
Department of Computer Science
George Mason University

Technical Report Series

4400 University Drive MS#4A5

Fairfax, VA 22030-4444 USA

http://cs.gmu.edu/

703-993-1530

Evolving Families of Designs Using L-Systems

Elena Popovici

epopovic@gmu.edu

Technical Report GMU-CS-TR-2005-8

Abstract

Evolutionary computation has proven its utility in au-

tomating the process of engineering design. However,

little attention has been paid to the scalability of gener-

ated designs, which is an important issue. This paper

addresses this issue and proves the viability of evolving

families of designs using parameterized L-Systems as a

representation. The rest of the paper is organized as fol-

lows: first, an introduction as to why scalability is im-

portant and difficult; second, a review of existing work

on evolving L-Systems; the third section contains a de-

scription of the application domain used for this feasi-

bility study, details on the L-Systems and the EA used;

section four presents experiments conducted and their re-

sults; the paper ends with a discussion, drawing conclu-

sions and setting goals for future work.

1 Introduction

Present engineering design has moved significantly to-

wards automation by computers and evolutionary com-

putation (EC) is a popular technique for generating new

designs. Evolutionary design is already a field in itself.

One of the reason for the success of using EC in design

is its ability to generate novel designs, and designing is a

lot about creativity.

However, designing is also about scalability and this

can become an issue for complex designs with multiple

interdependent components. Proportionally scaling ev-

erything isn’t always an option and it may not be ob-

vious which components should be scaled and how and

what the impact on the whole will be. Consider for exam-

ple a table design: suppose you want a new similar table

with a bigger surface. Simply stretching the original to

enlarge the surface is not a good idea, as resistance in

the middle will decrease. Scaling on all dimensions will

make a table that is also higher and maybe that is unde-

sired. Stretching the surface and adding additional legs

/ supports might be required. If evolution was used to

generate the initial design, one alternative is re-running

the process and selecting for bigger surface. However,

this has the major drawback that, since evolutionary al-

gorithms are stochastic processes, it is very likely that the

obtained design will bear no similarity with the old one.

The solution proposed here is to use EC for generating

families of designs rather than individual ones. The idea

is to evolve parameterized design builders – programs

for constructing designs that take input parameters signi-

fying desired values for some features of the generated

designs. The evolution process is run only once and the

output program is stored. When a new design from that

particular category is needed, the program is run with the

new required parameters. For different input values such

design builders might have to apply different design tech-

niques. They might have to scale different components

at different rates, not scale some at all or add new com-

ponents.

Judging from existing work in the evolutionary design

field, using parameterized grammars as a representation

for this kind of task seemed highly promising. This is be-

cause the language that a grammar produces is strongly

biased by its rules. That is to say the words of the lan-

guage have similar properties and structures as a result

of the common underlying rules.

This very regularity is what makes grammars suitable

for design. One can give grammar symbols meanings

either directly in a design representation space, or in a

design-construction actions space. The result is a lan-

guage whose elements are directly designs or are mapped

into designs. Languages produced by grammars are of-

ten infinite and very large in size. Therefore, the result is

1



a big number of different designs that nonetheless have

similar features. Enhancing grammars with parameters

bears the hope of using them as generators for families

of designs.

The particular kind of grammars used in this work is

L-Systems, introduced by Aristid Lindenmayer in [1].

The next section summarizes previous work on evolving

L-Systems.

The issue of evolving families of designs with L-

Systems has also been investigated by Hornby in [17].

However, the idea and some of the work for this study

originate before Hornbys publication. Additionally, this

paper touches some issues which were not discussed in

[17].

2 Background

L-Systems have been successfully used as a representa-

tion for evolutionary algorithms (EAs) for many problem

domains, from plants to robots or architecture. EAs and

L-Systems seem to be a very good match. The follow-

ing presents a summary of previous work on evolving

L-Systems, grouped by domain areas.

