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Abstract

Solutions to non-cooperative multiagent systems often
require achieving a joint policy which is as fair to all
parties as possible. There are a variety of methods for
determining the fairest such joint policy. One approach,
min fairness, finds the policy which maximizes the min-
imum average reward given to any agent. We focus on
an extension, leximin fairness, which breaks ties among
candidate policies by choosing the one which maximizes
the second-to-minimum average reward, then the third-
to-minimum average reward, and so on. This method
has a number of advantages over others in the literature,
but has so far been little-used because of the computa-
tional cost in employing it to find the fairest policy. In
this paper we propose a linear programming based algo-
rithm for computing leximin fairness in repeated games
which has a polynomial time complexity given certain
reasonable assumptions.

1 Introduction

Consider the following resource/task allocation problem.
A department of some university offers a number of
classes taught by its professors. Each class can be taught
by some professor and each professor can teach some
class. Teaching a class can be demanding at different lev-
els on different professors, so each valid class assignment
is characterized by a vector of payoffs for the professors
in the department.

*This technical report is the text of an article prepared for a con-
ference, but which was then abandoned after we discovered that the
proposed algorithms had been previously discovered [10, 11].

At the beginning of each semester, the department
head must assign professors to classes. Choosing a sin-
gle assignment and using it over and over may result in
uneven or inefficient workloads for the parties involved.
Instead, we define a solution as a probability distribution
over all possible assignments. In a solution, sometimes
professors will be assigned light workloads and some-
times heavy ones, but on average the expected utilities
are fair and efficient.

The motivation for this paper comes from multiagent
systems, which often involve collectively deciding on a
joint action which is fairest to all involved. This process
is complicated by the fact that multiple agents (in our ex-
ample, the professors) are making decisions (leaving the
process vulnerable to miscoordinations), and by possible
dependencies between successive joint decisions. As a
first step towards analyzing this problem, we have de-
cided to step back from these complicating factors, sim-
plifying the problem to a single decision-making agent
(the “department chair””) and no dependencies between
successive joint decisions. Because we have a single
decision-maker, each previously joint decision may be
converted to a single “action” the decision-maker may
choose to make. In some sense this reduces the degree
to which the problem is a multiagent problem — mul-
tiple agents are affected by the results but there is only
one decision-maker. As it turns out even this simplified
version is nontrivial!

The problem may be described as follows. A single
decision-making agent must repeatedly select an action
from a finite set of possible actions. Every such action
will result a set of rewards (outcomes) for some group of
individuals: different individuals may be rewarded dif-
ferently from a given action, but an action will always



reward a given individual by the same amount each time.
Actions early on do not affect the rewards offered by ac-
tions later on.

The objective of the decision-making agent is to find
a probability distribution over all actions such that, if the
next action was selected from this distribution at each
time step, for an infinite number of steps, the average re-
wards (that is, the utilities) among the individuals would
be as fair as possible, without being wasteful. This prob-
ability distribution will be termed a policy.

What does it mean for a policy to be “fair”’? One might
define fairness as minimal variance among the utilities of
individuals; or require that all individuals have identical
utility. We, like others in the literature, have chosen to
define fairness in a maximin sense: a policy is fairest
if it is the one which provides the highest utility to its
minimum-utility individual. This notion of fairness coin-
cides with the social contracts espoused by the philoso-
pher John Rawls: that the measure of a society is how
well its worst-off are treated.

We will call the optimally fair policy, using this met-
ric, to be a MIN-policy. But it is possible, even probable,
that there will be many MIN-policy solutions to a given
problem. Which should then be chosen? One approach
is as follows. From among the set of equivalent MIN
policies, we will prefer policies for which the second-
to-worst-off individual’s utility is maximized. If there is
more than one such policy, we then prefer from among
them policies for which the third-to-worst individual’s
utility is maximized, and so on. We call a maximally fair
policy using this revised lexicographic-ordering metric a
LEXIMIN-policy. This metric is especially attractive be-
cause LEXIMIN optimality implies pareto efficiency, thus
achieving both our goals (fairness and low wastefulness).

In this paper we will show that discovering optimally
LEXIMIN fair policies can be done in polynomial time
with the partial help of linear programming. We will
begin with a discussion of related work, then a formal
description of the problem, followed by a presentation
of our LEXIMIN algorithm, including an overview, com-
plexity discussion and proof of correctness.

