Department of Computer Science 4400 University Drive MS#4A5

: . Fairfax, VA 22030-4444 USA
George Mason University http://cs.gmu.edu/

Technical Report Series 703-993-1530

Can Good L earners Always Compensate for Poor L earners?

Keith Sullivan Liviu Panait Gabriel Balan Sean Luke
ksulliv@cs.gmu.edu Ipanait@cs.gmu.edu gbalan@cs.gmu.edu sean@cs.gmu.edu

Technical Report GMU-CS-TR-2005-3

Abstract We are aware of only one paper that focuses on con-
current heterogeneous cooperative learners: [11] ana-

lyze different combinations of a traditional reinforce-

Can a good learner compensate for a poor learner wheghant learning algorithm and an extension called FMQ.
paired in a coordination game? Previous work has giveRrhe authors report that a two agent team using the tra-

an example where a special learning algorithm (FMQ) isgjtional algorithm cannot consistently learn the glob-
capable of doing just that when paired with a specific lessyjy optimal solution; however, the optimal solution is
capable algorithm even in games which stump the poores chieved when both agents use FMQ. Moreover, an agent

algorithm when paired with itself. In this paper, we argue sing FMQ can help another agent using the traditional
that this result is not general. We give a stralghtforwarda|gorithm to learn the global optimum in several coordi-

extension to the coordination game in which FMQ can-pation games. The authors thus conclude that a “smart”

not compensate for the lesser algorithm. We also providg, 5 ner (FMQ) can still be successful even when it must

other problematic pairings, and argue that another highy ok with less smart learners (the traditional algorithm).
quality algorithm cannot do so either.

We will argue this is not so. We extend the research in
[11] by including a difficult coordination game, as well
1 Introduction as two new algorithms. One of these algorithms is a mod-
ified evolutionary algorithm: this extends our analysis to
. _ _combinations with agents that may usetirely differ-
Concurrent _Iearnmg is a subset of coopergnve_multl-em learning techniques, not just variations of the same
agent learning where the overall problem is dividedoaning method. The results of the experiments indi-
into simpler subcomponents such that each agent eXs54e the opposite conclusion from that in [11]: in diffi-
plores its space of .act|ons with I|tt]e or no control over cult domains, good results are usually obtained only if
its teammate’s actions [16]. While concurrent leam-p, i, agents are “smart” enough. That is because it takes

€rs may converge to suboptlmal solutions d_ue t0 Copyih agents to converge to an optimal solution, and poor
adaptation and other pathologies, many algorithms havg,, . ars may force “smart’ ones to converge to subop-
attempted to solve these problems without a clear answej,,,4

[3, 10, 12, 17, 21].

Concurrent learning introduces a new wrinkle to mul-

tiagent machine learning: what if learners used entirely This rest of this paper is organized as follows: Section
different algorithms? This is not implausible: for ex- 2 presents related work, followed by an introduction to

ample, an agent (on the web, say) may not have contraingle-stage coordination games in Section 3. Section 4
over the other learning agents. But while recent researchtroduces the learning algorithms used for our analysis.
on learning in competitive games has addressed heterd-he experiments and their results are detailed in Section
geneous learners [2], the state of the artdoperative 5. Finally, Section 6 offers some conclusions and direc-
scenarios still involves homogeneous learners. tions for future research.

