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Abstract existing machine learning techniques because the con-
current learning processes are not independent. Con-
In concurrent cooperative multiagent learning, eachsider an agent that observes the environment containing
agent in a team simultaneously learns to improve thevther agents and that tries to improve its performance.
overall performance of the team, with no direct control This leads to a modification in its behavior. This modi-
over the actions chosen by its teammates. An agent’s adication is then sensed by the other agents, who change
tion selection directly influences the rewards received bytheir behaviors in order to improve their performance as
all the agents; this results in a co-adaptation among thvell. This “moves the goalpost” on the original agent:
concurrent learning processes. Co-adaptation can drivigs newly-learned behavior may no longer be appropri-
the team towards suboptimal solutions because agentge. Thus as the agents co-adapt to one another, the envi-
tend to select those actions that are rewarded better, withonment is essentially changing beneath the agents’ feet.
out any consideration for how such actions may affect theMoreover, the agent itself contributes directly to how the
search of their teammates. We argue that to counter thigindscape changes. Learning in the face of this dynamic
tendency, agents should also prefer actions that infornis not easy: such co-adaptation can result in cyclical
their teammates about the structure of the joint searclyr chaotic adaptive behavior, and may gravitate towards
space in order to help them choose from among variousuboptimal solutions.
action options. We analyze this approach in a coopera-

. ) Most cooperative multiagent learning algorithms as-
tive coevolutionary framework, and we propose a new al- . ]

. S sume the agents are rational: each agent searches for ac-
gorithm,oCCEA, that highlights the advantages of select-

- . : tions that fare well when used in combination with the
ing informative actions. We show thatCEA generally . : o
. . : actions currently favored by its teammates. This “best-
outperforms other cooperative coevolution algorithms on " .
response” approach usually results in the learners con-
our test problems. . o o N
verging to Nash equilibria. Such “rational” convergence
to equilibria may well be movement away from glob-
1 Introduction ally team-optimalsolutions [10, 19]. To counter this,
we argue that agents mualso explore actions that in-
rT{orm their teammates about the structure of the space of
rewards for joint actions. For example, if an agent identi-
fies an action that helps other agents rank their available
_actions better, the agent should explore that action to help
(guide the teammates’ learning processes.

Multi-agent learning is challenging because the proble
dynamics are often complex and fraught with local op-
tima. Of particular interest to us is cooperative multi-
agent learning, where multiple agents learn to work to
gether as a team to accomplish common goals [12]. Mor
specifically, we are interested in concurrent learning, Though we believe it to be general, we will demon-
where each agent performs its own learning and has littlstrate the application of this approach to a particular mul-
or no control over the other agents’ selection of actions.tiagent learning method of interest to us, namebpp-
Unfortunately, multi-agent learning is problematic for erative coevolutiorj7, 18]. Coevolution is the use of



evolutionary computation learning techniques in a multi-The paper concludes with a brief discussion of our find-
agent setting. Ordinarily, evolutionary computation em-ings, accompanied by directions for future work.