2 Related Work

Minimum-bound fairness has long been of interest in
“one-shot” game algorithms where risk aversion is
strong. Some of the most prominent such algorithms,
cake-cutting methods, compute a one-shot allocation
of an infinitesimally divisible resource (the cake) [13].
There also exist cake-cutting algorithms for one-shot al-
location of multiple indivisible resources, both allowing
side-payments among the players [13], and disallowing
them [2]. These algorithms variously allow for heteroge-

neous degree and measure of reward among the agents,
but guarantee that each of the N agents will feel he has at
least 1/N utility using his own measure. When all agents
in such a cake-cutting method use the same utility mea-
sure, many such methods will reduce to absolute fair-
ness, a simplification of MIN fairness where every agent
receives exactly the same fraction of resource.

MIN fairness can be wasteful in the sense that once
the worst-off agent is as well-off as possible, the oth-
ers have no way of signaling preference over outcomes.
The refinement of MIN fairness we focus on in this pa-
per, LEXIMIN, has also been proposed in context of one-
shot resource allocation, in applications such as splitting
a network’s capacity among multiple commodity flows
[9] or splitting the usage of a satellite [1].

A stronger notion of LEXIMIN, max-min, is widely
used in internet packet routing literature [12, 18]. For
situations where giving absolute priority to the worst-off
is too strong, a number of extensions and variations have
been proposed. For example, stratified egalitarianism
uses a “poverty threshold” to prefer outcomes that im-
prove all those under the poverty line, even at the expense
of those over the line [8]. Another example is the param-
eterized family of aggregation functions proposed in [3],
which optimizes efficiency at one extreme and LEXIMIN
fairness at the other, with a continuum of behaviors in be-
tween,; these functions are based on the ordered weighted
averaging framework from [17].

Repeated games have been less-well studied in this
context. Our inspiration for this paper is derived from
previous literature in achieving fairness through rein-
forcement learning on repeated games [15, 16]. Here,
each player makes an action at each timestep. The joint
actions of the players result in different rewards for each
player, which the players use in their learning algorithm.
Players occasionally meet and consult with one another,
trading reward information, and the player doing best
backs off to allow other players to achieve higher re-
wards. Unfortunately these algorithms do not discover
optimal solutions, primarily because they make myopic
decisions employing the smallest immediate variation in
reward among the agents; and because they have limited
information about the reward function.!

! For example, consider a two-player repeated game with three ac-
tions per player. The reward matrix looks like this:

Player 1
A B C
A | (100,0) (0,0) (0,0)
Player2 B 0,0) (1,1) (0,0)
C (0,0) 0,00  (0,100)

Of the three Nash equilibria (down the diagonal), the myopic
decision-makers in [15] would settle on (B, B) as it contains the least
variance among players’ rewards and is the fairest for a one-shot game.
But over the long-run, playing (A, A) half the time and (C, C) the other
half would result in an average of 50 per player per timestep, compared



We ask: if one knew the entire reward function and
permitted a single decision-maker to determine a joint
action for the agents each timestep, how difficult would
it be to identify LEXIMIN fair solutions? These assump-
tions move the problem to the very edge of what we
would still consider a “multi-agent” problem; but they
provide us with a lower bound from which we can then
begin adding in multi-agent problem complications in fu-
ture work.

One such LEXIMIN optimization algorithm was pro-
posed in [1] for the constrained 1-shot resource alloca-
tion problem. This algorithm can also solve the continu-
ous problem, but the running time is exponential, while
our algorithm achieves a polynomial bound. The differ-
ence is that we are able to direct our search process to
eliminate any branching. The abstract algorithm for max-
min presented in [12] identifies the same theoretical prin-
ciple we use to avoid branching, but the authors fail to
provide any practical clues on how their set algebra op-
erations should be implemented in the multidimensional
continuous case.

3 Problem Formulation

Our repeated game is played forever. At each timestep
the decision-maker chooses one of m actions, and that
action rewards n players®, possibly with a different re-
ward for each player. The game has no state; a given ac-
tion always rewards its players in the same fashion each
time. For a given player P; and policy f, the utility func-
tion U (P, f) provides the expected utility that P; receives
from a game in which a decision-maker is following f.

Assume that the policy is to choose actions by drawing
them from a probability distribution. We seek to discover
one or more such policies such that the game is maxi-
mally fair to the players. Our measures for fairness are
MIN, where the fairest policy maximizes the utility given
to the minimum-utility player; and LEXIMIN, which
breaks ties among MIN policies by maximizing the util-
ity given to the second-to-minimum-utility player, then
breaks further ties using the third-to-minimum player,
and so on.