2 Related Work where all agents receive the same reward [3]. More
specifically, each agent independently chooses an action
Claus and Boutilier [3] show that a straightforward ap- from its action set, and the actions from all the agents
plication of reinforcement learning (RL) to concurrent are combined into int action All agents receive the
learning is not guaranteed to find the optimal solution,same reward or penalty depending on the joint action.
even in the case when agents are able to observe the othefiis process is repeated until (hopefully) agents learn
agents’ actions. The authors then suggest the seargh select better actions due to past interactions. We as-
could be improved by using more optimistic exploration sume that agents do not explicitty communicate or ob-
actions. This direction is further explored in [12], who serve teammates’ actions; the only feedback mechanism
update the utilities of actions based in part on the maxis the reward received for the agent’s action.
imum reward previously received when performing that Taple 1 shows four single-stage cooperative games:
action. Kapetanakis and Kudenko [10] observe that suclhe Climbing game and the Penalty game introduced in
biasing of utility computation may not work in domains [3], and partially stochastic and the fully stochastic vari
where the joint reward information is noisy. They pro- ations of the Climbing game as proposed in [10]. Re-
pose an improved multiagent reinforcement learning alsearchers have used these games extensively to highlight
gorithm called FMQ that uses the maximum reward re-the advantages of certain multiagent learning algorithms
ceived per action to bias the probability of choosing that(for example, [3, 10, 12, 17]). In the regular, partially
action. This improved algorithm shows advantages instochastic, and fully stochastic Climbing games, the op-
domains with limited amounts of nOise, but CrUCia”y its timal joint action is(a’ a), while the Pena|ty game has
performance is poor when there is a lot of noise. In [11],two optimal joint actions(a, a) and(c,c); we do not dis-
they apply FMQ to a concurrent environment, showingtinguish between these two global optima in the Penalty
that FMQ can compensate for a simple Q-learnerinenvigame. Note that in the partially stochastic and fully
ronments where the Q-learner performs poorly. Finally,stochastic games, the average reward for a joint action
Verbeeck et al [21, 22] propose coordinated restarts ofs the same as the plain reward for that same action in the
suboptimal learning algorithms in combination with ac- regular Climbing game.
tion exclusions (similar to tabu search) to guarantee con- gach of these games is challenging due to misco-
vergence to the globally optimal solution. But the restartsy,gination penalties. The Climbing game has a se-
may require a significantamount of time, and the converygre penalty for choosing actiewhen the other agent
gence to optima is guaranteed only if all Nash equilibriachooses actioh. However, there are no major misco-
are visited infinitely often. ordination penalties associated with actmmpotentially
Evolutionary computation (EC) has also been appliednaking it tempting for the agents. The Penalty game in-
to multiagent learning in domains such as RoboCup [14]¢roduces another miscoordination issue due to the pres-
iterated prisoners dilemma [1], single stage cooperagnce of multiple optimal joint actions. Simply choosing
tive games [19] and predator prey pursuit [S]. C00p-the optimal action is no guarantee that the other agent
erative coevolutionary algorithms (CCEAs) [7, 18] are || choose the same optimal action. If agents decide on
a common approach to concurrent evolutionary learning, third equilibrium,(b,b), they avoid low rewards asso-
agents. Weigand analyzed the conditions under whickjated with miscoordination.
coevolutionary systems gravitate towards suboptimal s0- The stochastic variations of the Climbing game add

lutions [23]. Panait et al [17] show that biasing the nqre complications due to the noisy reward function. As
CCEA to search for maximal rewards improves perfor-,gants cannot perceive their teammates’ actions, the dif-

mance on three problem domains, including two gameSgerent rewards they observe for the same action may be
Climbing and Penalty, which we discuss in the next secy e tg either (1) the other agent experimenting with mul-

tion. tiple actions, or (2) the noisy reward function. While the
highest reward of 14 is sometimes achieved when both
; ; agents choose actidn they need to learn to separate the
3 S ngle-Stage Cooper ative effects of (1) and (2), and to realize that the average re-
Games ward for the joint actiorib, b) is lower than that ofa, a).

Markov decision processes (MDPs) are widely used in

multiagent reinforcement learning to account for theg Learning Algorithms
presence of other agents in the environment [6, 13].