ploys only a single learner to discover a global solution

to an optimization problem: the learner first creates an

initial pool of randomly-generated candidate solutions (a2 Related Wor k

“population” of “individuals”), then assesses their qual-

ity (*fitness”) independently of one another, then forms Two learning algorithms that are guaranteed to find the
a new population of individuals through iteratively se- globally optimal joint action in a stateless environment
lecting, copying, and modifying (“breeding”) individu- are proposed in [1]. Both algorithms have two phases:
als from the previous population with an emphasis onagents first explore the entire space of joint actions (ei-
the fitter members of that previous population. The newther deterministically or randomly); this is followed by
population replaces the old one, and this cycle of fit-a greedy selection of only the action (one per agent)
ness assessment, breeding, and population replacemenkt returned the highest reward. Both algorithms find
repeats until a sufficiently fit individual is discovered or the global optimum in polynomial time in the number
until resources have expired. Each iteration of this cycleof actions for each agent. However, scaling these algo-
is known as a “generation”. rithms to environments with states or with possibly infi-
Cooperative coevolutionary algorithms (CCEAs), in nite numbers of actions per agent may be problematic.
the form we will discuss here, use not one but multi- Instead of choosing actions deterministically or ran-
ple populations, each involved in its own separate learndomly, Claus and Boutilier [5] argue that agents should
ing cycle of fitness assessment, population formationbe more optimistic about their teammates: an agent
and population replacement. However, individuals in ashould not prefer actions that do well in the context of the
given population are no longer assessed independentlyctions currently preferred by its teammates, but rather
but rather in the context of individuals chosen from thethe agent should prefer actions that do well in the con-
other populations. Each population represents a sultext of better actions that its teammates might learn. The
component of a full solution to the problem, and as partapplication of this heuristic assumption results in addi-
of its fitness assessment, an individual in a given poputional multiagent reinforcement learning algorithms for
lation may be evaluated only by combining it with one stateless environments, such as the ones in [9, 8]. Unfor-
individual from each of the other populations to form a tunately, scaling these algorithms from simple coordina-
complete solution. It is in this fashion that coevolution tion games to more complex domains is nontrivial.
involves multiple learners (each of the populations’ evo-  The cooperative coevolution literature has followed a
lutionary search procedures) whose learning trajectoriegimilar path. The properties of cooperative coevolution-
are intertwined (via joint fitness evaluation), and so co-ary algorithms are analyzed in [3, 4, 21]; results of such
evolution must deal with the same co-adaptation chalexperiments indicate that assessing the fitness of an ac-
lenges as other multi-agent learning methods. tion based on the maximum of multiple joint rewards
A natural approach to applying CCEAs to coopera-works better than if it were based on the minimum or
tive multiagent learning is to assign one population toon the average. Recent work has analyzed the condi-
each of the learning agents in the team. Each individualions under which coevolutionary systems gravitate to-
in the population represents a potential behavior for thavards suboptimal solutions [20], has provided a visual
agent, and so from now on, for consistency, we will re-illustration of the basins of attraction for simple coop-
fer to actions rather than individuals. An action may beerative multiagent domains [16], and it has proposed a
as simple as a single action in trivial environments, or ashiased CCEA that is more likely to find the global opti-
complex as policies involving internal states and mem-mum [14].
ory for real-world problems. Thus each population rep- Bucci and Pollack [2] apply recent advances from
resents a finite sample from an infinite space of possiblgompetitivecoevolution research to improve CCEASs, re-
actions. As the team reward permits only the evaluatiorsulting in thepccea algorithm. The authors argue that
of joint actions, an action in one agent's population maythe aggregation of multiple joint rewards to compute the
be evaluated when combined with actions from the othefitness of an action may result in loss of useful informa-
agents’ current populations. Multiple such combinationstion. Insteadpccea uses all joint rewards to compute
are usually used. the set of actions in each population that are Pareto non-
Section 2 highlights related cooperative multiagentdominated: given two actiore; anda, for one agent,
learning algorithms. Following, Section 3 introduces aa; dominatesa, if and only if (1) for any actiorb for
novel learning algorithm where agents pay special attenthe other agens; receives higher or equal reward when
tion to informative actions. We compare it against otherjoined withb thana, does, and (2) there exists an action
cooperative multiagent learning techniques in Section 4c for the other agent such that receives a strictly higher



reward when joined witls thanay, does. This set of non- each agent maintains a population of actions, a subset of
dominated actions, termed archive is is automatically ~which is defined as aarchiveresponsible for ensuring
copied to the next generation to help evaluate the newhat some actions exist primarily to keep the teammate’s
population of actions. After the evaluation is completedprojection well informed. oCCEA agents learn concur-
for that generation, a new archive is computed for eachiently, meaning, the populations advance through their
population. Our experiments in Section 4 indicate thatgeneration cycles together, rather than one population ad-
pCCEA’s archive tends to converge to the Pareto frontieryvancing, then the other.