There are certain important observations to draw from
this formulation:

e The sequence of actions is infinite: otherwise the
optimal solution might depend on the length of the
sequence.

e Since we are concerned with players’ utilities rather
than rewards, the order of actions is not important.

to an average of 1 for (B, B).
2We realize that as these agents are not making plays, it’s odd to
call them players, but we do so for consistency with the literature.

All that matters is the relative proportions of actions
that are played over the long-term.

4 LEXIMIN fairness algorithm

Figure 1 shows a game in which there are only two pos-
sible actions the decision-maker may make. This figure
plots the utility received by various players as a func-
tion of the probability that one of those two actions is
made (as opposed to the other action). Thus the horizon-
tal axis represents the policy. These plots are lines for
the following reason. Player P; (for example) has a high
reward whenever one action is played and a low reward
whenever the alternative is played. For any probability
value between those two extremes (always playing an
action; always playing the alternative), the average re-
ward — the utility — is a linear function, namely, the
probability-weighted sum of the two rewards.

Broadly, we will find the optimal LEXIMIN fair
value(s) of f by determining the poorest player under the
optimal policy, then the second poorest player, and so on
until all players are “ranked.” The gray regions in Figure
1 represent the shrinking of the search space as this pro-
cess unfolds. In Subfigure 1(a) there are no restrictions
on the policy yet. Py is ranked as the worst-off and the
search space is restricted to the set of policies where Py
gets its maximal utility (see Subfigure 1(b)). We refer
to this space restriction as Py’s domain, or Dg. The next
worse-off is Pj, and the search space is again shrunk in
Subfigure 1(c). P» and P; tie for the next two positions
and the search space (in this case a single point) as shown
in Subfigure 1(d). Py is the last to be ranked.

As we stated in the previous paragraph, the algorithm
(see Figure 2) starts with no ranked players and the max-
imal domain for the m-dimensional decision variable. It
determines the poorest player and then moves recursively
(Figure 2, line 31) to solve the smaller problem of rank-
ing the remaining players within the domain where the
newly-ranked player yields its ranking value.

Deciding which player to rank next is done in
two phases. The first phase (the GET-BEST-VALUE-
CANDIDATES call on line 12) finds the optimal value for
the next-to-be-ranked and a list of candidate players that
can achieve that value if ranked next. In our example,
the first set of candidates consists of Py, P3 and P4. If ei-
ther P5 or Py is chosen first, the search space is restricted
to a single point, which is obviously inferior to the solu-
tion shown in Subfigure 1(d)). In the second phase (lines
14-30), we find this candidate: it can be shown that this
candidate’s domain encompasses all the others.

We prove later that the optimal solution is always
found if one chooses to rank next the player that restricts
the search space the least. In our example ranking Py
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(a) The initial problem. (b) The second call, after Py is
chosen for the “poorest player”

position.

(c) The third call, after P, is
ranked the second “poorest.”

(d) After P, and P; tie for third
and fourth “poorest,” the last call
ranks Py as fifth “poorest.”

Figure 1: Applying our LEXIMIN algorithm to a 2-action, 5-player (¥ ... Ps) problem. On the horizontal axis we show
Jo, the proportion of times action 0 will be chosen (no need to show f; = 1 — fp). On the vertical axis are the average
payoffs players get when actions are chosen in different proportions. The algorithm calls itself recursively on smaller
and smaller versions of the problem. The grey areas show the Domain (width of the grey area) and the LowerBound
height of the bottom edge of the grey area) for each call. Once a player has been ranked it is depicted with a dotted

line.

first restricts the space to an interval (the projection of the
grey rectangle in Subfigure 1(b) on the horizontal axis),
while the other two candidates would have restricted the
space to each of the two end points of the said interval.
We will show later that it is always possible to chose in
such a way that no branching is needed.

We draw attention to the third recursive call, corre-
sponding to Figure 1(c). At this point P, and P; are
equally good with respect to both criteria (optimal value
and search space restriction), so the order they are ranked
in is irrelevant: whichever is ranked first, the other will
be ranked next without further space shrinkage. For this
reason we rank them both in the same step (line 31).

See the Appendix for a proof that this algorithm al-
ways terminates and produces the correct result.

