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Abstract

In concurrent cooperative multiagent learning, each
agent in a team simultaneously learns to improve the
overall performance of the team, with no direct control
over the actions chosen by its teammates. An agent’s ac-
tion selection directly influences the rewards received by
all the agents; this results in a co-adaptation among the
concurrent learning processes. Co-adaptation can drive
the team towards suboptimal solutions because agents
tend to select those actions that are rewarded better, with-
out any consideration for how such actions may affect the
search of their teammates. We argue that to counter this
tendency, agents should also prefer actions that inform
their teammates about the structure of the joint search
space in order to help them choose from among various
action options. We analyze this approach in a coopera-
tive coevolutionary framework, and we propose a new al-
gorithm,oCCEA, that highlights the advantages of select-
ing informative actions. We show thatoCCEA generally
outperforms other cooperative coevolution algorithms on
our test problems.

1 Introduction

Multi-agent learning is challenging because the problem
dynamics are often complex and fraught with local op-
tima. Of particular interest to us is cooperative multi-
agent learning, where multiple agents learn to work to-
gether as a team to accomplish common goals [12]. More
specifically, we are interested in concurrent learning,
where each agent performs its own learning and has little
or no control over the other agents’ selection of actions.

Unfortunately, multi-agent learning is problematic for

existing machine learning techniques because the con-
current learning processes are not independent. Con-
sider an agent that observes the environment containing
other agents and that tries to improve its performance.
This leads to a modification in its behavior. This modi-
fication is then sensed by the other agents, who change
their behaviors in order to improve their performance as
well. This “moves the goalpost” on the original agent:
its newly-learned behavior may no longer be appropri-
ate. Thus as the agents co-adapt to one another, the envi-
ronment is essentially changing beneath the agents’ feet.
Moreover, the agent itself contributes directly to how the
landscape changes. Learning in the face of this dynamic
is not easy: such co-adaptation can result in cyclical
or chaotic adaptive behavior, and may gravitate towards
suboptimal solutions.

Most cooperative multiagent learning algorithms as-
sume the agents are rational: each agent searches for ac-
tions that fare well when used in combination with the
actions currently favored by its teammates. This “best-
response” approach usually results in the learners con-
verging to Nash equilibria. Such “rational” convergence
to equilibria may well be movement away from glob-
ally team-optimalsolutions [10, 19]. To counter this,
we argue that agents mustalso explore actions that in-
form their teammates about the structure of the space of
rewards for joint actions. For example, if an agent identi-
fies an action that helps other agents rank their available
actions better, the agent should explore that action to help
guide the teammates’ learning processes.

Though we believe it to be general, we will demon-
strate the application of this approach to a particular mul-
tiagent learning method of interest to us, namelycoop-
erative coevolution[7, 18]. Coevolution is the use of
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evolutionary computation learning techniques in a multi-
agent setting. Ordinarily, evolutionary computation em-
ploys only a single learner to discover a global solution
to an optimization problem: the learner first creates an
initial pool of randomly-generated candidate solutions (a
“population” of “individuals”), then assesses their qual-
ity (“fitness”) independently of one another, then forms
a new population of individuals through iteratively se-
lecting, copying, and modifying (“breeding”) individu-
als from the previous population with an emphasis on
the fitter members of that previous population. The new
population replaces the old one, and this cycle of fit-
ness assessment, breeding, and population replacement
repeats until a sufficiently fit individual is discovered or
until resources have expired. Each iteration of this cycle
is known as a “generation”.

Cooperative coevolutionary algorithms (CCEAs), in
the form we will discuss here, use not one but multi-
ple populations, each involved in its own separate learn-
ing cycle of fitness assessment, population formation,
and population replacement. However, individuals in a
given population are no longer assessed independently,
but rather in the context of individuals chosen from the
other populations. Each population represents a sub-
component of a full solution to the problem, and as part
of its fitness assessment, an individual in a given popu-
lation may be evaluated only by combining it with one
individual from each of the other populations to form a
complete solution. It is in this fashion that coevolution
involves multiple learners (each of the populations’ evo-
lutionary search procedures) whose learning trajectories
are intertwined (via joint fitness evaluation), and so co-
evolution must deal with the same co-adaptation chal-
lenges as other multi-agent learning methods.