Lindenmayer introduced L-Systems with the purpose

of modeling plant structure and growth. He did not use

evolution to discover L-Systems that produce desired

structures or growth patterns, rather his studies were

based on hand designed systems. But following in his

footsteps, others (Ochoa [2], Jacob [3-5], Mock [6]) did

use EAs to find L-Systems that would generate artificial

vegetation, either in 2D or 3D, using selection criteria

based on measures such as dimensions, surface, stability,

symmetry, branching, etc.

More practical applications of generating structures

can be found in the area of engineering designs. L-

Systems were used to evolve tables, robot morphologies

(Hornby [7]), flytraps, wind tunnels and floor plans for

living spaces (Broughton, Coates, Jackson [8-10]).

For computational applications, evolving neural net-

works has resorted to using L-System representations

in quite a number of application domains: the encoder-

decoder problem for which Kitano in [11] used an in-

teresting approach of having the symbols of the L-

System be matrices; character recognition tasks (Boers

and Kuiper [12, 13] – terminals of the L-System turn into

neurons); the odd-n-parity problem (Hornby [7]); control

systems for robots/artificial life (Mautner and Belew [14,

15]).

Combining structure and control lent itself to evolving

L-Systems as well, as can be seen in [7]. Another ap-

plication which doesnt fit very well in any of the above

categories but is none the less interesting is the evolution

of L-Systems for modeling blood vessels in the human

retina presented by Kokai et. al. in [16].

Why could L-Systems be used in so many different

areas? First of all, because they are defined at an ab-

stract enough level, they allow a large number of distinct

ways of instantiation. The symbols of the L-System can

represent anything. There are two main approaches: 1)

the symbols represent actual components of the result-

ing object; and 2) the symbols represent commands that

specify how an object should be constructed. It should

be noted that while the general definition of grammars

distinguishes between terminals and non-terminals in the

symbols set, L-Systems sometimes dont. Some of the

symbols that serve as non-terminals through the iterative

rule application process can be considered terminals in

the resulting string.

The most popular in the second category is what is

known as turtle graphics (a set of commands that move

a drawing head (turtle) in a 2D or 3D world. The mark

left in the space by the turtle head is considered as the re-

sulting object. All of Ochoa [2]; Jacob [3-5]; Mock [6];

Hornby [7]; Kokai, Vanyi, Toth [16]; Broughton, Coates,

Jackson [8-10] use this mechanism. The last of these

mentioned works is more special as the world of the tur-

tle is an isospatial grid. Another example of symbols

representing commands can be found in [7], where the

terminals of the L-System are interpreted as commands

for edge encoding (a technique for constructing neural

networks introduced in Luke [18]).

L-Systems whose symbols map into parts of the result-

ing object can be found in the work of Kitano [11] (sym-

bols are matrices representing neural network connec-

tivity), Boers and Kuiper [12, 13] (symbols are network

nodes and edges), Mautner and Belew [14, 15] (symbols

are rectangles with patterns for the network nodes and

edges).

Another reason for the success of L-Systems as an EA

representation is the fact that they are a modular con-

cept and each of their components can be customized /

enhanced as described in the following to provide the

three main features that are responsible for computa-

tional power ([19]): combination through hierarchical

construction of more powerful constructs from simpler

ones, control flow through iteration and conditionals and

abstraction through labeling of components for further

reuse and parameters. The following reviews the most

important features of L-Systems and how they have been

used for EA representation. Further details on all these

traits can be found in [1].

Symbols of an L-System can have parameters or not.

The simpler case, when they dont, is still powerful

enough to have been used with good results as an EA

representation in [2], [6], [8-10], [12, 13], [11], [14, 15].

Allowing for parameters gives additional strength by fa-

cilitating the use of conditions based on the values of

2



the parameters for deciding which rules to apply. The

concept has been used in evolutionary systems like those

presented in [7] and [16].

Bracketing is a popular concept for L-Systems, in par-

ticular those in which the symbols are build commands,

allowing the builder to save / recover its state to / from a

stack. Most evolved L-Systems are bracketed ones ([2],

[3-5], [6], [7], [8-10], [12, 13], [16]), but there are ex-

amples of non-bracketed as well ([14, 15], [11]). Addi-

tionally, [7] uses repetition, by grouping symbols in the

successor in a block and specifying how many times the

block should be repeated.