4.1 Implementation with Linear Program-
ming

In this section we provide a implementation of the LEX-
IMIN algorithm using linear programming to solve MAX-
IMIZE calls in Figures 3 and 4. The applicability of lin-
ear programming (LP) to a wide range of problems in
many different fields attracts a great deal of interest, re-
sulting in the discovery of many algorithms for solving
problems of this form. Casting our algorithm in terms
of linear programming allows the use of many of these
algorithms drawn from this literature.

4.1.1 Linear Programming

In the standard form, an LP instance is the problem of
—
maximizing ¢’ x, subject to Ax = b and x > 0. All coef-

ficients are real numbers (¢ € R", b € R™ and A € R™*")
and so are the decision variables (x € R"). It is easy to
include inequalities in the list of constraints: for each in-
equality constraint one introduces a new variable, usually
referred to as “slack” (for < constraints) or “surplus” (for
> constraints). For example, if one wishes to optimize
f(x,y) =x+3y subject tox+y < 8 and 2x— 3y > 2, then
one should optimize f(x,y) = x4+ 3y+ 0v; 4 Ov; subject
to the constraints (x+y+v; = 8) and (x — 3y — vy = 2).

An important observation about our LEXIMIN algo-
rithm is that the domains can be represented as a set of
linear constraints. Therefore the intersection of two do-
mains could be regarded as the union of their constraint
sets. It turns out that there is an even simpler solution
which skips merging constraint lists and constraint re-
dundancy detection: the constraints for each optimiza-
tion subproblem can be generated on the spot, using only
the value of LowerBound and a player-indexed array stat-
ing which players have been ranked and at which value.
Since the targets of the MAXIMIZE subproblems are play-
ers’ utility functions, which are linear combinations of
a policy’s components, these subproblems fit the LP re-
strictions. We will show how to cast all MAXIMIZE calls
in the LP framework.

The first place we use MAXIMIZE calls is in the func-
tion GET-BEST-VALUE-CANDIDATES, called on line 12
of Figure 2 to find the list of players with the highest pos-
sible utility while being the “poorest.” We have a naive
implementation and an improved, but harder to prove im-
plementation. Our naive implementation (Figure 3) is
based on solving multiple optimization subproblems: for
each player P,, we simply require the maximization of
the utility function U (P, f), subject to constraints on f



call LEXIMIN(Utility function U, All players P, F = {f € [0,1]A| 3", fu = 1}, —o0)

// A is the set of possible actions

1:
2
3: // Each f is a policy. f, is the probability of performing action a in policy f
4

//U(P,, f) is the utility for player P; € P in policy f € F

: procedure LEXIMIN(U, UnrankedPlayers, Domain, LowerBound)

// LowerBound is the maximum utility, constrained by Domain of the most recently ranked player

5
6:  //Domain is the domain of legal policies, expressed as a set of constraints
7
8

returns: set of all fair policies

9: if UnrankedPlayers = 0 then
10: return Domain
11: end if

/N f € Domain are optimal solutions.

12: (LowerBound, BestValueCandidates) «+ GET-BEST-VALUE-CANDIDATES(U, UnrankedPlayers, Domain, LowerBound)

13: // Focus on the region where no unranked player has a smaller utility than LowerBound.
14: Domain < Domainn{f € F |VP, € UnrankedPlayers: U(P, f) > LowerBound}

15: // Find a candidate player whose domain encompasses the other candidates’ domains. There must be one.
16: BestDomainCandidate « an arbitrary member of BestValueCandidates

17:  for each P, € BestValueCandidates do

18: if SUPERSET(Domain, P, BestDomainCandidate, LowerBound) then

19: BestDomainCandidate < P,

20: end if

21: end for

22: // Find all candidates with the same domain as BestDomainCandidate.

23: BestDomainCandidates < 0
24: for each P; € BestValueCandidates do

25: if SUPERSET(Domain, P, BestDomainCandidate, LowerBound) then
26: BestDomainCandidates «— BestDomainCandidates U {P;}

27: end if

28: end for

29: // Restrict the domain further to the minimum-utility region of BestDomainCandidate, and recurse
30: Domain < Domainn{f € F|U(BestDomainCandidate, f) = LowerBound}
31:  return LEXIMIN(U, UnrankedPlayers\ BestDomainCandidates, Domain, LowerBound )

32: end procedure

Figure 2: Algorithm for optimizing the LEXIMIN function over the players’ average payoffs.

that guarantee that for those policies f, P, has the low-
est utility of any player. The MAXIMIZE call provides us
with a value for f and its corresponding minimum utility.
All players yielding maximal value are returned, along
with their associated f values. Later, we will present an
improved version requiring solving a single optimization
subproblem.

