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Abstract

How does one repeatedly choose actions so as to be
fairest to the multiple beneficiaries of those actions? We
examine approaches to discovering sequences of actions
for which the worst-off beneficiaries are treated maxi-
mally well, then secondarily the second-worst-off, and so
on. We formulate the problem for the situation where the
sequence of action choices continues forever; this prob-
lem may be reduced to a set of linear programs. We then
extend the problem to situations where the game ends at
some unknown finite time in the future. We demonstrate
that an optimal solution is NP-hard, and present two good
approximation algorithms.

1 Introduction

Consider the problem of repeatedly assigning two AI
professors to teach two classes offered by their depart-
ment each semester. One class is much harder than the
other one, so during any single semester any one-to-one
assignment is unfair to one of the professors. One fair
solution would be for the professors to teach both classes
together. But assuming this requires more overall effort
than teaching the classes separately, this solution would
be inefficient over the long run.

There is of course a better solution. If the two profes-
sors instead took turns teaching the hard class, then in the
long run their average utilities would be more fair than
in the one-to-one assignments and more efficient than in
the sharing assignment. This is the rough idea behind
long-term fairness: repeated interactions offer opportu-
nities for improved efficiency and fairness over the sin-
gle interaction scenario. But in general the solutions will
not be as simple as alternating assignments (e.g. suppose

we extended the previous example with multiple assign-
ments, involving many professors and classes).

The research presented here examines the following
framework: there are a number of beneficiaries (e.g. pro-
fessors), which receive different rewards from each of a
finite set of actions (e.g. class assignments). The ac-
tions are chosen with replacement, and actions chosen
early do not restrict what actions can be chosen later, or
their rewards. This framework, borrowed from [18], is
very similar to the repeated normal-form game frame-
work from game theory,1 except there is a single decision
maker that chooses actions for the good of all beneficia-
ries.

We are ultimately in the game-theoretic multiple de-
cision maker case. But it turns out that the single deci-
sion maker situation has been inadequately studied, and
so our focus here is on that case.

We define a beneficiary’s utility as the average of all
rewards he received in the past. We will use the term
utility profile to refer to the vector of utilities (one utility
per beneficiary) that they derive from past actions.

In order to compare utility profiles, we use a fairness
concept called leximin. Leximin is a total-order relation
defined as follows: a utility profile U1 is preferable to
another utility profile U2 if the beneficiary with the min-
imum utility in U1 is better-off than the minimum utility
beneficiary in U2; ties are broken by comparing the util-
ities of the the second-worst beneficiary in each utility
profile, then third-worst, and so on. From a procedural
point of view, one should sort in increasing order the two
utility profiles, and compare the sorted versions lexico-
graphically. We chose leximin for our work because it is
widely used in the literature, it is well understood, and it

1The example assigning professors to classes is a variant of the
game “Battle of the Sexes” (also known as “Bach or Stravinsky”), with-
out the miscoordinated joint-actions.
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incorporates a certain measure of efficiency (a leximin-
optimal profile is also pareto-optimal), making it a good
fit for long-term fairness.

In this paper we derive upper bounds for this notion of
utility in infinitely repeated games and propose a partic-
ular approach to approximation solutions for more real-
istic cases (i.e. a finite sequence of actions).

2 Infinite-length Games

An action may give high rewards to some beneficiaries
and low rewards to others, so sticking to just one action
might be unfair to some beneficiaries, and thus leximin-
undesirable. However, if beneficiaries receive different
rewards from different actions we may be able to im-
prove all beneficiaries’ reward averages by playing a
combination of actions.

One approach to playing combinations is to use a peri-
odic, repeated sequence of actions. In previous literature
[17, 18], distributed algorithms for discovering such se-
quences found suboptimal ones. We will show optimal
solutions, albeit with non-distributed algorithms.

Because beneficiaries’ utilities change with every new
action being played, it is not obvious how to compare
arbitrary sequences. Periodic sequences are thus conve-
nient because the resulting utility profiles always con-
verge and one can straightforwardly compare periodic
sequences by comparing the utility profiles they converge
to.