A natural approach to applying CCEAs to coopera-
tive multiagent learning is to assign one population to
each of the learning agents in the team. Each individual
in the population represents a potential behavior for the
agent, and so from now on, for consistency, we will re-
fer to actions rather than individuals. An action may be
as simple as a single action in trivial environments, or as
complex as policies involving internal states and mem-
ory for real-world problems. Thus each population rep-
resents a finite sample from an infinite space of possible
actions. As the team reward permits only the evaluation
of joint actions, an action in one agent’s population may
be evaluated when combined with actions from the other
agents’ current populations. Multiple such combinations
are usually used.

Section 2 highlights related cooperative multiagent
learning algorithms. Following, Section 3 introduces a
novel learning algorithm where agents pay special atten-
tion to informative actions. We compare it against other
cooperative multiagent learning techniques in Section 4.

The paper concludes with a brief discussion of our find-
ings, accompanied by directions for future work.

2 Related Work

Two learning algorithms that are guaranteed to find the
globally optimal joint action in a stateless environment
are proposed in [1]. Both algorithms have two phases:
agents first explore the entire space of joint actions (ei-
ther deterministically or randomly); this is followed by
a greedy selection of only the action (one per agent)
that returned the highest reward. Both algorithms find
the global optimum in polynomial time in the number
of actions for each agent. However, scaling these algo-
rithms to environments with states or with possibly infi-
nite numbers of actions per agent may be problematic.

Instead of choosing actions deterministically or ran-
domly, Claus and Boutilier [5] argue that agents should
be more optimistic about their teammates: an agent
should not prefer actions that do well in the context of the
actions currently preferred by its teammates, but rather
the agent should prefer actions that do well in the con-
text of better actions that its teammates might learn. The
application of this heuristic assumption results in addi-
tional multiagent reinforcement learning algorithms for
stateless environments, such as the ones in [9, 8]. Unfor-
tunately, scaling these algorithms from simple coordina-
tion games to more complex domains is nontrivial.

The cooperative coevolution literature has followed a
similar path. The properties of cooperative coevolution-
ary algorithms are analyzed in [3, 4, 21]; results of such
experiments indicate that assessing the fitness of an ac-
tion based on the maximum of multiple joint rewards
works better than if it were based on the minimum or
on the average. Recent work has analyzed the condi-
tions under which coevolutionary systems gravitate to-
wards suboptimal solutions [20], has provided a visual
illustration of the basins of attraction for simple coop-
erative multiagent domains [16], and it has proposed a
biased CCEA that is more likely to find the global opti-
mum [14].

Bucci and Pollack [2] apply recent advances from
competitivecoevolution research to improve CCEAs, re-
sulting in thepCCEA algorithm. The authors argue that
the aggregation of multiple joint rewards to compute the
fitness of an action may result in loss of useful informa-
tion. Instead,pCCEA uses all joint rewards to compute
the set of actions in each population that are Pareto non-
dominated: given two actionsa1 anda2 for one agent,
a1 dominatesa2 if and only if (1) for any actionb for
the other agent,a1 receives higher or equal reward when
joined withb thana2 does, and (2) there exists an action
c for the other agent such thata1 receives a strictly higher
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reward when joined withc thana2 does. This set of non-
dominated actions, termed anarchive, is is automatically
copied to the next generation to help evaluate the new
population of actions. After the evaluation is completed
for that generation, a new archive is computed for each
population. Our experiments in Section 4 indicate that
pCCEA’s archive tends to converge to the Pareto frontier,
which unfortunately may be infinite in even simple co-
operative multiagent domains.