Context sensitivity is another way of providing condi-

tionals, by replacing a symbol with different strings de-

pending on the symbols around it (its context). It be-

comes fairly complicated to use however when used in

combination with bracketing and it is rather seldom used

in EAs ([3-5], [12, 13]).

Lindenmayer introduced stochastic L-Systems, in

which rewriting rules are chosen based on certain proba-

bilities. To my knowledge however, all L-System based

evolutionary systems to date are deterministic. Statistic

L-Systems could however potentially be useful for gen-

erating similar yet different individuals (e.g. plants of the

same species).

Once deciding which of the above features to use for

the to-be-evolved L-Systems, there are still some param-

eters to set and deciding whether its better to fix their

values (and if so, to what?) or to evolve them is not al-

ways obvious.

One such parameter is the number of symbols. While

the number of terminals is domain dependent and gen-

erally easy to decide based on desired functionality, the

number or non-terminals raises harder questions to an-

swer. How many are enough for covering the search

space? Using too few could cut out interesting solutions.

Using too many could slow down the search. Evolv-

ing the right number of non-terminals could be a solu-

tion, however not put in practice yet, as there are a num-

ber of issues associated with it as well. Turtle graph-

ics based L-Systems usually have one symbol (called F)

that advances the turtle head and additionally serves as a

non-terminal plus at least one other terminal for rotating

the turtle (generally 2, denoted by + and -) ([2], [8-10]).

[6] uses one additional symbol that serves only as non-

terminal (and F is used only as terminal). Other work

has more than 2 non-terminals, but their number is fixed

([3-5], [7], [12, 13], [14, 15], [16], [11]).

Deciding the number of rules poses the same too many

/ too few questions. Of course, there should be at least

one rule per non-terminal. [2], [6], [8-10], [16] adopt

the simplest solution of having a single rule (either be-

cause they are non-parametric with a single non-terminal

or, like [16], which has more than one, but only one is

evolvable). [3-5], [11] and [14, 15] have one rule per ter-

minal and [7] has several condition→successor pairs per

non-terminal and the first one whose condition is satis-

fied is applied. [12, 13] choose to evolve the number of

rules.

For how many iterations should an L-System be run?

Some systems ([3-5], [14, 15]) run it either until a maxi-

mum number of either iterations or rule applications is

reached or until there are no non-terminals left in the

string. The number of iterations can also be evolved, like

in [7], but some measures must be taken to prevent it

from growing too much and thus affecting computation

time.

The seed with which the L-System is started can also

be fixed ([2], [6], [8-10], [16]) or evolved ([3-5]). [7] is

a special case where the seed is fixed, but its parameters

are evolved.

An original approach is taken by [16] which uses a

GA to evolve the L-System production and evolutionary

strategies to tune the parameters.

3 Evolving for Scalability

3.1 The Domain – What Is a Table?

The domain used to test the hypothesis was evolving de-

sign builders for 2D tables of customizable height. The

goal was to evolve table builders that when given as in-

put parameter a certain number would construct a table

whose height is somehow related to this number. In par-

ticular, in the current experiments, the builders were se-

lected for their ability to construct tables of height equal

to four times the input parameter.

Quantifying the table-likeness of a 2D structure is not

obvious. After preliminary experiments with various for-

mulas, the measure for a structure s that was used for the

results presented here was as described below unless oth-

erwise specified: tableness(s) = surface(s)∗base(s)∗
stabilityX(s) ∗ stabilityY (s) , where:

• surface(s) ∈ 1..W : the number of pixels at the

maximum height level

• base(s) ∈ 1..W : the width at the base level

• stabilityX(s) ∈ [0, 1): 1−(the absolute horizontal

distance between the center of gravity of the struc-

ture and the center of the base)/(base(s)/2)

• stabilityY (s) ∈ (0, 1): (the height of the center of

gravity)/height(s)

. Tables were not allowed to be wider or taller than H =
W = 100 pixels. If they exceeded these limits they were

penalized and given a fitness of 0.