Single-stage cooperative gamese a variation of MDPs e experiment with four learning algorithms: three vari-

1Sometimes referred to as common interest games, coopﬂerativat_ionS of reinforceme_m learning, and a genetic algorithm
games, or coordination games. with a novel evaluation procedure. Two of these algo-

Agent 2 a; is the agent’s chosen actioR(a;) the reward it re-

. | a b ¢ ceivesU (o) is the utility of actionai, and 0< A < 1is
= a1l -30 0 the learning rate.
¢ b|-30 7 6 Agents employ Boltzman action selection to balance
< c| O 0 5 between exploration of alternatives and exploitation of
(a) actions with higher utility [8]. Each action; is chosen
with a probability based on the estimated utility of that
Agent 2 action:
la b ¢ gJ(a)/T
Za[10 0 k P(ai) = S a@
gt;) 2 g S 1% whereT is a temperature parameter that starts high and
(b) decreases with time. High temperatures allow for more
exploration as the contribution of the utility estimate is
Agent 2 minimized, while very _Iow tempere_ltures result in the
a b c agent always selecting its better action.
“ a1l -30 O o
§) b|-30 14/0 6 4.2 FMQ Heuristic
<c| o0 0 5 The Frequency Maximum Q-Value (FMQ) heuristic is an
(©) extension of reinforcement learning that alters the prob-
Agent 2 abillitigs.of se!ectir_lg actions [9]. Th_e. algorithm uses an
| a b . opt!m|st|c estimation EV) for the utility of an action,
o a| 1072 565 818 defined as
o b 5-65 14/0 12/0 EV(a) =U(a)+cx* freq(max(R(a))) « max(R(a
g b|ges Lo 120 (o) = U(@r) +c+ freq(max(R(a))) max(R(a))

(d) wheremax(R(a)) is the maximum reward receivesd
far for choosing actiom, freq(max(R(a))) is the frac-
Table 1: Joint reward matrices for the Climbing Gametion of times thamaxR(a)) has been received over all
(), Penalty Game (b), Partially Stochastic Game (c), anghe times that actior was executed, andis a weight
the Fully Stochastic Game (d). In the stochastic gameshat controls the importance of the FMQ heuristic in
the first reward is returned with probabilify, and the the action selection. An agent learning using the FMQ
second reward is returned with probability-Ip. heuristic chooses his actions according to the Boltzman
action selection procedure updated to use the optimistic
evaluations of utilities:

rithms are not new: reinforcement learning and FMQ eEV(a)/T

have been previously analyzed, in particular in [10]. We P(ai) = S V@t

chose reinforcement learning as a standard benchmark, al

while FMQ appears to be one of the stronger algorithmdf the two FMQ agents miscoordinate, not only will they

to date. We devised the other two algorithms based omeceive a suboptimal reward, but they also decrease the

the notion of lenience of an agent towards its teammatedrequency of observing the maximum reward for the ac-
tions they have chosen. This decreases the likelihood that

. . that action will be selected in the future.
4.1 Reinforcement learning

Reinforcement learning techniques are concerned wit4,3 | enient Multiagent Reinforcement
maximizing an agent’s reward as it interacts with com- L earning

plex and possibly unknown environments [20]. RL takes
inspiration from dynamic programming to define formu- In an accompanying paper, we propose another RL algo-
las to update the utility of performing actions while in rithm , the Lenient Multiagent Reinforcement Learning
various states. In the case of ordpestate (as in the (LMRL), which selectively updates the utilities of ac-
Climbing and Penalty games), [11] reduces RL's updatdions based osomeof the rewards. It is implemented

equation to: as follows. We always update the utility of the action if
the current reward exceeds the utility of the action. Oth-
U(ai) =AU ()4 (1—A)*=R(ai) (1) erwise, the utility is update with a probability based on

a current per-actiotemperature If the temperature as- 4.4 Lenient Evolutionary Algorithm
sociated with an action is high, then agent is “lenient”

towards low-reward pairings and so it does not updatgyo|ytionary algorithms (EAs) are stochastic search
its utility to reflect them. At a lower temperature, low- techniques inspired by natural evolution [4]. EAs main-
reward pairings are added to the utility with greater fre-i5in 3 set of samples in the search space (typically re-
quency. o) ferred to as a “population” of “individuals”). Each such
The temperature of an action is decreased slightly evingividual is assigned a “fitness” (the quality of the indi-
ery time that action is selected. As a consequence, agjidual). EAs then form a new population by repeatedly
tions that have been chosen more often have their Ut”SeIecting, copying and modifying the highly fit individ-
ities updated more often as well, while the utilities for ;515 in the current population. The new population re-
actions that have been chosen rarely are mainly updategiaces the old one, and the cycle of fitness assessment
in response to higher rewards. This initially leads to anang preeding continues until a termination criterion is
overoptimistic evaluation of the utility of an action. An et Each iteration of this cycle is known as a “gen-

agent may thus be temporarily fooled into choosing subgration.” See [4, 15] for a more detailed discussion of
optimal actions. However, the utilities of such actions eyo|ytionary algorithms.