3 The oCCEA Algorithm

When multiple agents learn concurrently, each of them
is afforded only a partial glimpse at the overall search
space. Specifically, each agent may weight its actions us-
ing only a projection of the entire space, a projection that
is influenced by the actions currently chosen by the other
agents according to their own learning processes. Dif-
ferences among such projections are illustrated in [13]:
projections at early stages of learning may provide more
information about the search space, because the agents’
actions are more randomly distributed and so sample the
joint space better. As the agents start to converge, the
projections may become skewed, sometimes losing all
information about the globally optimal solutions. As
each agent’s choice of actions influences the projections
searched by the other agents, we may view each of the
multiagent learning algorithms in Section 2 as recipes for
agents to influence each other’s learning processes.

We argue that the team of learning agents may bene-
fit if each agent is concerned about the projection of the
search space that it provides to its teammates via the ac-
tions it explores. In other words, agents should not nec-
essarily explore only their most promising actions, but
also those actions that provide the other agents with ac-
curate projections of the joint search space. We propose
a coevolutionary algorithm,oCCEA, to illustrate the ad-
vantages of such an approach.

For simplicity, we present the pseudocode for the al-
gorithm using only two agents (and hence two popula-
tions), although it may be extended to arbitrary num-
bers of agents. Given an agent, the other agent is re-
ferred to as itsteammate. We will assume that all popula-
tions have equal sizePopSize, though the algorithm can
easily be extended to allow for different sizes. We de-
fine Rewardp(i,a) as the reward received when an agent
(whose actions are represented in populationp) selects
actioni and its teammate selects actiona.

oCCEA follows the standard architecture of a gener-
ational cooperative coevolutionary algorithm [18]. As
is the case for other CCEAs,oCCEA assumes that an
agent can perceive the actions chosen by its teammates as
well as the reward they receive. InoCCEA, as inpCCEA,

each agent maintains a population of actions, a subset of
which is defined as anarchiveresponsible for ensuring
that some actions exist primarily to keep the teammate’s
projection well informed. oCCEA agents learn concur-
rently, meaning, the populations advance through their
generation cycles together, rather than one population ad-
vancing, then the other.

The evaluation process tests actions by combining
them with actions from the teammate’s archive, plus pos-
sibly some additional actions in the teammate’s popula-
tion. In addition to computing an action’s fitness, the
evaluation process stores the joint reward of any pair of
actions that are evaluated together; this information is
later used to update the archives of each agent.

Each generation, every action in a population is first
evaluated by testing it in combination with every action
from the teammate’s archive. As the very first genera-
tion’s populations have not built an archive yet, their en-
tire population is used as an archive (an expensive pro-
cess but one which ensures a thorough exploration of
the joint space and good bootstrapping for the archive
in future generations). This is meant to provide an ac-
curate ranking of the actions. If the maximum size of
the archives is less thanMaxEvals, the actions are also
tested with enough randomly-chosen actions from the
teammate’s population (in the archive or not) to provide
at leastMaxEvalstests per action.

The fitness of actioni is then set to maximum ofF j
i

over all actionsj in the teammate’s population (F j
i equals

−∞ if i was not tested in combination withj). If the
archive size is 1, this reduces to a common evaluation
approach for CCEAs [18, 21]: the evaluation is equiva-
lent to using the best action (from the previous genera-
tion) plus some actions chosen at random from the other
population. The pseudocode for the evaluation process
is:

oCCEA-Evaluation
Parameters

MaxEvals: maximum evaluations per action
Initial Settings

For each populationp
ArchiveSizep = PopSize

Evaluation phase (at each generation)
For each populationp

p′ = other population thanp
For each actioni in p

For each actionj in p′

F j
i =−∞

For each actiona in Archivep′

Fa
i = Rewardp(i,a)

F i
a = Reward′p(a, i)

MaxArchive= maxpArchiveSizep
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oCCEA-Evaluation (continued)
Repeat for max(0,MaxEvals−MaxArchive) times