The constraints result from the following GET-BEST-
VALUE-CANDIDATES function invariant, which is part of
the proof of correctness for our LEXIMIN algorithm:

(1) Domain={f|Va €A, fu>0A> fa=1A

acA
VP; € UnrankedPlayers, U (P}, f) > LowerBound/A
VP, € RankedPlayers, U (P, f) = P;’s ranking value}

Aside from the constraints that never change
({>_acafa = 1) and the m constraints (f, > 0), which
are implied and need not be included) there is always
exactly one constraint associated with each player P:
(U(Py, f) = B’s ranking value) if P, € RankedPlayers and
(U(Pe,f) > U(P,f)) otherwise. P, is the player whose

utility is maximized in the current LP.

The second place we use MAXIMIZE is when we com-
pare domains in the SUPERSET function (see Figure 4,
lines 5-6) to determine if one encompasses the other.
The key operation here is the predicate D;\ D; # 0,
whose value we compute by solving a linear program:
since P; gets a utility equal to LowerBound from every
policy in D;, if the largest utility value P; can get while
using a policy in D; exceeds LowerBound, then it must be
that D; \ D; # 0. The one-to-one mapping of constraints
to players is as follows: (U (P, f) = P.’s ranking value)
if P, € RankedPlayers, (U (P, f) = LowerBound) if P, = P;
and (U (P, f) > LowerBound) otherwise.

4.2 Reducing the number of LP calls

We can reduce the number of LPs our algorithm has
to solve by using an alternative implementation for the
GET-BEST-VALUE-CANDIDATES function (Figure 5).
We are going to use a common “trick” from convex
optimization: the “epigraph form” [1, 5]. Instead of
finding the highest utility for each unranked player pro-



1: procedure GET-BEST-VALUE-CANDIDATES(U, UnrankedPlayers, Domain, LowerBound)

2:  returns: the utility for the next-to-be-ranked player and the list of possible candidates
3 BestValueCandidates « 0

4 for each P, € UnrankedPlayers do

5: [v, f] — MAXIMIZE U (P, f) subject to f € Domain and VP, € UnrankedPlayers\ {P} : (U (P, f) > U(P;, f))
6: // P; cannot be a candidate if LP returned v < LowerBound or INFEASIBLE

7 if v = LowerBound then

8: BestValueCandidates « BestValueCandidatesu {P}

9: else if v > LowerBound then
10: BestValueCandidates «— {P;}
11: LowerBound « v
12: end if
13: end for

14: return (LowerBound, BestValueCandidates)
15: end procedure

Figure 3: The naive GET-BEST-VALUE-CANDIDATES procedure used by the LEXIMIN algorithm.

1: procedure SUPERSET(Domain, P, P;, LowerBound)

2:

3: D; =Domainn{f € F|U(P, f) = LowerBound}
4: Dj=Domainn{f e F|U(P;, f) = LowerBound}
5: [vj, f'] < MAXIMIZE P; subject to D;

6: [vi, f""] — MAXIMIZE P, subject to D;

7:

8: // Likewise, D;j\ D; # 0 iff v; > LowerBound

9: return v; < LowerBound \v; > LowerBound

10: end procedure

returns: TRUE if the minimum-utility region of P; is a non-strict superset of that of P, within the constraints Domain, else FALSE

// Set-difference is difficult to compute using constraints, but note that D;\ D; # 0 iff v; > LowerBound

// That is, Di\Dj =0 A Dj\Di7é0

Figure 4: SUPERSET procedure used by the LEXIMIN algorithm.

vided it can be next-to-be-ranked, we try to maximize
a new variable, subject to the constraints that the utility
of each unranked player is higher or equal to that vari-
able. Intuitively, the new variable will hold the best pos-
sible utility value for the next-to-be-ranked, whoever it
is. Solving this LP provides us with a policy and the
final LowerBound for that recursion level. We then pop-
ulate BestValueCandidates with all players whose utility
is LowerBound given that particular policy. Although we
might miss some players that meet the “best value” cri-
teria under other policies, they would have failed the
“largest domain” test: we only care about those players
with maximally large domains and no matter what policy
the LP returns, it will be contained in those players’ do-
mains. Therefore the improved algorithm is still correct.