which unfortunately may be infinite in even simple co- . . o
operative multiagent domains. The evaluation process tests actions by combining

them with actions from the teammate’s archive, plus pos-

sibly some additional actions in the teammate’s popula-
3 TheoCCEA Algorithm tion. In_ addition to computing an action’s fitness, t_he

evaluation process stores the joint reward of any pair of

When multiple agents learn concurrently, each of thenﬁig?ﬁi;g?; 3;%:;’3{?}?2?0;?\?:;2?régg;lsa'g;?]rtmat'on IS

is afforded only a partial glimpse at the overall search
space. Specifically, each agent may weightits actions us- gach generation, every action in a population is first
ing only a projection of the entire space, a projection thaleya|yated by testing it in combination with every action
is influenced by the act|0.ns currently.chosen by the Oth?from the teammate’s archive. As the very first genera-
agents according to their own learning processes. Difyions populations have not built an archive yet, their en-
ferences among such projections are illustrated in [13]ire population is used as an archive (an expensive pro-
projections at early stages of learning may provide morg.ess put one which ensures a thorough exploration of
|nfqrmat|0n about the search_ space, because the agentg e joint space and good bootstrapping for the archive
ggtlons are more randomly distributed and so sample thg, f,ture generations). This is meant to provide an ac-
joint space better. As the agents start to converge, thgyrate ranking of the actions. If the maximum size of
projections may become skewed, sometimes losing aljhe archives is less thalaxEvals the actions are also
information about the globally optimal solutions. AS tasted with enough randomly-chosen actions from the

each agent's choice of actions influences the projectionggmmate’s population (in the archive or not) to provide
searched by the other agents, we may view each of thg; |castviaxEvalstests per action.

multiagent learning algorithms in Section 2 as recipes for
agents to influence each other’s learning processes. The fitness of actiom is then set to maximum d?ij

We argue that the team of learning agents may benegyer all actiong in the teammate’s populatiof{ equals
fit if each agent is concerned about the projection of the_« if i was not tested in combination with). If the
search space that it provides to its teammates via the agrchive size is 1, this reduces to a common evaluation
tions it explores. In other words, agents should not necapproach for CCEAs [18, 21]: the evaluation is equiva-
essarily explore only their most promising actions, butjent to using the best action (from the previous genera-
also those actions that provide the other agents with agjon) plus some actions chosen at random from the other

curate projections of the joint search space. We proposgopulation. The pseudocode for the evaluation process
a coevolutionary algorithmyCcCEA, to illustrate the ad- js:
vantages of such an approach. 0CCEA-Evaluation

For simplicity, we present the pseudocode for the al- pgrameters
gorithm using only two agents (and hence two popula-  MaxEvals maximum evaluations per action
tions), although it may be extended to arbitrary num- Initial Settings
bers of agents. Given an agent, the other agent is re- For each populatiop
ferred to as itseammateWe will assume that all popula- ArchiveSizg = PopSize
tions have equal sizRopSizethough the algorithm can ~ Evaluation phase (at each generation)
easily be extended to allow for different sizes. We de- For/each populatiop
fine Rewargy(i,a) as the reward received when an agent P’ = other population thap
(whose actions are represented in populappselects For each actionin p ,

L . ) For each actiorj in p
actioni and its teammate selects actian S

©OCCEA follows _the standar_d archltecture of a gener- Fo; each actiomin Archivey
ational cooperative coevolutionary algorithm [18]. As F2 = Rewarg(i,a)
is the case for other CCEA®CCEA assumes that an Fi= Reward(a,i)
agent can perceive the actions chosen by its teammates as MaxArchive= max, ArchiveSizg
well as the reward they receive. dCCEA, as inpCCEA,



0CCEA-Evaluation (continued)
Repeat for max0, MaxEvals— MaxArchive times
For each populatiop
Shufflep
For each index i in 1PopSize
a; = action in populatiorp® with indexi
b]b: action in populatiorp? with indexi
Fa! = Reward (aj,by)
Ry = Reward(by, a)
For each populatiop
P’ = other population thap
For each actionin p
Fitnesg(i) = maxjey F!