For each populationp
Shufflep

For each index i in 1..PopSize
a1 = action in populationp1 with index i
b1 = action in populationp2 with index i
Fb1

a1 = Reward1(a1,b1)
Fa1

b1
= Reward2(b1,a1)

For each populationp
p′ = other population thanp
For each actioni in p

Fitness(i) = maxj∈p′ F
j

i

The breeding and population reassembly phase ofoC-

CEA proceeds similarly to the one inpCCEA: the archive
members are selected from the old population and are
copied directly into the new population, and remainder
of the new population is filled with children bred using
standard evolutionary computation algorithms applied to
the old population (including the old archive). The whole
previous population (including the archive) competes for
breeding. The pseudocode is straightforward:

oCCEA-Breeding
Breeding phase (at each generation)

For each population
Select its new archive withoCCEA-Archive-Selection

Copy the archive into the new population
Fill the remainder of the new population using

standard EC breeding

Archive selection is intended to select those actions which
revealed features of the projected joint space useful to theother
teammate. Specifically, we would like to select as an archive
a minimal set of actions from each agent’s population such
that when assessing the fitness of actions in a given popualtion,
testing them against the full teammate’s population would not
change the rank ordering of their fitnesses beyond just testing
against the teammate’s archive. The hope is that this archive
would provide an accurate evaluation and ranking of the team-
mate’s actions in the next generation as well. We’d like thisset
to be as small as possible, because as each action in an agent’s
population is tested in combination witheveryaction from the
other agent’s archive, large archives imply a prohibitiveO(n2)
evaluation cost. Therefore we add actions to the archive only
if they cause actions in the other population to improve sig-
nificantly enough so as to effect the ranking — causing actions
to worsenis not considered helpful information. Of the vari-
ous actions which change this ranking, we will select the ones
which do so by raising fitnesses to the highest levels.

The archive selection process starts from the empty set and
proceeds iteratively. For each actioni not in an agent’s archive,
and for each actionx in its teammate’s population, we com-
pute the fitness ofx if evaluated in combination with all ac-
tions in the current archive, that is,M1Fitx = maxj∈Archivep

F j
x .

We also compute the fitness ofx if i were added to the current
archive,M2Fit i

x = maxj∈Archivep∪{i}F j
x . Note thatM2Fit i

x ≥
M1Fitx. Our first criterion for addingi to the archive (it im-

proves upon the current ordering of the teammate’s population)
translates into finding two actionsx and y such that addingi
to the archive would change their ranking relative to one an-
other (M1Fitx≤M1Fity andM2Fit i

x > M2Fit i
y, or equivalently

M3Fit i
x,y 6= −∞). Of all actionsi that meet this first criterion,

we greedily prefer the one that changed the ranking by raising
the fitness of a teammate’s action to the highest level. Note that
the first action to be selected for the archive is always the action
with the highest fitness. The pseudocode is:

oCCEA-Archive-Selection

Parameters
MaxArchiveSize: maximum archive size

Archive Selection (at each generation)
For each populationp

p′ = other population thanp
Archivep = /0
While Size(Archivep)≤MaxArchiveSize

For each actionx in p′

M1Fitx = maxj∈Archivep
F j

x

For each actioni in p−Archivep

M2Fit i
x = maxj∈Archivep∪{i}F j

x

For each actiony in p′

M3Fit i
x,y =



















M2Fit i
x if

M1Fitx≤M1Fity
and

M2Fit i
x > M2Fit i

y

−∞ otherwise
For each actioni in p−Archivep

MaxFiti = maxx∈p′ maxy∈p′ M3Fit i
x,y

Selecta =argmaxiMaxFiti
If MaxFita =−∞

Break from while loop
Add a to Archivep

End while

4 Experiments

In this section, we investigate the behavior of four different
coevolutionary algorithms, and we compare them in terms of
performance and in terms of the number of evaluations they re-
quire to achieve that performance. The first algorithm is the
pCCEA algorithm introduced in [2]. Second is thecCCEA algo-
rithm, which is a traditional CCEA algorithm that evaluatesthe
fitness of an action as the maximum reward it receives when in
combination with any of the actions in the teammate’s popula-
tion. cCCEA is guaranteed to converge to the global optimum
if the population size is sufficiently large [14]. Third is the
oCCEA algorithm proposed in Section 3. Fourth,rCCEA eval-
uates the fitness of an action as the maximum when partnered
with six actions from the teammate’s population: five chosen
at random, plus the fittest action from the teammate’sprevious-
generationpopulation. We included this algorithm in the com-
parison because it uses a fixed small number of evaluations per
each generation, such as it would be preferable for applications
of multiagent learning to real problems.

We will test these algorithms using a class of problem do-
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mains called themaximum of two quadratics(or MTQ). These
problems include a global optimum and a local suboptimum,
where the suboptimum covers a much wider range of the search
space and is thus difficult to escape. The problems have been
used before by [2, 15].

We will assume that each action is a real-valued number
from 0 to 1 inclusive. This defines a metric space for actions:
in some sense action 0.5 is more similar to action 0.6 than ac-
tion 0.9 is. While other techniques search for optima among
sets of actions that have no “distance” relation among them,
EC methods assume a distance relation: when breeding an ac-
tion to form a new one, they will generally make more small
(distance) changes than large changes.

The joint reward function for the MTQ class is defined as:

MTQ(x,y)←max

{

H1 ∗ (1−
16∗(x−X1)

2

S1
− 16∗(y−Y1)

2

S1
)

H2 ∗ (1−
16∗(x−X2)

2

S2
− 16∗(y−Y2)

2

S2
)

wherex andy may take values (actions) ranging between 0 and
1. Different settings forH1, H2, X1, Y1, X2, Y2, S1, and S2
affect the difficulty of the problem domain in one of the fol-
lowing aspects.H1 andH2 affect the heights of the two peaks:
higher peaks may increase the chances that the algorithm con-
verges there.S1 andS2 affect the area that the two peaks cover:
a higher value for one of them results in a wider coverage of
the specific peak. This makes it more probable that the co-
evolutionary search algorithm will converge to this peak, even
though it may be suboptimal. Different values forX1, Y1, X2,
andY2 result in changes in the locations of the centers of the two
quadratics, which also affect the relatedness of the two peaks:
similar values of thex or y coordinates for the two centers im-
ply higher overlaps of the projections along one or both axes
(the projections of the joint action space for one or both agents
may retain more information about the globally optimal solu-
tion even if the other agent’s population starts to convergeto
the suboptimal solution). In these experiments, we setS1 = 16

10,
X1 = 3

4 , Y1 = 3
4 , H2 = 150,S2 = 1

32, X2 = 1
4 , Y2 = 1

4 ; H1 was
varied across experiments, but it was always less than 125.

MTQ using such settings is fairly difficult to optimize:
the probability that a random sample exceeds a function
value of 149.99 can be computed asπ ∗

(

1− 149.99
150

)

∗
S2
16 = 0.0000004090615. Given 51200 random samples (ap-
proximately the number of action evaluations performed
during a typical evolutionary run), the probability that
one of them exceeds a function value of 149.99 is 1−
(1−0.0000004090615)51200= 0.02072615.

As we will see in the next sections, the median of the re-
sults for the proposedoCCEA method is significantly higher
than 149.99, which implies thatoCCEA finds better approxima-
tions of the global optimum in more than 50% of the runs. This
shows thatoCCEA significantly outperforms random search in
this domain, and implicitly the algorithms proposed in [1].