Periodic sequences are intuitively appealing, but even
if one can find the periodic sequence with the best limit,
that can still be suboptimal. We will show at the end
of this section that in some problem instances with irra-
tional coefficients there might exist infinite non-periodic
sequences that achieve, at the limit, leximin-superior util-
ity profiles to any utility profile achievable by a periodic
sequence. Our algorithms are guaranteed to produce se-
quences converging to the optimal utility profile, and,
whenever possible, those sequences are periodic.

In this section we will (1) prove that convergent se-
quences (periodic or non-periodic) are sufficient and (2)
identify the class of sequences with the leximin-optimal
limit-point. In the following sections we will propose
additional requirements to impose on this class of se-
quences and then provide algorithms that produce se-
quences satisfying these requirements.

Problem 1. Base Problem Let there be a set A of na
actions affecting a set B of nb beneficiaries through the
reward function R : A×B→R. Let S be the set of infinite
sequences of actions from A:

S = {S = 〈s1,s2, . . .〉|∀i ∈ N : si ∈ A}.

Let U be the set of all possible utility profiles (vectors)
achievable from following any sequence for any number
of time steps:

U = {U ∈ Rnb |∃t ∈ N,∃S ∈ S : Ub =
1
t

t∑
j=1

R(s j,b)}.

The goal of the problem is to find U? = sup(U), the
supremum (least upper bound) with respect to leximin
over the set of all achievable utility profiles.

In order to solve this problem we first show that it
is enough to focus on a subset of “well-behaved” se-
quences, by proving that they achieve the entire set of
possible utility profiles U. We then provide a mapping
of that subset into the na-dimensional simplex which can
be searched efficiently using linear-programming-based
algorithms from the literature.

To make things easier, we refer to the elements of A as
{1 . . .na} and the elements of B as {1 . . .nb}. Let S′ ⊂ S
be the set of all sequences S where the proportions of the
na actions converge. Formally:

S′ = {S ∈ S|∀ j ∈ A : ∃ lim
t→∞

1
t

k j(St)}

where St is the subsequence of S consisting of the first t
elements and k is the count function (so k j(St) is equal
to the number of times action j is used in the first t po-
sitions of sequence S). We denote with F(S) the vector
of action proportions (or fractions) for S (i.e. Fj(S) =
limt→∞

1
t k j(St)).

We use the notation U(St) to mean the vector of utili-
ties achieved after following the first t steps of sequence
S (i.e. U’s component for beneficiary b is Ub(St) =
1
t
∑t

i=1 R(s j,b)). Because the action proportions con-
verge, the sequence of utility vectors 〈U(S1),U(S2), . . .〉
must also converge component by component and we de-
note its limit point by the vector U(S):

Ub(S) = lim
t→∞

Ub(St) =
na∑
j=1

Fj(S)R(s j,b) (1)

Also, let U′ be the set of utility vectors achievable by
sequences in S′. Obviously U′ ⊆ U since S′ ⊂ S. Also,
U′ ⊇U because ∀U ∈U there must exist S ∈ S and τ ∈N
such that U = U(Sτ), and based on S and τ it is trival
to build a sequence S′ ∈ S′ that achieves U (e.g. s′t =
s(t−1) (mod τ)+1). Therefore U′ = U.

Let U′′ be the set of limit points of U′ (U′′ = {U |∃S ∈
S′ : U = U(S)}). We claim that

sup(U = U′) = sup(U′′) (2)

because all achievable utility vectors are also limit
points. Formally, ∀τ ∈ N, we can build S′ ∈ S′ such
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that U(S′) = U(Sτ) (again it is enough to chose s′t =
s(t−1) (mod τ)+1).

Because U(S) depends only on F(S), there is an obvi-
ous one-to-one correspondence between U′′ and the na-
dimensional unit simplex.

Once reformulated as an optimization problem over
a compact and convex set, the problem becomes read-
ily solvable with the algorithm proposed in [12]. In our
particular case, the algorithm consists of solving O(n2

a)
linear programs (LPs), but approximate results based on
a floating-point fixed-length representation might be re-
quired to make sure the complexity of this algorithm does
not dominate that of the algorithms we propose here.