3



This is obviously not a perfect definition of what a 2D

table is, so in the rest of this paper every time the word

table is used one should really think stable 2D structure

with big surface and wide base support. With respect to

this definition, the evolved designs are fairly good.

3.2 The Representation – L-Systems Used.

Parameterized L-Systems with a turtle graphics interpre-

tation seemed a good choice to represent such builders.

The input parameter would be used as the first (and possi-

bly only) parameter of the L-System seed. The selection

pressure included a measure of the correlation between

the input parameter and the actual height of the gener-

ated structure.

The L-Systems used were very similar to those in [7].

They had bracketing and repetition with no embedding.

The number of non-terminals and their arity was var-

ied across experiments and will be specified in the re-

sults section. For cases when the number of parame-

ters of the seed was bigger than 1, values for the pa-

rameters starting at the second position were encoded in

the chromosomes and evolved. For every non-terminal

there were three condition→ successor pairs and the first

one whose condition was satisfied was applied. The L-

Systems were initialized such that each successor would

have anywhere between 2 and 6 blocks, each block with

at most three symbols. Bracketed, repeating and sim-

ple blocks were generated with equal probability. Termi-

nals and non-terminals were also generated with equal

probability. There was no limit put on the size of the

successors during evolution. The terminals used were

F (x) (move forward in the current direction x pixels), +
(change direction by rotating 90o right),− (change direc-

tion by rotating 90o left). The expressions passed as pa-

rameters to the symbols of arity greater than zero were of

type operand1operatoroperand2, where operand1 and

operand2 were either integer constants or variables (de-

noted by x0, x1, . . .) and operator was any of: + − ∗/.

The conditions were always of the type: variable ≥ con-

stant. Integer arithmetic was used. Non-terminals were

numbered and the first was always taken as seed. Fig-

ure 1 shows an evolved L-System whose graphical output

can be seen in the second snapshot of Figure 2.

3.3 The Algorithm

Since the goal was to evolve design builders that gener-

ate tables of some specified height, the fitness had to in-

clude both a measure of the table-likeness (from hereon

referred to as utility) of the produced structures and a

measure of correlation between the desired height and

the actual height (from hereon referred to as correlation).

The utility measure used, U(design), was described in a

previous section.

Since these design builders can actually be consid-

ered functions and the aim was for generality, they had

to be tested on several inputs and given a grade repre-

senting overall performance. Several issues arise from

this. The first issue is how to combine the utility and

the correlation from all tests into one number to be used

as fitness of a design builder, db. Several approaches

were tried, the one used for most of the experiments

being: fitness(db) =

∑

n

i=1
U(design(db,inputi))

n
+

∑

n

i=1
corr(db,inputi)

n
, where n is the number of inputs

and design(db, input) is the design obtained by running

the design builder db started with input input. Fitness is

to be maximized. Where anything is different from this,

it will be noted.

The second is how to compute correlation. Unless

otherwise specified, in the results presented this was

given by the following formula: corr(db, input) =
H − |actualHeight(design(db, input)) −
desiredHeight(input)|.

A third challenge is how many inputs to use for testing

and what these inputs should be. Many inputs can give

a better idea of overall quality of a design builder, but

increase computational effort. And there is always the

danger of over-fitting. For the experiments described in

the next section, three input values were used: 5, 10 and

15, corresponding to desired heights of 20, 40 and 60.

Yet another thing to decide was for how many itera-

tions to run each L-System before evaluating the gener-

ated structure. Two approaches were tried: one in which

the number of iterations was fixed (to 5) across all indi-

viduals and all inputs and one where the number of it-

erations was encoded and evolved in each individual but

still kept constant over all inputs.