will decrease with time, and the agent is more likely to . luti laorith
end up choosing the optimal action. There is also a small Cooperative Coevolutionary Algorithms (CCEAs) ap-

(0.01) probability of ignoring small rewards at all times: ply EAs to concurrent learning processes. A CCEA em-

we found this to work in our experimental setup becausd!©YS Not one but multiple (for our purposes, two) pop-
the agents have non-zero probabilities of selecting an ac!ations, €ach evolving independently. CCEAs team up
tion at each time step. populauo_nsto evaluate them togeth(_ar. We propose anew

Aside from these enhancements, the algorithm followng_that’ I_|ke CCE_AS' _evalu_ates |n_d|V|duaIs_(representlng
a traditional RL approach, including the Boltzman actionaCt'OnS)_ in combination with act!ons not .JUSt the other
selection based on the utility of each actions. The pseupopulatlons, but from other learning algorithms (such as
docode for the algorithm is as follows: RL or another EA).

This EA also allows an agent (individual) to show
varying degrees of lenience to its teammate. For this
purpose, the entire population is cloned multiple times
and shuffled, and each clone is evaluated with an ac-
tion chosen by the teammates. As the teammate is also
co-adapting, the particular action it chooses may change
at any time. The extra clones of the population are re-
quired only for evaluations and may be discarded after-
wards. After each clone of an action receives multiple
rewards, these rewards are aggregated into a single fit
ness for the original action. This fitness is computed as
the average of the bett& rewards that were obtained.
Varying degrees of lenience are implemented by using
the average of fewer of the better rewards at early gen-
erations (thus ignoring more of the rewards observed for
an action). Initially, the best reward is used. As learn-
ing progresses, we compute the fitness as the average of
more and more “top” rewards, thus reducing the lenience

Lenient Miultiagent RL
Parameters
MaxTemp maximum temperature
o: temperature multiplication coefficient
B: exponent coefficient
J: temperature decay coefficient
A: learning rate
N: number of actions
Initial Settings
For each actiom
Ui = random() « 0.001
Temp= MaxTemp
Algorithm
Repeat

/I Action Selection
T=105+minY,Temp

_ du/m

| = W towards the teammate.
Use probability distributiomV, ..., Wy Fi t ness Assessnent

to select action Parameters
Temp=Temp* o C : number of clones

K : lenience parameteK(< C)

/I Utility Update Clone populatiorC times and perform shuffling
Perform action and observe rewand For each cloned action
If (Ui<r)or Agent chooses that action and receives a reward

(randony) < 102+ B~9*TeMR) Then For each actioi

U =AxUi+(1—-A)x*r Fitnesgi) = average of bette rewards

received byi’s clones

5 Experimental Results | [RL[FMQ | LMRL | EA|

RL 462.7| 999.8| 468.9| 9135
We ran each combination of learning algorithms in the FMQ — 19999 999.9] 910.2
four cooperative games. Experiments consisted of 30 tri- LMRL — — | 991.6| 913.4
als of 1000 runs each. Each run lasted for 7500 joint EA _ _ 18373

action selections and their rewards. We lset —10 in
the Penalty game. For all the reinforcement learning al-Table 2: Average number of iterations (out of 1000) that
gorithms, T =T % 0.9995 andA = 0.95. For FMQ, we converged to the joint action for the Climbing game.
setc = 10; LMRL useda =2 andf3 = 2.5. For the

lenient evolutionary algorithm, we used a population of | | RL | FMQ | LMRL | EA |

size 10, and the evolution lasted for 150 generations; we RL 99981 10000] 9995 9982

also setC = 5 clones per population, arid started at FMO — 110000 1000.0| 9983

1 and increased every 15 generations until reaching the MRL — — 1 1000.0] 9974
maximum value of 5. The lenient EA employed selec- EA — — — 19853

tion via binary tournament, and breeding randomized the

action with probability 0.001. Table 3: Average number of iterations (out of 1000) that