The breeding and population reassembly phaseof
CEA proceeds similarly to the one itCEA: the archive
members are selected from the old population and are
copied directly into the new population, and remainder
of the new population is filled with children bred using
standard evolutionary computation algorithms applied to
the old population (including the old archive). The whole
previous population (including the archive) competes for
breeding. The pseudocode is straightforward:

proves upon the current ordering of the teammate’s pojulgti
translates into finding two actionsandy such that adding

to the archive would change their ranking relative to one an-
other M1Fitx < M1Fity andM2Fit, > M2Fit}, or equivalently
M3Fit>i(7y =+ —oo0). Of all actionsi that meet this first criterion,
we greedily prefer the one that changed the ranking by i@isin
the fitness of a teammate’s action to the highest level. Nhate t
the first action to be selected for the archive is always thiermc
with the highest fitness. The pseudocode is:

0CCEA-Archive-Selection
Parameters
MaxArchiveSizemaximum archive size
Archive Selection (at each generation)
For each populatiop
p’ = other population thap
Archivgy =0
While Siz¢Archive,) < MaxArchiveSize
For each actiox in p/ )
M1Fitx = maXearchive, R
For each actiomin p— Archive,
M2Fit) = maxX;carchive, (i} FX
For each actioy in p/

. M1Fity < M1Fity
0CCEA-Breeding

. | .
Breeding phase (at each generation) M3Fit,i(y = M2Fit, if ) ‘and »
For each population ' M2Fity > M2Fity
Select its new archive withCCEA-Archive-Selection —o0 otherwise

Copy the archive into the new population
Fill the remainder of the new population using
standard EC breeding

For each actionin p—Archivg,
MaxFit = maxep maxey M3Fity ,
Selecta =argmaxMaxFit;

If MaxFity = —c0
Archive selection is intended to select those actions which Break from while loop
revealed features of the projected joint space useful totther Addd ﬁlto Archivep
End while

teammate. Specifically, we would like to select as an archive
a minimal set of actions from each agent’'s population such
that when assessing the fitness of actions in a given popnoalti
testing them against the full teammate’s population wowt n
change the rank ordering of their fitnesses beyond jusntesti 4 Exper | ments

against the teammate’s archive. The hope is that this achiv

would provide an accurate evaluation and ranking of the team |, (his section, we investigate the behavior of four différe

mate’s actions in the next generation as well. We'd like 886 e\ o|utionary algorithms, and we compare them in terms of
to be as small as possible, because as each action in ansagenerformance and in terms of the number of evaluations they re
population is tested in combination wiéiveryaction from the  qjire to achieve that performance. The first algorithm is the
other agent's archive, large archives imply a prohibi®@?)  jocea algorithm introduced in [2]. Second is thecEA algo-
evaluation cost. Therefore we add actions to the archivg onl rithm, which is a traditional CCEA algorithm that evaluates
if they cause actions in the other population to improve Sig-fiiness of an action as the maximum reward it receives when in
nificantly enough so as to effect the ranking — causing astion ¢ompination with any of the actions in the teammate’s popula
to worsenis not considered helpful information. Of the vari- tion cccea is guaranteed to converge to the global optimum
ous actions which change this ranking, we will select thesone j; ihe population size is sufficiently large [14]. Third iseth
which do so by raising fitnesses to the highest levels. 0CCEA algorithm proposed in Section 3. FourtGCEA eval-