Both mutation and crossover were used. Several types

of mutation were given equal probabilities: perturb one

of the conditions or the equation passed as parameter

to a symbol (by replacing the operator with a new ran-

dom one, replacing a variable with a new random one

or slightly increasing / decreasing a constant), replace a

symbol with a new random one (and random equations as

parameters), add a new random block of symbols, delete

a block of symbols, slightly increasing / decreasing the

number of repeats of a block. When the number of it-

erations or values for the parameters of the seed were

encoded in the chromosomes, two new mutation types

were introduced that would slightly alter these values.

Crossover produced one child out of two parents by

making a copy of the first parent and then replacing a

block of symbols in one of the successors of a rule with

a block from one of the successors of the corresponding

rule from the second parent. When the number of itera-

4



P0(x0) →















(x0 ≥ 1) : P0(−1 −−1)F (−6/x0){P0(x0 − −2)−}(1)F (x0 ∗ −1) + −F (−12/x0)F (−1 − x0

)P1(−4 ∗ −1)F (x0/ − 2)F (−1 − x0)P1(−2 − x0)
(x0 ≥ −3) : {P0(x0 −−2)−}(1)P1(−2 + x0)F (3/ − 3){P0(x0 −−2)−}(1)
(x0 ≥ 5) : {P0(x0 −−2)−}(1)P1(−4 ∗ −1){P0(x0 −−2)−}(1){P0(x0 −−2)−}(13)

P1(x0) →































(x0 ≥ 24) : {F (x0 − 0)}(3) + −P1(2 − x0)P1(−3 ∗ −2)F (x0 + x0)F (−3/x0)P0(x0 − 3)P0(2/
x0)F (−4 ∗ 3)P1(x0 + x0)P0(x0 ∗ x0)F (x0/x0) − P1(x0/2)P0(4 ∗ x0)P1(3 − x0)F (
−4/1)P1(x0 − x0)

(x0 ≥ 4) : P1(0 + 3)F (x0/x0) + −{F (x0 −−1)}(3)
(x0 ≥ 2) : P1(1 − 1)P0(0/x0)P0(2 − 2)P0(x0 − 3)P0(2/x0)F (−4 − 3)P1(x0 + x0)P1(1 − 1)P0

(0/x0)P0(2 − 2)P1(3 − x0)F (−4/1)P0(x0 − 3)P0(2/x0)F (−17 − x0)

Figure 1: Rules for the L-System that produces the designs in the second row of Figure 2.

tions or values for the parameters of the seed are encoded

in the chromosomes, two new crossover types were intro-

duced allowing to copy the number of iterations or a seed

from the second parent.

A generational EA was used in all cases. Unless other-

wise specified, its settings were as follows: non-elitism,

tournament selection of size two, 0.3 crossover rate and

0.5 mutation rate. Population size was varied across ex-

periments, with smaller numbers used for more compu-

tationally expensive L-System types. Runs were con-

ducted for anywhere between 500 and 3000 generations.

The EA behavior was observed in the GUI and runs were

stopped at different points based on performance (fitness

growth pattern, solution structure). Details will be pro-

vided for each case in the following section.

4 Results

Given that the purpose of this study was to show feasibil-

ity of an idea and not to compare methods, few runs (up

to ten) were executed for each experimental setting. Best

of run individuals were offline tested on three additional

inputs to check for generality. Multiple settings were not

meant to determine which is better or to investigate ef-

fect of various components, but to show that in all cases

some acceptable results are produced.

The simplest configuration tested was with L-Systems

with 2 non-terminals of one parameter each and the num-

ber of iterations fixed to 5 for all individuals. This set-

ting was run with populations of 500 individuals. The

photos in Figure 2 show some of the best of run indi-

viduals obtained. Generated designs are shown both for

the three input values used for fitness computation (5,

10, 15) and for three additional input values (8 and 12

for checking interpolation and 17 for checking extrapo-

lation). The framing rectangles show maximum allowed

size of structures (one extra pixel on each side) and the

red horizontal lines mark desired height for the respec-

tive input (one extra pixel down).