This new version replaces |UnrankedPlayers| LP calls
with just a single call in the first phase (the “best value”
test), and it also has the potential to decrease the num-
ber of LPs solved in the second phase? (the “largest do-
main” test). The LPs in the new version of GET-BEST-

3We revisit the example in Figure 1(a) to illustrate the sec-
ondary advantage of the new implementation of GET-BEST-
VALUE-CANDIDATES. The first version would have returned
BestValueCandidates = {Py,P;,P;}, while the new one returns
BestValueCandidates = {Py,P;} (or {Py,P4}), and so Dy is com-
pared against only one of D3 or Dy, but not both.

VALUE-CANDIDATES have m + 1 variables and n + 1
constraints. The constraints are: (> ,.4f. = 1); and
additionally Vk = 1...n, (U(F, f) = P;’s ranking value)
if P, € RankedPlayers and (U (P, f) —y > 0) otherwise.
Since all LP variables are required to be non-negative,
and y will be set in turn to each utility level, a sufficient
condition is for coefficients to be non-negative. This is
easy to do: add to all coefficients sufficiently large posi-
tive constant.

4.3 Computational complexity

The LEXIMIN algorithm makes a linear number of LP
calls at each level, before calling itself recursively. Since
at least one player is ranked at each level of recursion,
the recursion goes at most n levels deep. Therefore our
algorithm makes O(n?) LP calls.*

There are two main classes of LP algorithms, each
with its own computational complexity. First are variants
of the Simplex algorithm, likely the most popular linear
programming technique [7], but for which there are no
polynomial worst-case guarantees. Some variants of the
Simplex algorithm have been proved to run in exponen-

4A tighter upper bound is n? LP calls, if the second phase is re-
written into a single loop of |BestValueCandidates| — 1 iterations,
with 2 LP calls per iteration.



1: procedure GET-BEST-VALUE-CANDIDATES(U, UnrankedPlayers, Domain, LowerBound)

»

returns: the utility for the next-to-be-ranked player and the list of possible candidates

3: [v, f] <~ MAXIMIZE y subject to f € Domain and VP, € UnrankedPlayers: (U(P, f) > )
4: BestValueCandidates — {P, € UnrankedPlayers|U (P, f) = v}
5
6

return (v, BestValueCandidates)
: end procedure

Figure 5: Improved version of GET-BEST-VALUE-CANDIDATES.

tial time in carefully constructed instances. The second
class contains linear programming algorithms proven to
run in polynomial time if the linear program’s coeffi-
cients are restricted to fixed-length representation [7].
For our purposes, rational values in our reward function
translate directly to fixed-length coefficients in the linear
programs. Note, however, that although algorithms in
this second class are polynomial in the worst case, Sim-
plex algorithms are usually preferred by practitioners.

All LPs needed have at most /m +- 1 variables and n+ 1
constraints. However, the output from solving one LP
could appear on the right hand side of a constraint in sub-
sequent LPs, so the bit-length (i.e. the number of bits re-
quired to encode an LP) of the sequence of LPs we solve
could grow out of control.

One can use Tardos’ algorithm [7], which solves an
LP over some number of operations bounded by a poly-
nomial’ in n, m, and the size of the binary representation
of matrix of coefficients from the left hand side of the
constraints, but not the size of the numbers on the right
hand side of the constraints. This makes our algorithm
polynomial under the algebraic complexity model, as it
executes a polynomial number of arithmetic operations,
but we don’t have a bound for the operands’ bit-lengths.

We can still offer polynomial time under the logarith-
mic complexity model (the cost of arithmetic operation
depends on the bit length of the operands) if a floating-
point, fixed-length representation is used. This should be
enough for most practical cases, as the user is allowed to
set the precision. Our algorithm is guaranteed to finish in
polynomial time, as the bit-length of the LPs is constant
throughout the process. A large number of polynomial
time LP algorithms have been proposed in the literature,
and the choosing the right one might depend on the size
of the problem. For instance, if there are many players
and relatively fewer joint actions, then Karmarker’s al-
gorithm may be best. Conversely, if there are many joint
actions relative to the number of players, then one might
choose some variant of the basic ellipsoid method, whose
running time is polynomial in the length of the binary en-
coding of the LP and min(m,n).