The archive selection process starts from the empty set andates the fitness of an action as the maximum when partnered

proceeds iteratively. For each actiomot in an agent’s archive,
and for each actiox in its teammate’s population, we com-
pute the fitness ok if evaluated in combination with all ac-
tions in the current archive, that Wl 1Fitx = maXjcarchive, Rl
We also compute the fitness »ff i were added to the current
archive, M2Fit, = maXjcarchive,u(i} X - Note thatM2Fit, >
M1Fity. Our first criterion for adding to the archive (it im-

with six actions from the teammate’s population: five chosen
at random, plus the fittest action from the teammaiegvious-
generationpopulation. We included this algorithm in the com-
parison because it uses a fixed small number of evaluatians pe
each generation, such as it would be preferable for apjaitat
of multiagent learning to real problems.

We will test these algorithms using a class of problem do-



mains called thenaximum of two quadratid®r MTQ). These
problems include a global optimum and a local suboptimum,wherex, y}, X5, andy}, are the originak andy values (which
where the suboptimum covers a much wider range of the searctanged between 0 and 1) rotated around the centers of the two
space and is thus difficult to escape. The problems have begpeaks byj:

used before by [2, 15].

We will assume that each action is a real-valued number
from O to 1 inclusive. This defines a metric space for actions:
in some sense action 0.5 is more similar to action 0.6 than ac-
tion 0.9 is. While other techniques search for optima among yfl = (x—Xq) *cosE— (y—Y1) *sinf—i—Yl
sets of actions that have no “distance” relation among them, 4 4
EC methods assume a distance relation: when breeding an ac-
tion to form a new one, they will generally make more small
(distance) changes than large changes.

The joint reward function for the MTQ class is defined as:

T T
X = (x—xl)*(:os21 +(y—Y1)*st +X1

X5 = (X—Xp) *cosg+(ny2)*sin£[+X2

Vo= (x—Xz)*cosg— (y—Yg)*sinngYg

_ 2 V. )2
Hy+(1— o) 16y ) ) Observe that the two peaks have ellipsoid shapes aligngd dia

S|
Hyp (1— 16*<XS;X2>2 _ 16*0;(2)2) onally with the axes, as opposed to circular shapes in the MTQ
problem domains. The two Nash equilibria from the MTQ class
wherex andy may take values (actions) ranging between 0 andh"’“’e now become an '”f'”!tY of Na,s,h equilibria in the. SMTQ
1. Different settings foHy, Hp, X4, Y1, Xo, Yo, S1, and S class. This creates an additional difficulty for the coetioh+
; Lo e e ary search. We used the same valueHgrXy, Y1, X, Y2, Sy,

MTQ(X,y) « max {

affect the difficulty of the problem domain in one of the fol- q tor th |
lowing aspectsH; andH, affect the heights of the two peaks: and$ as ort_ e MTQ class.

higher peaks may increase the chances that the algorithm con 1 N€ experiments used the ECJ package [11]. Each popu-
verges thereS; andS, affect the area that the two peaks cover: lation contained 32 actionscCCEA and rCCEA used elitism

a higher value for one of them results in a wider coverage of°f Sizé 1, meaning that the fittest individual in each popula-

the specific peak. This makes it more probable that the colion in the previous generation is automatically copied itfie

evolutionary search algorithm will converge to this peakere next g_eneration’s population_. The entire archive surviaae
though it may be suboptimal. Different values %, Y1, Xo, tomatically from one gener_atlon to the next t@CEA andpC-
andY; result in changes in the locations of the centers of the two"EA- Unless stated otherwiseCCEA usedMaxEvals=5 and -
quadratics, which also affect the relatedness of the twaspea MaxArchiveSize= «. The EC breeding method created chil-