As can be noted in these images, the evolved design

builders do a fair amount of generalization, although they

are not perfect. In particular, they seem to have bigger

problems with extrapolating. The reason for this can be

that they seem to generate designs whose width is corre-

lated with the height and as height increases, width in-

creases as well up to the point where it goes outside the

maximum allowed size.

A positive thing that can be observed is that the design

builders successfully scale only some of the components

of the structures, or they scale different components at

different rates. Additionally, another desirable behavior

is the one exhibited by the design builder in the first im-

age, which is the ability to fully change the principle rul-

ing the design when the desired size changes.

The same set of features can be observed for the other

settings tried and shown below. A second setting uses

an elitist EA with L-Systems with 10 non-terminals, still

one parameter each, number of iterations fixed to 5 and

population size of 500. Three best of run individuals are

shown in Figure 3.

A third setting uses a non-elitist EA with L-Systems

with 2 non-terminals, 2 parameters each. The value for

the second parameter of the seed was encoded in the

chromosome and evolved, as was the number of iter-

ations. This EA was run with population size of 100.

Sample best of run individuals are shown in Figure 4.

The first snapshot shows again ability to switch the

design concept with increasing size (even twice in this

case). All the other ones exhibit the feature of scaling

only some design components while keeping others fixed

and / or scaling different components at different rates.

The last snapshot displays very good scaling, but a rather

uninteresting structure.

The final setting uses a different fitness model. The

average utility is multiplied with the average correlation.

In addition, correlation is now computed differently and

takes the form of either penalty or reward. When the

actual and desired heights are different, the correlation

is a penalty between 0 and 1 (0 means harder penalty –

because it will be used in multiplication) obtained by di-

5



Figure 2: Five best-of-run for L-Systems with 2 non-terminals, 1 parameter each, fixed no. of iterations = 5. Non-elitist

EA, tournament selection size 2, population size = 500.

6



Figure 3: Three best-of-run for L-Systems with 10 non-terminals, 1 parameter each, fixed no. of iterations = 5. Elitist

EA, tournament selection size 2, population size = 500.

viding the smaller of the two heights by the larger. When

the heights are equal, the correlation is a reward equal

to the actual height. L-Systems with 10 non-terminals,

1 parameter each, number of iterations fixed to 5 and an

elitist EA with population size of 500 and fitness propor-

tional selection with linear scaling were used. One sam-

ple best-of-run individual is shown in Figure 5. While

the generated shape is quite interesting and esthetic, the

scaling is rather imperfect.

5 Conclusions and Future Work

This paper pushes forward the idea of evolving fami-

lies of designs and backs it up with experimental results

that show that it is practical. Desired qualities of design

builders are identified and the results show that they can

be accomplished through evolution. Preliminary exper-

iments identified issues as well as leads for further re-

search. The proposed model has many knobs that can

be tuned to allow for flexibility, but the effect of each of

them needs to be studied more rigorously. For example:

• number of non-terminals;

• number of parameters;

• method of computing correlation;

• method of combining utility and correlation –

Pareto optimization could be used;

• number of iterations – it could be made a function

of the input parameter and have evolution discover

the right function;

• number of input parameters – to control scalability

for several features of the designs at once.

Bibliography

1. P. Prusinkiewicz and A. Lindenmayer. The Algorith-

mic Beauty of Plants. Springer-Verlag, 1990.

2. G. Ochoa. On Genetic Algorithms and Lindenmayer

Systems. In A. Eiben, T. Baeck,M. Schoenauer, and H. P.

Schwefel, editors, Parallel Problem Solving from Nature

V, pages 335–344. Springer-Verlag, 1998.

3. C. Jacob. Genetic L-System Programming. In Y.

Davidor and P. Schwefel, editors, Parallel Problem Solv-

ing from Nature III, Lecture Notes in Computer Science,

volume 866, pages 334–343, 1994.

4. C. Jacob. Evolution Programs Evolved. In H.-M.

Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel,

editors, Parallel Problem Solving from Nature PPSN-IV,

Lecture Notes in Computer Science 1141, pages 42–51,

Berlin, 1996. Springer-Verlag.