The algorithm produces two vectors, U? and F?. U?

is the leximin-optimal utility vector, and F? is a point
inside the simplex such that:

∀b ∈ B :
na∑

i=1

R(b, i)×F?
i = U?

b

U? is unique [4], but F? does not have to be. Since
U? is the leximin-maximal utility vector in U′′ (by the
algorithm’s guarantee), and it is unique, it implies that
U? = sup(U′′), and, by Equation 2:

U? = sup(U). (3)

We revisit the existence of a periodic sequence for a
given optimal utility profile solution U?. If such a pe-
riodic policy exists, let c j denote the number of times
of action j appears in one period (we call c j the mul-
tiplicity of action j). Then by normalizing the vector
c = [c1 . . .cna ] one should obtain a valid F? vector. If
all rewards are rational then there must exist an F? with
rational components,2 and hence a periodic sequence
(c j = p j

q j
×P, where F?

j = p j
q j

, and where p j,q j are in-
tegers and P is the least common multiple for q1 . . .qna ).
However irrational rewards could mean there is no F?

with rational coefficients, and no periodic sequence.
We illustrate this point with a modified version of the

professor example: both professors get a reward of 0
from teaching the hard class, but teaching the easy class
gives one professor a reward of 1 and the other a reward
of
√

2. Then U? = [
√

2
1+
√

2
,
√

2
1+
√

2
] and there is a unique

F? = [
√

2
1+
√

2
, 1

1+
√

2
]. We make the observation that de-

pending on the values in F?, the multiplicities could be
arbitrarily large. Thus, one can see the non-periodic se-
quences due to F? having (some) irrational components
as special cases of periodic sequences where the period
length is infinite.

2The algorithm that computes U? does only arithmetic operations
(e.g. using Simplex to handle its linear programming calls), and since
the input values (rewards) are rational, so must be the output values
(i.e. F?).

3 Finite-length Games
Solving the Base Problem provides U?, the least upper
bound over the set of achievable utility profiles. If the
game is guaranteed to last forever, one could be satisfied
with the goal of finding a sequence that achieves U? at
the limit. But in more practical applications, one must
consider the implications of having the process end af-
ter a finite number of steps, or more generally, having
the length of the sequence of actions drawn from some
probability distribution.

Consider the professor-assigment example from the
introduction: the first actions corresponds to the assign-
ment where the first professor teaches the easy class, the
second action corresponds to the assignment where the
second professor teaches the easy class, and the third ac-
tion is the assignment where they teach the classes to-
gether:

Example 1.

Beneficiaries
b1 b2

1 10 0
Actions 2 0 10

3 1 1

The utility least upper bound for Example 1 is
U? = [5,5], which can only be achieved through F? =
[0.5,0.5,0], and which coincides with the optimal solu-
tion if the game lasts for an even number of steps: use ac-
tions 1 and 2 in equal proportions. However, one should
use action 3 if the game lasts for only one round. This
shows that the optimal sequence of decisions depends
on the duration of the game, and so if the duration is
not known in advance, some sort of tradeoff might be
required.

One could chose an action stochastically, using the
values in F? as probabilities. This approach produces
the leximin-optimal expected rewards (equal to U?). This
sort of guarantee is usually referred to in the economics
literature as ex-ante fairness (ex-ante means “before-
hand” in latin). If all beneficiaries are risk-neutral, a
mechanism choosing repeatedly from the F? distribu-
tion promises leximin-optimal expected utilities before
the process starts, but not necessarily leximin-optimal
actual utilities when the game ends For Example 1 this
approach would flip a coin between actions 1 and 2; al-
though the expected rewards (and utilities) are equal to
U?, if the game ends after two rounds, there is a 50%
chance that one beneficiary accumulated 10 reward units
and the other none. Moreover, if the game continues,
the probability that the difference between the two will
shrink is equal to the probability that the difference will
grow. Thus, the weakness of this ex-ante approach would
be its lack of concern with paying reparations for unfair-
ness resulting from past randomness.
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(a) S1 = 〈1,2,1,2, . . .〉
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(b) S2 = 〈2,1,2,1, . . .〉
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(c) S3 = 〈1,1,2,2,1,1,2,2, . . .〉
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(d) S4 = 〈1,2,2,1,1,2,2,1, . . .〉

Figure 1: Risks as functions of time for the two beneficiaries in Example 1 (the solid line for the first and the dotted
line for the second) as produced by various periodic sequences.