Tables 2, 3, 4, and 5 show the results for the Climb-converged to the joint action for the Penalty game.
ing and the Penalty domains, as well as for the partially
and fully stochastic versions of the Climbing domain, re-
spectively. The tables are symmetric — the values undewhile FMQ helped RL in the partially stochastic game, in
the main diagonal are left blank for increased clarity. Atthe fully stochastic game FM@indersRL compared to
the end of each run we determined if the converged joinRL-RL (and for that matter, FMQ-FMQ). That is to say,
action was optimal. We then computed the number ofthe claim in [11] that the “smarter” FMQ algorithm can
runs (out of 1000) that converged to the joint action, andhelp poorer RL find the optima must change to “FMQ
averaged over 30 trials. hinders RL's attempts to converge to the optimum for this

In the Climbing game (Table 2), all but three learning problem domain (and vice-versa)."
teams discovered the optimal action more than 91% of We finish with illustrations of miscoordination. Figure
the time. The reasons: RL-RL's use of all rewards caused shows an example run from the generally failed pairing
it to be attracted occasionally td,c). RL-LMRL in of LMRL and RL in the partially stochastic game. RL
turn was attracted tec,c) and EA-EA to(b,b). Overall, incorporates all rewards into the utility estimates, which
FMQ and LMRL were the best learners in the Climbing results in early convergence to low utilities for both the
domain, and they also did well when combined with onea and b actions, and a preference forthroughout the
another. FMQ had a slight edge over LMRL as it alsosearch. LMRL is initially optimistic aboua and espe-
performed very well when teamed with RL. cially aboutb, but if cannot recover from RL's lock onto

All teams discovered the optimal strategy more thanc and it eventually settles anitself.

98% of time in the Penalty game (Table 3). This im- In Figure 2, LMRL in the fully stochastic game is sim-
provement in performance was partly due to the fact thatlarly unable to recover from FMQ’s premature conver-
the Penalty game has twice the number of optimal solugence to low (optimistic) estimations for the utilities of
tions to which learning may converge. bothaandb. Compare this to the typical successful pair-

The results for the partially stochastic Climbing gameing of LMRL with itself in this game (Figure 3). Here,
(Table 4) were similar (although more extreme) to theboth agents explore the space long enough that, after re-
ones in the deterministic Climbing game from Table 2.covering from initial over-optimism due to exaggerated
FMQ and LMRL were again the “smarter” algorithms: lenience, they correctly identify the true utility of the-op
they found the optimal joint action in almost all runs timal joint action(a, a).
when paired with themselves or each other. FMQ was
also able to help RL converge to the optimum, but LMRL
could achieve that in almost any run. The EA algorithm®6 Conclusions
deteriorated significantly across the board.

So far, FMQ has done well when partnered with mostWe extended the work in [11] to include two new learn-
other algorithms. But Table 5 shows a different re-ing algorithms that exhibit lenience toward teammates,
sult. Only one pair (LMRL-LMRL) efficiently solved as well as a difficult coordination game characterized by
this problem. But more importantlgvery method but stochastic rewards for every joint action. The experi-
EA did best by far when paired with itselfn general, ments indicate that only the lenient multiagent reinforce-
heterogeneous parings performed very poorly! Notablymentlearning algorithm can achieve near-optimal perfor-

15

RL

10

Utility Value

20

25 |

30 L

0 1000

2000

3000 4000
Number of Moves

5000

6000

7000

Utility Value

LMRL

1000

2000

3000

4000
Number of Moves

5000

6000

7000 8000

Figure 1: Utility of each agent’s three actions for a pair @FEMRL learners in an instance of the partially stochastic
version of the Climbing domain. The team of agents convergeke suboptimal joint actiofic,c) which avoids
miscoordination penalties; each agent’s estimated yfitit actionc reflects the correct reward of 5 for this joint

action.