similar values of the or y coordinates for the two centers im- dren by selecting a parent, copying it, then “mutating” thpyc
ply higher overlaps of the projections along one or both aXeSby adding a gaussian ran(jom variable frpm a distributio wit
(the projections of the joint action space for one or botméme mean 0 and standard deviatio®D, boundl_ng the value to be-
may retain more information about the globally optimal solu Ween 0and 1. Parents were selected using “tournament selec
tion even if the other agent's population starts to conveage ton” whereby two random parents are picked with replacemen
the suboptimal solution). In these experiments, weSget %’ from the population, an_d then the fitter of the two is selected
X1 = %' Y, = %, Hy — 150,S, — 3% Xo = %' Y, = %; Hy was Runs Iasteq 50 generatlgns. .
varied across experiments, but it was always less than 125, e quality of a technique was defined as the average, over
MTQ using such settings is fairly difficult to optimize: 250 independent runs, of the fitness of the best action (one

the probability that a random sample exceeds a functiorPe" population) in the last generation of that run. The tesul
_ 14999) " usually have a peculiar bimodal distribution, with manyues

value of 14999 can be computed asix (1 5 close to one of the two peaks. For this reason, we report-infor
2 = 0.0000004090615. Given 51200 random samples (ap-__.. WO p ) ' port: .
16 = . . mation on the quartiles, as opposed to mean and standagd devi
proximately the number of action evaluations performed

. . . . tion. For the same reason, we verify statistical signifieavia
during a typical evolutionary run), the probability that . . . :

. . non-parametric t-tests combined using the Bonferroniemsrr
one of them exceeds a function value of Is 1= tion. Sometimes these non-parametric tests will returrofire
(170'000000409061)?1200: 0.02072615. osi.te result than a regular IL;rametrictest would, andadth

As we will see in the next sections, the median of the re-p 9 P ’

S . some conclusions are different from the ones reported in [2]
sults for the proposedCCEA method is significantly higher we believe our comparison methodology is well-founded
than 14999, which implies thabCCEA finds better approxima- '
tions of the global optimum in more than 50% of the runs. This
shows thabCCEA significantly outperforms random search in 4 1 Experiment 1 M TQ and SM TQ with
this domain, and implicitly the algorithms proposed in [1]. H1 — 50
To further increase the difficulty of the problem domains 1=

with respect to the algorithms we analyze, we created a Seqp the first experiment, we sét; to 50 to have a wide differ-
ond class of problem domains, SMTQ, which is defined as:  gnce hetween the height of the two peaks. In this case, asevol

16:(0—X0)2  12¢(y—Y,)? tion may have difficulties finding the global optimum pringri
SMTQ(X,y) < max Hyx (1~ rél . él 2) because its coverage is significantly smaller than that ef th
’ Ho s+ (1— 1&(x§;xz) - 12*(%242) ) suboptimal peak.
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Figure 1: Average number of evaluations for tecEA Figure 2: Average archive size for thheceA and the
algorithm in the MTQ domain instance with; = 50 pCCEA algorithms in the MTQ domain instance with
Hi =50

Table 1: Results of the four methods in the MTQ domain
instance withtH; = 50 Table 2: Results of the four methods in the SMTQ do-
main instance withd, = 50

First Third Average
Method Quartile Median Quartile # Evals First Third Average
pCCEA  148.62776 149.74876 149.94931 51200 Method Quartile Median Quartile # Evals
CCCEA  149.99971 149.99995 149.99998 51200 pCCEA 133.21958 146.85126 149.49486 51200
OCCEA  149.99990 149.99997 149.99998 10676.5 cCCEA 149.99975 149.99995 149.99998 51200
rCCEA 50 50 149.99998 19200 OCCEA  149.99991 149.99997 149.99998 10982.3
rCCEA 50 149.99986 149.99998 19200

Table 1 presents the performance of the four methods in the

MTQ instance Ki; = 50), as well as the number of evalua- g6 in the MTQ domairsCCEA's archive again rises to con-
tions required to achieve that performance. Although thie di ¢ me most of the population, WhisCEA's archive size rises

ferences appear small, the large number of observatiorty (25 to 8 early but converges to approximately 5. This is summed

leads to statistically significant differences among théhwes e poth populations. The average archive size for each pop
with confidence 95%. The results indicate th@lEA performs qti0n is half the value: an average size of 4 early, and 2.5

worst, followed bypCCEA, cCCEA andoCCEA. There are sta- later.

tistically significant differences between all pairs of has.