7



Figure 4: Five best-of-run for L-Systems with 2 non-terminals, 2 parameters each, evolved no. of iterations, evolved

second seed parameter. Non-elitist EA, tournament selection size 2, population size = 500.

8



Figure 5: One best-of-run for L-Systems with 10 non-terminals, 1 parameter each, fixed no. of iterations = 5. Elitist

EA, fitness proportionate selection with linear scaling, population size = 500. Fitness based on multiplication.

5. C. Jacob. Evolving Evolution Programs. In J. R. Koza,

K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and

R. Riolo, editors, Proceedings of the First Annual Con-

ference on Genetic Programming, pages 107–115. Mor-

gan Kaufmann, 1996.

6. K.J. Mock. Wildwood: The Evolution of L-system

Plants for Virtual Environments. In Proceedings ICEC

98, pages 476-480. IEEE-Press, 1998

7. G. S. Hornby. Generative Representations for Evo-

lutionary Design Automation. PhD Thesis, The Faculty

of the Graduate School of Arts and Sciences, Brandeis

University, Department of Computer Science, February,

2003

8. T. Broughton, A. Tan, and P. S. Coates. The Use of

Genetic Programming in Exploring 3d Design Worlds.

In R. Junge, editor, CAAD Futures 1997. Kluwer Aca-

demic, 1997.

9. P. Coates, T. Broughton, and H. Jackson. Exploring

Three-Dimensional Design Worlds Using Lindenmayer

Systems and Genetic Programming. In P. J. Bentley, ed-

itor, Evolutionary Design by Computers, 1999.

10. H. Jackson. Toward a Symbiotic Coevolutionary

Approach to Architecture. In P. J. Bentley and D. W.

Corne, editors, Creative Evolutionary Systems, chapter

11, pages 299–313. Morgan Kaufmann, San Francisco,

2001.

11. H. Kitano. Designing Neural Networks Using Ge-

netic Algorithms with Graph Generation System. Com-

plex Systems, 4:461-476, 1990.

12. E. J. W. Boers and H. Kuiper. Biological Metaphors

and the Design of Modular Artificial Neural Networks.

Master’s thesis, Leidea University, the Netherlands,

1992.

13. E. J. W. Boers, H. Kuiper, B. L. M. Happel, and

I.G. Sprinkhuizen-Kuyper. Designing Modular Artificial

Neural Networks. In H.A. Wijsho, editor, Proceedings

of Computing Science in The Netherlands, pages 87–96,

SION, Stichting Mathematisch Centrum, 1993.

14. C. Mautner and R. Belew. Coupling Morphology

and Control in an Evolved Robot. In Banzhaf, Daida,

Eiben, Garzon, Honavar, Jakiel, and Smith, editors, Ge-

netic and Evolutionary Computation Conference, pages

1350–1357, 1999.

15. C. Mautner and R. Belew. Evolving Robot Morphol-

ogy and Control. In M. Sugisaka, editor, Proc. of Articial

Life and Robotics(AROB99), Oita, 1999.

16. Kokai, G., Vanyi, R., Toth, Z.: Parametric L-System

Description of the Retina with Combined Evolutionary

Operators. In Proc. GECCO, Genetic and Evolution-

ary Computation Conference July 13-17, 1999 Orlando,

Florida, USA, Vol. 2 pages 1588-1596

17. Hornby, G.: Generative Representations for Evolv-

ing Families of Designs. In Proc. GECCO, Genetic and

Evolutionary Computation Conference 2003, E. Cantu-

Paz et. al. (Eds.), LNCS 2724, pp 1678-1689, Springer-

Verlag Berlin Heidelberg 2003

18. S. Luke and L. Spector. Evolving graphs and net-

works with edge encoding: Preliminary report. In J.

Koza, editor, Late-breaking Papers of Genetic Program-

ming 96, pages 117–124. Stanford Bookstore, 1996.

19. H. Abelson, G. J. Sussman, and J. Sussman. Struc-

ture and Interpretation of Computer Programs. McGraw-

Hill, second edition, 1996.

9