Since one would not be using exact values, one should

STardos’ algorithm only works for LPs guaranteed to be feasible, so
it can only be use with our second implementation of GET-BEST-

VALUE-CANDIDATES (Figure 5).

slightly relax the “="relation: a = b is true if |a — b| < €.
This affects the algorithm in two places: line 7 in Figure
3 and line 9 in Figure 4. We informally validated this
by comparing the approximative solutions produced by
our algorithms coupled with the interior-point LP solver
from GLPK [6] against exact solutions obtained when
coupled with the Simplex algorithm [4] with explicitly
represented rational numbers (i.e. fractions). The results
showed no difference in the players’ ranking order, and
only minor propagated differences in the actual values
for policies and utilities as would be expected given the
change from fractions to decimals.

5 Conclusion

In this paper we proposed an algorithm for finding the
set of LEXIMIN optimal solutions with respect to av-
erage payoff in infinitely repeated games. The algo-
rithms is more generally applicable to any problem with
multiple linear objective functions defined over a multi-
dimensional continuous and bounded decision variable
space. Our approach relies on solving a quadratic num-
ber of LPs, and is polynomial with respect to the alge-
braic complexity model if the coefficients are rational.
It is also polynomial under the logarithmic complexity
model if the coefficients use a fixed length, albeit float-
ing point, representation.

This work is our initial study in “fair” multiagent in-
teraction: we have started by reducing the problem to a
single actor whose decisions affect multiple agents dif-
ferently. Even this simplification turns out to be non-
trivial. In immediate future work, we will examine what
(likely significantly greater) tradeoffs must be made in
order to extend to the multiple-actor case.
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A Appendix

Lemma 1. There always exists some player P, in
BestDomainCandidates such that D; 2 D; holds VP; €
BestValueCandidates. Or; equivalently, 3P; such that D; =
Domain.

Proof. Let v be the optimal payoff value for the
next-to-be-ranked player. For every player P, €
BestValueCandidates® that can achieve it, D; is defined
as the set of f values for which P is the next poorest:
D;={f|lU(P,f)=vAVP.: U(P, f)=v}. Wewant to
prove that 3P; so that D; = [ JD;.

We prove this lemma using convex analysis [14]. We
make the following notations: D refers to the value of
Domain at line 9, while D' is the value of Domain at line
14 in Figure 2. It is trivial to show that D’ = JD;.

First we note that all domains (i.e. D, D' and D;) are
always convex. We prove the convexity by induction. D
is initially convex. If D is convex, then so are D’ and D;,
because every constraint is a convex set, and the intersec-
tion of convex sets is convex. The set {f|U(P;, f) = v}
corresponding to a constraint (U (P, f) = v) is convex
because for any 2 points f; and f, that satisfy it, so
does every point in between them (aU (P, fi) + (1 —
a)U(P, f2) = U(P,ofi + (1 — ) f2) = v) because P’s
utility is a linear function. Similarly, one can show that
constraints such as (U(B;, f) > v) and (U (B, f) > v) de-
fine convex sets, too. At the next level D is one of these
D; sets, so all domains are convex.

If D’ consists of a single point then the domain D;
for every candidate P; is equal to D', which satisfies the
lemma. We now treat the case when D’ consists of more
than a single point.

Given that D' is both convex and non-empty, accord-
ing to theorem 6.2 in [14], D’ has non-empty relative in-
terior. The relative interior of a convex set is the set’s
interior with respect to L, the largest affine set’ it gener-
ates. Intuitively, if D’ is a point, then L is that point; if D’
is a line segment, then L is the line the segment lies on;
if D' is a polygon, then L is its supporting plane.

Let A be the Lebesgue measure® defined over L. Since
D’ has a non-empty interior with respect to L, it results
that A(D') > 0. Since D; = |JD;, there must exist a P

0In this lemma all P, € BestValueCandidates, so we will omit it.

7An affine set S C R™ -also referred to in the literature as affine
variety, linear variety, affine manifold or flat, is the locus of points sat-
isfying a set of polynomial equations. A more intuitive definition would
be that “a set § C R is affine if it contains the line through any two
points in it” [5]. For example, points, lines and planes are 0, 1 and
2-dimensional affine sets.

8The Lebesgue measure quantifies the “size” of subsets of R”. In
R it measures segments’ lengths; in R? it measures area and volume in
R3. For example, the Lebesgue measure of segment [a,b] is equal to
b—ain R but is equal with zero in RK, k >2.

such that A(Dy) > 0. Otherwise we would run into the
following contradiction: 0 < A(D') <> A(D;) =0.
Since P, has constant utility throughout Dy, and Dy C
D' C L and A(Dy) > 0, it follows that P, has constant
utility on the entire affine set L. However Dy can be
rewritten as {f € D'|U (P, f) = v}, so it implies that
Dy = D' =JD;, and the lemma is proved. O

Lemma 2. Given two arbitrary players P, P; €
BestValueCandidates such that D; C D;, for every policy
fj € Dj we can find a leximin superior policy in D;\ D;.