To further increase the difficulty of the problem domains
with respect to the algorithms we analyze, we created a sec-
ond class of problem domains, SMTQ, which is defined as:

SMTQ(x,y)←max

{

H1 ∗ (1−
16∗(xr

1−X1)
2

S1
−

12∗(yr
1−Y1)

2

S1
)

H2 ∗ (1−
16∗(xr

2−X2)
2

S2
−

12∗(yr
2−Y2)

2

S2
)

wherexr
1, yr

1, xr
2, andyr

2 are the originalx andy values (which
ranged between 0 and 1) rotated around the centers of the two
peaks byπ

4 :

xr
1 = (x−X1)∗cos

π
4

+(y−Y1)∗sin
π
4

+X1

yr
1 = (x−X1)∗cos

π
4
− (y−Y1)∗sin

π
4

+Y1

xr
2 = (x−X2)∗cos

π
4

+(y−Y2)∗sin
π
4

+X2

yr
2 = (x−X2)∗cos

π
4
− (y−Y2)∗sin

π
4

+Y2

Observe that the two peaks have ellipsoid shapes aligned diag-
onally with the axes, as opposed to circular shapes in the MTQ
problem domains. The two Nash equilibria from the MTQ class
have now become an infinity of Nash equilibria in the SMTQ
class. This creates an additional difficulty for the coevolution-
ary search. We used the same values forH2, X1, Y1, X2, Y2, S1,
andS2 as for the MTQ class.

The experiments used the ECJ package [11]. Each popu-
lation contained 32 actions.cCCEA and rCCEA used elitism
of size 1, meaning that the fittest individual in each popula-
tion in the previous generation is automatically copied into the
next generation’s population. The entire archive survivedau-
tomatically from one generation to the next foroCCEA andpC-

CEA. Unless stated otherwise,oCCEA usedMaxEvals= 5 and
MaxArchiveSize= ∞. The EC breeding method created chil-
dren by selecting a parent, copying it, then “mutating” the copy
by adding a gaussian random variable from a distribution with
mean 0 and standard deviation 0.01, bounding the value to be-
tween 0 and 1. Parents were selected using “tournament selec-
tion” whereby two random parents are picked with replacement
from the population, and then the fitter of the two is selected.
Runs lasted 50 generations.

The quality of a technique was defined as the average, over
250 independent runs, of the fitness of the best action (one
per population) in the last generation of that run. The results
usually have a peculiar bimodal distribution, with many values
close to one of the two peaks. For this reason, we report infor-
mation on the quartiles, as opposed to mean and standard devia-
tion. For the same reason, we verify statistical significance via
non-parametric t-tests combined using the Bonferroni correc-
tion. Sometimes these non-parametric tests will return theop-
posite result than a regular parametric test would, and although
some conclusions are different from the ones reported in [2],
we believe our comparison methodology is well-founded.

4.1 Experiment 1: MTQ and SMTQ with
H1 = 50

In the first experiment, we setH1 to 50 to have a wide differ-
ence between the height of the two peaks. In this case, coevolu-
tion may have difficulties finding the global optimum primarily
because its coverage is significantly smaller than that of the
suboptimal peak.
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Figure 1: Average number of evaluations for theoCCEA

algorithm in the MTQ domain instance withH1 = 50

Table 1: Results of the four methods in the MTQ domain
instance withH1 = 50

First Third Average
Method Quartile Median Quartile # Evals
pCCEA 148.62776 149.74876 149.94931 51200
cCCEA 149.99971 149.99995 149.99998 51200
oCCEA 149.99990 149.99997 149.99998 10676.5
rCCEA 50 50 149.99998 19200

Table 1 presents the performance of the four methods in the
MTQ instance (H1 = 50), as well as the number of evalua-
tions required to achieve that performance. Although the dif-
ferences appear small, the large number of observations (250)
leads to statistically significant differences among the methods
with confidence 95%. The results indicate thatrCCEA performs
worst, followed bypCCEA, cCCEA andoCCEA. There are sta-
tistically significant differences between all pairs of methods.
And importantly,oCCEA achieves a significant reduction in the
number of evaluations as compared to the other methods.

