. In L. Davis, editor,Ge-
netic Algorithms and Simulated Annealing, pages
32 – 41. Morgan Kaufman, 1987.

[2] M. H. Bowling and M. M. Veloso. Multiagent
learning using a variable learning rate.Artificial
Intelligence, 136(2):215–250, 2002.

[3] C. Claus and C. Boutilier. The dynamics of rein-
forcement learning in cooperative multiagent sys-
tems. InProceedings of National Conference on

Artificial IntelligenceAAAI/IAAI, pages 746–752,
1998.

[4] K. De Jong.Evolutionary Computation: A unified
approach. MIT Press, 2005.

[5] T. Haynes, S. Sen, D. Schoelnefeld, and R. Wain-
wright. Evolving multiagent coordination strategies
with genetic programming.Artificial Intelligence,
1995.

[6] J. Hu and M. Wellman. Multiagent reinforce-
ment learning: theoretical framework and an algo-
rithm. InProceedings of the Fifteenth International
Conference on Machine Learning, pages 242–250.
Morgan Kaufmann, San Francisco, CA, 1998.

[7] P. Husbands and F. Mill. Simulated coevolution as
the mechanism for emergent planning and schedul-
ing. In R. Belew and L. Booker, editors,Proceed-
ings of the Fourch International Conference on Ge-
netic Algorithms, pages 264–270. Morgan Kauf-
mann, 1991.

[8] L. P. Kaelbling, M. L. Littman, and A. W. Morre.
Reinforcement learning: A survey.Journal of Arti-
ficial Intelligent Research, 4, 1996.

[9] S. Kapetanakis and D. Kudenko. Improving on the
reinforcement learning of coordination in cooper-
ative multi-agent systems. InProceedings of the
Second Symposium on Adaptive Agents and Multi-
agent Systems, 2002.

[10] S. Kapetanakis and D. Kudenko. Reinforcement
learning of coordination in cooperative multi-agent
systems. InProceedings of the Nineteenth National
Conference on Artificial Intelligence (AAAI02),
2002.

[11] S. Kapetanakis and D. Kudenko. Reinforcement
learning of coordination in heterogeneous cooper-
ative multi-agent systems. InProceedings of the
Third Autonomous Agents and Multi-Agent Systems
Conference (AAMAS 2004), 2004.

[12] M. Lauer and M. Riedmiller. An algorithm
for distributed reinforcement learning in coopera-
tive multi-agent systems. InProceedings of the
Seventeenth International Conference on Machine
Learning, pages 535–542. Morgan Kaufmann, San
Francisco, CA, 2000.

[13] M. Littman. Markov games as a framework for
multi-agent reinforcement learning. InProceed-
ings of the 11th International Conference on Ma-
chine Learning (ML-94), pages 157–163, New
Brunswick, NJ, 1994. Morgan Kaufmann.

7

[14] S. Luke, C. Hohn, J. Farris, G. Jackson, and
J. Hendler. Co-evolving soccer softbot team coor-
dination with genetic programming. InRoboCup-
97: Robot Soccer World Cup I (Lecture Notes in AI
No. 1395), pages 398–411, Berlin, 1998. Springer-
Verlag.

[15] M. Mitchell. An Introduction to Genetic Algo-
rithms. MIT Press, 2001.

[16] L. Panait and S. Luke. Cooperative multi-agent
learning: The state of the art.Autonomous Agents
and Multi-Agent Systems, 11(3), 2005.

[17] L. Panait, R. P. Wiegand, and S. Luke. Improv-
ing coevolutionary search for optimal multiagent
behaviors. InProceedings of the Eighteenth Inter-
national Joint Conference on Artificial Intelligence
(IJCAI), pages 653–658, Acapulco, Mexico, 2003.
Morgan Kaufmann.

[18] M. Potter. The Design and Analysis of a Compu-
tational Model of Cooperative CoEvolution. PhD
thesis, George Mason University, Fairfax, Virginia,
1997.

[19] T. Riechmann. Genetic algorithm learning and evo-
lutionary games.Journal of Economic Dynamics &
Control, 25:1019 – 1037, 2001.

[20] R. S. Sutton and A. G. Barto.Reinforcement Learn-
ing: An Introduction. The MIT Press, 1998.

[21] K. Verbeeck, A. Nowe, M. Peeters, and K. Tuyls.
Multi-agent reinforcement learning in stochastic
single and multi-stage games. In D. Kudenko,
D. Kazakov, and E. Alonso, editors,Adaptive
Agents and Multi-agent Systems III: Adaption and
Multi-Agent Learning, Lecture Notes in Computer
Science, pages 275 – 294. Springer-Verlag, 2005.

[22] K. Verbeeck, A. Nowe, and K. Tuyls. Coordinated
exploration in stochastic common interest games.
In Proceedings of Third Symposium on Adaptive
Agents and Multi-agent Systems, pages 97 – 102,
2003.

[23] R. P. Wiegand. Analysis of Cooperative Coevo-
lutionary Algorithms. PhD thesis, Department
of Computer Science, George Mason University,
2003.

8