Since D;\ D # 0, we arbitrarily chose some f; € D; \
Dj;. In a nutshell, if f; is not leximin superior to f;, then
any policy point f on the open-ended segment (f;, f;)
must be.

Let v = LowerBound.  f; € D; = U(B,f;) =
U(Pj,fj) =v and f; € D;\D; = U(P,fi) = v and
U(Pj,f;) > v. We already showed in the proof for
Lemma 1 that D; is convex, so f € D;. Since U(P;,-) is
a linear functional, and U (P;, fj) =v and U(P;}, fi) > v,
then it must hold that U(P;, f) > v, so f € D;\ D;.

The sorted utility vectors corresponding to the poli-
cies f and f; are identical for the first |RankedPlayers|
positions. After that, for f; there are at least two players
ranked at value v. f is leximin superior to f;, because
there cannot be a second player P; € UnrankedPlayers to
be ranked, alongside P, at value v under policy f with-
out being ranked at the same value for policy P;. That
is because U (P, f) = v and U (P, f) > v would make
U(P, f;) < v, which is impossible: D; is the set of poli-
cies where all unranked players get at least as much as P,
which is v. Therefore, either f; or f is leximin superior
to f;, which concludes the proof for Lemma 2.

Theorem 1. The algorithm in Figure 2 always termi-
nates and returns the set of leximin-optimal policies.

Proof. We start by proving that the invariant in Equation
1 holds at the beginning of each LEXIMIN call. Initially
there are no ranked players and LowerBound = —oo, so
Domain = {a € A|fs > OA Y o4 fa = 1} therefore the
invariant holds. Whenever a new player P; is ranked,
LowerBound is equal to that player’s ranking value and its
domain D; becomes the new Domain, which satisfies the
invariant for the next recursion level. Therefore Equa-
tion (1) holds all throughout recursion.

A similar argument guarantees Domain # () is always
true. At the time of the first procedure call Domain #
0. After the first loop LowerBound > —eo, as all play-
ers get a finite average payoff out of every policy. If
P; is the last player to increase LowerBound, D; # 0,
since the linear program for optimizing P; found a point
in D;. Therefore BestValueCandidates # 0 and VP, €
BestValueCandidates = D; # 0, and one of them will be
passed on to the next recursive call as Domain.



A set D; is guaranteed to contain at least one point (the
one found by the LP call) such that all the ranked players
keep their optimal ranking and all the unranked players
are sure to receive at least LowerBound. Therefore in all
calls after the first one Domain is actually some set D;
from the previous iteration, and since it is not empty, one
can always propose a candidate to BestValueCandidates
set by selecting the player with the smallest payoff value
in some point from Domain. If BestValueCandidates # 0,
then Domain # @ after the domain restriction at line 14.
We proved that if Domain # @ on some recursion level
then Domain # 0 on the next level. Therefore, by induc-
tion, Domain can never be empty. This also imply that at
line 14 BestValueCandidates cannot be empty either.

Since there are a finite number of players and at every
recursive call we rank at least a player, we are guaran-
teed that the LEXIMIN algorithm eventually stops and
a complete ranking of players is produced. The rest of
this proof consists of demonstrating that the algorithm
returns the optimal solution(s).

At every procedure call we determine the highest pos-
sible payoff for the next-to-be-ranked player, because ev-
ery unranked player is considered for that position. Thus
BestValueCandidates contains the optimal choice for the
next-ranked player.

When there are multiple candidates, we rank those
whose associated domains include the domains of all the
other candidates. It is always possible to apply this strat-
egy (see Lemma 1) and it leads to the set of leximin opti-
mal solutions (see Lemma 2). When multiple candidates
have maximally large domains, those candidates can be
ranked in any order, since no other player can be selected
until all players in BestDomainCandidates are ranked. In-
stead of ranking each one in a separate recursive call, we
chose to rank them all at once.

Since our algorithm is always able to determine cor-
rectly which is should be the next-ranked player(s), we
conclude that it always finds the set of optimal solu-
tions. O
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