And importantly,oCCEA achieves a significant reduction in the

number of evaluations as compared to the other methods. 4.2 Experiment 2. MTQ and SMTQ with
Figure 1 plots the number of evaluations required byothe H, =125

CEA algorithm at each generation. The algorithm starts with

a complete round-robin evaluation (requiring:332 evalua-  Similar to the experiments in [2], we sk to 125 to create a

tions), followed by a drastic decrease in the number of @salu more deceiving domain instance: the actions on the subaptim

tions. This is due to the fact that the number of actions netede peak have higher fitness and they are thus more likely to be

to accurately rank the other population (hence the archine s selected.

decreases significantly. In contrast, in feeEA algorithm the Tables 3—4 present the results of the four methods in the

Pareto front in the MTQ domain is not discrete, and thus theMTQ and SMTQ domain instances wiky = 125. The results

archive grows rapidly in size until it occupies the whole pop  are consistent with the ones in Section 4oCCEA is always

lation (Figure 2). At this point, learning stagnates. better tharcCCEA, which is in turn always better thasCCEA
Table 2 presents the results of the four methods in thewith confidence 95%). ThecCEA method is worst: it finds

SMTQ domain, as well as the number of evaluations required tahe global optimum in only 16% of the runs in both the MTQ

achieve that performance. ThHeCEA andpCCEA methods per-  and the SMTQ domairH; = 125). As beforepCCEA requires

form worst (with no statistically significant difference ang significantly fewer evaluations than the other methods. &he

them). cCCEA is better than bothCCEA and pCCEA. oCCEA erage archive size is slightly higher (statistically sfipaintly

significantly outperforms all three other methods. The dyna higher foroCCEA) than in the case dfl; = 50, but it follows

ics of the archive size fqrcCEA andoCCEA are very similarto  the same trend as that shown in Figure 2.
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Table 3: Results of the four methods in the MTQ domain

instance wittH, = 125 56 1

First Third Average 5907
Method Quatrtile Median Quartile # Evals é’ 32 — gggg:
PCCEA 14231862 149.03314 149.83407 51200 |£,, |
cCCEA 125 149.99974 149.99998 51200
0CCEA 125 149.99994 149.99998 11277.4 167 e T e
rCCEA 125 125 125 19200 81

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49
Generation

Table 4: Results of the four methods in the SMTQ do-
main instance withd; = 125
Figure 3: Average archive size for thhecea and the

First ) Third  Average pCCEA algorithms in the OneRidge domain
Method  Quartile Median Quartile # Evals

pCCEA 125 145.66753 149.38516 51200

cCCEA 125 149.99977 149.99998 51200  Taple 5: Results of the four methods in the OneRidge
oCCEA 125  149.99995 149.99998 11406.7 problem domain

rCCEA 125 125 125 19200

First Third Average
Method Quartile Median Quartile # Evals
. . . . pCCEA  1.45762 1.47224 1.48298 51200
4.3 Experiment 3: The OneRidge Domain CCCEA 1.89700 191584 1.93125 51200
Our last experiment examined the performance of the search 0CCEA  1.50217  1.51778 1.53398 21545.3
methods in the OneRidge domain proposed in [17]. The OneR-  'CCEA  1.82785 1.84294 1.86300 19200
idge domain is defined as:

OneRidgéx,y) < 1+ 2xmin(X,y) —max(X,y)

very first generations, and so learning stagnates. UnlikQMT
and SMTQ, itis relatively easy in the OneRidge domain to im-
prove upon a joint action by small variations in the actioms-c
sen by each agents. As a consequence, &mtiEA andrCCEA

are able to improve until outperformimgCCEA.