One can address the weaknesses of the previous
method with a deterministic approach, aiming to find
a sequence which leximin-optimizes beneficiaries’ ex-
pected utilities weighted by the probabilities in the dis-
tribution of game lengths. Unlike the previous method,
this could use action 3 in Example 1, provided there is a
high enough probability that the game will end after one
step.

Both previous methods assume risk-neutral beneficia-
ries. Given that leximin is a risk-averse fairness concept
(“no one is left behind”), it makes sense to instead focus
on a risk-averse solution approach: minimize the largest
amount a beneficiary risks losing due to the game ending
prematurely. We define the risk of beneficiary k at time
step t while executing sequence S as the difference be-
tween the rewards accumulated by beneficiary k during
the first t steps, and the amount he was entitled to, which
is t×U?

k .

Riskb(S, t) =
t∑

i=1

R(si,b)− t×U?
b (4)

We use the term worst risk (WR) of a sequence S to mean

a lower bound on all risks values, regardless of benefi-
ciary (i.e. WR ≤ Riskb(S, t), ∀t ∈ N and ∀b ∈ B). The
worst risk is a negative values, and its absolute value is
an upper bound on the largest amount that any benefi-
ciary can lose.

This approach is not meant to replace expectation op-
timization; we are simply adding another tool to the ar-
senal available for this problem. It is reasonable to ex-
pect the computational complexity of the expectation-
optimization approach to grow with the maximum game
length, and so our proposed solution is particularly suit-
able to scenarios with very large game durations (our
approach is insensitive to the distribution of game dura-
tions). Furthermore, lower-bounding the worst risk will
always make the utilities converge to U? as t→ ∞:

Ub(St) =
1
t

t∑
i=1

R(si,b) =
Riskb(S, t)

t
+U?

b

Ub(St)−U?
b ≥

risk lower bound
t

→ 0

Note that the risks of all beneficiaries cannot be simul-
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taneously positive, unless they are all zero. Otherwise
one can use the sequence of actions used up to that point
to build an infinite sequence with a utility vector leximin-
superior to the optimal vector U?. Thus there must exist
strictly negative risks during the implementation of any
non-empty sequence. The only exception would be
if there is some action j such that ∀b : R( j,b) = U?

b , but
that case is trivial: simply play action j at each step, with
0 risk for each beneficiary.

For convenience, we define for each action j a vec-
tor X j = [X j,1 . . .X j,nb ], where X j,b = R( j,b)−U?

b , the
amount action j changes the risk of beneficiary b. Note
that:

Riskb(S, t) =
t∑

i=1

[R(si,b)−U?
b ] =

t∑
i=1

Xsi,b (5)

∀b ∈ B :
na∑
j=1

X j,b×F?
j = 0 (6)

Let us illustrate the concept of risk using Example 1.
The X vectors are as follows: X1 = [5,−5], X2 = [−5,5]
and X3 = [−4,−4]. We will compare the following peri-
odic action sequences (see Figure 1).

S1 = 〈1,2,1,2, . . .〉
S2 = 〈2,1,2,1, . . .〉
S3 = 〈1,1,2,2,1,1,2,2, . . .〉
S4 = 〈1,2,2,1,1,2,2,1, . . .〉

Sequence S1 makes the first beneficiary’s risks equal
to 5 on odd steps and 0 on even steps, while the second
beneficiary’s risks are 0 on odd steps and −5 on even
ones. Therefore the second beneficiary risks coming up 5
units short if the game stops after an odd number of steps
and breaks even otherwise. Sequence S2 has identical
effects as S1, but to different beneficiaries, so the two are
equally good. Using sequence S3, the second beneficiary
risks losing as much as 10 units, so we prefer S1 (or S2)
to S3.