Figure 1 plots the number of evaluations required by theoC-

CEA algorithm at each generation. The algorithm starts with
a complete round-robin evaluation (requiring 32× 32 evalua-
tions), followed by a drastic decrease in the number of evalua-
tions. This is due to the fact that the number of actions needed
to accurately rank the other population (hence the archive size)
decreases significantly. In contrast, in thepCCEA algorithm the
Pareto front in the MTQ domain is not discrete, and thus the
archive grows rapidly in size until it occupies the whole popu-
lation (Figure 2). At this point, learning stagnates.

Table 2 presents the results of the four methods in the
SMTQ domain, as well as the number of evaluations required to
achieve that performance. TherCCEA andpCCEA methods per-
form worst (with no statistically significant difference among
them). cCCEA is better than bothrCCEA and pCCEA. oCCEA

significantly outperforms all three other methods. The dynam-
ics of the archive size forpCCEA andoCCEA are very similar to

Figure 2: Average archive size for theoCCEA and the
pCCEA algorithms in the MTQ domain instance with
H1 = 50

Table 2: Results of the four methods in the SMTQ do-
main instance withH1 = 50

First Third Average
Method Quartile Median Quartile # Evals
pCCEA 133.21958 146.85126 149.49486 51200
cCCEA 149.99975 149.99995 149.99998 51200
oCCEA 149.99991 149.99997 149.99998 10982.3
rCCEA 50 149.99986 149.99998 19200

those in the MTQ domain:pCCEA’s archive again rises to con-
sume most of the population, whileoCCEA’s archive size rises
to 8 early but converges to approximately 5. This is summed
over both populations. The average archive size for each pop-
ulation is half the value: an average size of 4 early, and 2.5
later.

4.2 Experiment 2: MTQ and SMTQ with
H1 = 125

Similar to the experiments in [2], we setH1 to 125 to create a
more deceiving domain instance: the actions on the suboptimal
peak have higher fitness and they are thus more likely to be
selected.

Tables 3–4 present the results of the four methods in the
MTQ and SMTQ domain instances withH1 = 125. The results
are consistent with the ones in Section 4.1:oCCEA is always
better thancCCEA, which is in turn always better thanpCCEA

(with confidence 95%). TherCCEA method is worst: it finds
the global optimum in only 16% of the runs in both the MTQ
and the SMTQ domain (H1 = 125). As before,oCCEA requires
significantly fewer evaluations than the other methods. Theav-
erage archive size is slightly higher (statistically significantly
higher foroCCEA) than in the case ofH1 = 50, but it follows
the same trend as that shown in Figure 2.
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Table 3: Results of the four methods in the MTQ domain
instance withH1 = 125

First Third Average
Method Quartile Median Quartile # Evals
pCCEA 142.31862 149.03314 149.83407 51200
cCCEA 125 149.99974 149.99998 51200
oCCEA 125 149.99994 149.99998 11277.4
rCCEA 125 125 125 19200

Table 4: Results of the four methods in the SMTQ do-
main instance withH1 = 125

First Third Average
Method Quartile Median Quartile # Evals
pCCEA 125 145.66753 149.38516 51200
cCCEA 125 149.99977 149.99998 51200
oCCEA 125 149.99995 149.99998 11406.7
rCCEA 125 125 125 19200

4.3 Experiment 3: The OneRidge Domain
Our last experiment examined the performance of the search
methods in the OneRidge domain proposed in [17]. The OneR-
idge domain is defined as:

OneRidge(x,y)← 1+2∗min(x,y)−max(x,y)

wherex and y range between 0 and 1. OneRidge is particu-
larly difficult for concurrent learners because it containsa very
large number of Nash equilibria: for any valuev between 0
and 1,(v,v) is a Nash equilibrium. This implies that for almost
any Nash equilibrium (except for the global optimum(1,1))
there are an infinite number of better Nash equilibria that are
infinitesimally close; unfortunately, both agents need to con-
currently change their actions for the team to advance to better
solutions. To better study the algorithms’ capacity to follow
this ridge to the global optimum, we randomly initialized the
populations of actions for each agent to only values smaller
than 0.5.