The poor performance ofCEA in this domain has a slightly
different cause: the archive mechanism was designed tminfo
the concurrent learning processes of multiple Nash edjislib
that are surrounded by large basins of attraction whichaann
be avoided by small variations in actions. Given that OneR-

wherex andy range between 0 and 1. OneRidge is particu-
larly difficult for concurrent learners because it containgery
large number of Nash equilibria: for any valwebetween 0
and 1,(v,v) is a Nash equilibrium. This implies that for almost
any Nash equilibrium (except for the global optimuh 1))
there are an infinite number of better Nash equilibria that ar
infinitesimally close; unfortunately, both agents need da-c
currently change their actions for the team to advance tebet

solutions. To better study the algorithms capacity todeil idge has no such equilibria, the archives serve little psepo

this r;d?e to trf1e gtlpbal ;)ptlmu?:, we rta:ldomlly |n||t|aI|zedath” and they instead act to slow the optimization process byoredu
Fhoﬁnugslons otactions for each agent fo only values sma ering the random exploration of the space. As shown in Figure

If SMT dd i int " th 3, the average archive size @fCEA is higher tharMaxEvals
Q adds more non-iinear Interactions among e, iy, \yas set to 5, and thus actions are not evaluated when in
agents, OneRidge goes even further. As a consequence, t

RS mbination with random actions from the oth lation.
methods have a very different ranking based on their perfor- mbination with random actions from the ofher popuiation

mance in this domain (as shown in Table 53CCEA per-
forms best, followed in order byCCEA, oCCEA, and finally Revised Experiment To test this hypothesis, we restricted
pCCEA,; there are statistically significant differences among allthe maximum archive size 06CCEA to only one action
the methods. (MaxArchiveSize- 1 in oCCEA-Archive-Selection), and we per-
This poor performance qfCCEA and oCCEA seems unex- formed another 250 runs in the OneRidge domain. The median
pected at first. To shed more light onto the behavior of theperformance of the algorithm was 1.84439, with a first qlearti
two algorithms, we plotted the average archive sizepfmreA of 1.82448 and a third quartile of 1.86095. This is indistin-
and oCCEA in Figure 3. As expected, the Pareto frontier in guishable from the performance of tteCEA method in Table
the OneRidge domain makesCEA think thatevery possible 5. We further doubled the maximum number of generations
actionis interesting and needs to be added to the archive; confor the oCCEA algorithm with a maximum archive size of 1
sequently, the size @ICCEA’s archive is close to 64 even in the (this setting still involved only around 40% of the budgeedis



by cCCEA andpCCEA), and we ran it another 250 times. The
global optimum was consistently and precisely found in &ll o

them. This is significantly better than all other algorithms
tested in this domain.

5 Discussion and Conclusions

Itis rational for learning agents to explore those actibias &re
rewarded better. However, each agent's experimentatitmawi
particular action directly affects the way the other ageeis

[7]

(8]

9]

ceive the search space. Therefore, we argue that agents may

benefit from also exploring those actions that inform theain-

mates about the structure of the search space. We suggest tha

cooperating agents should be altruistic: the entire teap ma
benefit if each agent helps its teammates to rank their actio
better. We demonstrated this idea in a new cooperative eoev

lutionary algorithmpCCEA, which requires significantly fewer
evaluations to outperform other cooperative multiageatrie

n

110]

(11]

ing methods on our test problems. We also noticed that too

much altruism may hurt performance: an agent may wastetlz]

resources when attempting to inform its teammates about the
many Nash equilibria in the space. Restricting the number of
informative actions an agent may choose solved the probiem i

our simple experiments, but we are exploring alternatites t

can automatically balance the information provided to othe

learning agents with the desirability of searching for wyati

joint actions. Future work will also examine formal models
and guarantees for concurrent learners employing infaveat

actions, as well as demonstrate such methods in complex mu

tiagent domains.
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