15

LMRL

210 -

Utility Value

25 |

30 L

0 1000

2000

3000 4000
Number of Moves

5000

6000

7000

Utility Value

FMQ

L
1000

L
2000

L
3000

1
4000
Number of Moves

L
5000

L
6000

L
7000 8000

Figure 2: Utility of each agent’s three actions for a pair ®RL-LMRL learners in an instance of the partially
stochastic version of the Climbing domain. LMRL starts waiitimistic estimations for the utilities of the actions;
as lenience toward the teammate is decreased, so do some wfilifies. Ultimately, the two learning algorithms
converge to théb, ¢) joint action. Both agents have an accurate estimate of Géoutility of this joint action.

LMRL

Utility Value

15 b

20

25 b

-30

L
0 1000

L
2000

L L
3000 4000
Number of Moves

L
5000

L
6000

L
7000

Utility Value

LMRL

0

L
1000

L
2000

L
3000

L
4000
Number of Moves

L
5000

L
6000

L
7000 8000

Figure 3: Utility of each agent’s three actions for a pair MRL-LMRL learners in an instance of the fully stochastic
version of the Climbing domain. The team of agents convergtee optimal joint actioria, a); each agent’s estimated

utility for action a reflects the correct reward of 11 for this joint action.

| [RL| FMQ[LMRL | EA |
RL 4685 998.4 0.8 2185
FMQ — 1 999.8| 998.1] 419.9
LMRL - — | 098.0] 214.7
EA - - — 13038

Table 4: Average number of iterations (out of 1000) that
converged to the joint action for the partially stochastic

game.
| [RL| FMQ[LMRL | EA |
RL 464.4] 3.3 2.6] 230.9
FMQ — 1415 431080
LMRL - — | 9285 235.1
EA = = —1197.0

Table 5: Average number of iterations (out of 1000) that

converged to the joint action for the stochastic game.

mance, and only when paired with itself. A good learner

[4]

Artificial IntelligenceAAAI/IAA] pages 746—752,
1998.

K. De Jong. Evolutionary Computation: A unified
approach MIT Press, 2005.

5] T. Haynes, S. Sen, D. Schoelnefeld, and R. Wain-

[6]

[7]

cannot compensate if its teammate converges to a subop-

timal

action. Contrary to the findings in [11], we find that

a pair of traditional RL algorithms performs better than

both

an FMQ-FMQ pair, as well as a combination of an

FMQ and an RL learner. It inotthe case that FMQ, or
even the often-better LMRL, can compensate for a mis- [9] S. Kapetanakis and D. Kudenko. Improving on the
matched teammate algorithm.

Th

e issue that remains is:

are there well-defined

(8]

classes of problems and subsets of learning algorithms

for the teammate with which a given learning algorithms

;[10]

work

FMQ pair well with various learners? This is not an eas

s well? For example, exactly where and why doe

guestion to answer, but investigation along these lines
may reveal more clues about the relationship classes of
algorithms have with one another, and why some features

of algorithms may be at odds with features of other algo-

rithms. Until then we must recommend a homogeneous1 1]
approach to multiagent learning, if given the choice.

Ref

erences

[1] R. Axelrod. The evolution of strategies in the iter- [12]

(2]

(3]

ated prisoner’s dilemma. In L. Davis, edit@e-
netic Algorithms and Simulated Annealjngages
32 — 41. Morgan Kaufman, 1987.

M. H. Bowling and M. M. Veloso. Multiagent
learning using a variable learning ratértificial
Intelligence 136(2):215-250, 2002.

C. Claus and C. Boutilier. The dynamics of rein-
forcement learning in cooperative multiagent sys-
tems. InProceedings of National Conference on

(13]

wright. Evolving multiagent coordination strategies
with genetic programmingArtificial Intelligence
1995.