If SMTQ adds more non-linear interactions among the
agents, OneRidge goes even further. As a consequence, the
methods have a very different ranking based on their perfor-
mance in this domain (as shown in Table 5).cCCEA per-
forms best, followed in order byrCCEA, oCCEA, and finally
pCCEA; there are statistically significant differences among all
the methods.

This poor performance ofpCCEA and oCCEA seems unex-
pected at first. To shed more light onto the behavior of the
two algorithms, we plotted the average archive size forpCCEA

and oCCEA in Figure 3. As expected, the Pareto frontier in
the OneRidge domain makespCCEA think thatevery possible
action is interesting and needs to be added to the archive; con-
sequently, the size ofpCCEA’s archive is close to 64 even in the

Figure 3: Average archive size for theoCCEA and the
pCCEA algorithms in the OneRidge domain

Table 5: Results of the four methods in the OneRidge
problem domain

First Third Average
Method Quartile Median Quartile # Evals
pCCEA 1.45762 1.47224 1.48298 51200
cCCEA 1.89700 1.91584 1.93125 51200
oCCEA 1.50217 1.51778 1.53398 21545.3
rCCEA 1.82785 1.84294 1.86300 19200

very first generations, and so learning stagnates. Unlike MTQ
and SMTQ, it is relatively easy in the OneRidge domain to im-
prove upon a joint action by small variations in the actions cho-
sen by each agents. As a consequence, bothcCCEA andrCCEA

are able to improve until outperformingpCCEA.
The poor performance ofoCCEA in this domain has a slightly

different cause: the archive mechanism was designed to inform
the concurrent learning processes of multiple Nash equilibria
that are surrounded by large basins of attraction which cannot
be avoided by small variations in actions. Given that OneR-
idge has no such equilibria, the archives serve little purpose,
and they instead act to slow the optimization process by reduc-
ing the random exploration of the space. As shown in Figure
3, the average archive size ofoCCEA is higher thanMaxEvals
which was set to 5, and thus actions are not evaluated when in
combination with random actions from the other population.

Revised Experiment To test this hypothesis, we restricted
the maximum archive size ofoCCEA to only one action
(MaxArchiveSize= 1 in oCCEA-Archive-Selection), and we per-
formed another 250 runs in the OneRidge domain. The median
performance of the algorithm was 1.84439, with a first quartile
of 1.82448 and a third quartile of 1.86095. This is indistin-
guishable from the performance of therCCEA method in Table
5. We further doubled the maximum number of generations
for the oCCEA algorithm with a maximum archive size of 1
(this setting still involved only around 40% of the budget used
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by cCCEA andpCCEA), and we ran it another 250 times. The
global optimum was consistently and precisely found in all of
them. This is significantly better than all other algorithmswe
tested in this domain.

5 Discussion and Conclusions

It is rational for learning agents to explore those actions that are
rewarded better. However, each agent’s experimentation with a
particular action directly affects the way the other agentsper-
ceive the search space. Therefore, we argue that agents may
benefit from also exploring those actions that inform their team-
mates about the structure of the search space. We suggest that
cooperating agents should be altruistic: the entire team may
benefit if each agent helps its teammates to rank their actions
better. We demonstrated this idea in a new cooperative coevo-
lutionary algorithm,oCCEA, which requires significantly fewer
evaluations to outperform other cooperative multiagent learn-
ing methods on our test problems. We also noticed that too
much altruism may hurt performance: an agent may waste
resources when attempting to inform its teammates about the
many Nash equilibria in the space. Restricting the number of
informative actions an agent may choose solved the problem in
our simple experiments, but we are exploring alternatives that
can automatically balance the information provided to other
learning agents with the desirability of searching for optimal
joint actions. Future work will also examine formal models
and guarantees for concurrent learners employing informative
actions, as well as demonstrate such methods in complex mul-
tiagent domains.
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