J. Hu and M. Wellman. Multiagent reinforce-
ment learning: theoretical framework and an algo-
rithm. In Proceedings of the Fifteenth International
Conference on Machine Learnipgages 242-250.
Morgan Kaufmann, San Francisco, CA, 1998.

P. Husbands and F. Mill. Simulated coevolution as
the mechanism for emergent planning and schedul-
ing. In R. Belew and L. Booker, editorBroceed-
ings of the Fourch International Conference on Ge-
netic Algorithms pages 264-270. Morgan Kauf-
mann, 1991.

L. P. Kaelbling, M. L. Littman, and A. W. Morre.
Reinforcement learning: A surveyournal of Arti-
ficial Intelligent Research4, 1996.

reinforcement learning of coordination in cooper-
ative multi-agent systems. IRroceedings of the
Second Symposium on Adaptive Agents and Multi-
agent System2002.

S. Kapetanakis and D. Kudenko. Reinforcement
learning of coordination in cooperative multi-agent
systems. IrProceedings of the Nineteenth National
Conference on Artificial Intelligence (AAAIQ2)
2002.

S. Kapetanakis and D. Kudenko. Reinforcement
learning of coordination in heterogeneous cooper-
ative multi-agent systems. IRroceedings of the
Third Autonomous Agents and Multi-Agent Systems
Conference (AAMAS 2004)004.

M. Lauer and M. Riedmiller. ~ An algorithm
for distributed reinforcement learning in coopera-
tive multi-agent systems. IRroceedings of the
Seventeenth International Conference on Machine
Learning pages 535-542. Morgan Kaufmann, San
Francisco, CA, 2000.

M. Littman. Markov games as a framework for
multi-agent reinforcement learning. Rroceed-
ings of the 11th International Conference on Ma-
chine Learning (ML-94) pages 157-163, New
Brunswick, NJ, 1994. Morgan Kaufmann.

[14] S. Luke, C. Hohn, J. Farris, G. Jackson, and
J. Hendler. Co-evolving soccer softbot team coor-
dination with genetic programming. RoboCup-
97: Robot Soccer World Cup | (Lecture Notes in Al
No. 1395) pages 398-411, Berlin, 1998. Springer-
Verlag.

[15] M. Mitchell. An Introduction to Genetic Algo-
rithms MIT Press, 2001.

[16] L. Panait and S. Luke. Cooperative multi-agent
learning: The state of the arAutonomous Agents
and Multi-Agent System&1(3), 2005.

[17] L. Panait, R. P. Wiegand, and S. Luke. Improv-
ing coevolutionary search for optimal multiagent
behaviors. IrProceedings of the Eighteenth Inter-
national Joint Conference on Artificial Intelligence
(IJCAI), pages 653—658, Acapulco, Mexico, 2003.
Morgan Kaufmann.

[18] M. Potter. The Design and Analysis of a Compu-
tational Model of Cooperative CoEvolutiorPhD
thesis, George Mason University, Fairfax, Virginia,
1997.

[19] T. Riechmann. Genetic algorithm learning and evo-
lutionary gamesJournal of Economic Dynamics &
Control, 25:1019 — 1037, 2001.

[20] R. S. Sutton and A. G. Bart®einforcement Learn-
ing: An Introduction The MIT Press, 1998.

[21] K. Verbeeck, A. Nowe, M. Peeters, and K. Tuyls.
Multi-agent reinforcement learning in stochastic
single and multi-stage games. In D. Kudenko,
D. Kazakov, and E. Alonso, editorshdaptive
Agents and Multi-agent Systems Ill: Adaption and
Multi-Agent Learning Lecture Notes in Computer
Science, pages 275 — 294. Springer-Verlag, 2005.

[22] K. Verbeeck, A. Nowe, and K. Tuyls. Coordinated
exploration in stochastic common interest games.
In Proceedings of Third Symposium on Adaptive
Agents and Multi-agent Systenmages 97 — 102,
2003.

[23] R. P. Wiegand. Analysis of Cooperative Coevo-
lutionary Algorithms PhD thesis, Department
of Computer Science, George Mason University,
2003.