Note that using sequence S1 makes the second bene-
ficiary take all the “bad” (negative) risks, while the first
beneficiary takes only “good” (positive) risks. Although
sequence S1 is as fair as possible with respect to aver-
age utilities, one cannot help but notice a “second de-
gree” unfairness. Instead, one might consider the goal of
optimizing cumulative risks (e.g. sequence S4 alternates
which beneficiary is taking negative risks). This leads to
the following paradox: although intuitively one prefers
S4 to S1 or S2, the worst risks for all beneficiaries during
sequences S1 or S2 (i.e. −5 and 0) are leximin superior to
the worst risks during S4 (i.e. −5 and−5). This suggests
that one might consider optimizing only the “min” of the
worst risks, instead of leximin optimizing all beneficia-
ries’ worst risks.

Another possible refinement comes from the observa-
tion that not all beneficiaries get the same expected util-
ity, so a rich beneficiary could afford risking to lose more
than a poor one. Therefore, as long as U? has strictly pos-
itive components, one can consider optimizing worst rel-
ative risks (RelRiskb(A, t) = Riskb(A, t)/U?

b ) instead of
optimizing the worst risks.

Problem 2. Worst Risk Maximization Problem Given
the setup in the Base Problem, and K ∈ N such that
K > |V |, find a sequence of actions S of length K with
a maximal worst risk.

Theorem 1. Problem 2 is NP-hard.

Proof. We prove Problem 2 is NP-hard through a reduc-
tion from Partition Problem [7]. In the Partition Prob-
lem one is given a multiset V of integer numbers and has
to decide if V can be partitioned into two subsets whose
elements sum to the same value. We will show that the
answer to this decision problem is “YES” if and only if
the optimal worst risk for a corresponding Worst Risk
Maximization Problem instance is equal to a specific
value.

For an arbitrary Partition Problem instance V =
{v1, . . . ,v|V |} we construct the associated Worst Risk
Maximization Problem instance as follows. The in-
stance has |V |+ 1 actions and |V |+ 3 beneficiaries. We
differentiate between two types of beneficiaries. The first
|V |+ 1 beneficiaries, which we refer to as 1 . . . |V |+ 1,
receive the following rewards:

R(i, j) =

{
δ − σ

2 if i = j
δ + σ

2×|V | otherwise

where σ is the sum of elements in V (i.e. σ =
∑|V |

i=1 vi),
and δ is an arbitrary constant. The remaining two bene-
ficiaries (which we refer to as α and β ) get the following
rewards:

R(i,α) =

{
δ + vi if i 6= |V |+1
δ −σ otherwise

R(i,β ) =

{
δ − vi if i 6= |V |+1
δ +σ otherwise

The computational effort for the transformation is obvi-
ously linear in the size of the input.

The first step is to prove that U? = [δ . . .δ ]. Note
that each action dispenses the same sum of rewards:
(|V |+ 3)× δ . It follows that the sum of all beneficia-
ries’ utilities is (|V |+ 3)× δ at any time, regardless of
the sequence of actions. Therefore no vector U can be
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leximin superior to [δ . . .δ ] since U can’t have a com-
ponent strictly greater than δ without having some other
component strictly smaller than δ . Note that the utility
vector [δ . . .δ ] is achievable, e.g., U(b,S|V |+1) = δ for
every beneficiary b, if the sequence S starts with an ar-
bitrary permutation of the |V |+ 1 actions. Since the
vector [δ . . .δ ] is achievable and no utility profile can be
leximin-superior, then U? must be equal to [δ . . .δ ].

For any sequence S it holds that Risks1(S,1) = −σ

2
(whichever action j is used first, there is a beneficiary
j whose risk is −σ

2 ), so the worst risk value WR≤−σ

2 .

Claim The answer to the Partition Problem instance
is “YES” (i.e. there exists V ′ ⊂ V such that

∑
v∈V ′ v =∑

v∈V−V ′ v = σ

2 ) if and only if the worst risk touches its
upper bound (i.e. WR =−σ

2 ).
First we will prove the “IF” part of the claim: if the

Worst Risk Maximization Problem solver produces a
sequence S such that Riskk(S, t) = −σ

2 , then V can be
partitioned into two subsets of equal size.

We submit that each of the |V |+ 1 actions is used ex-
actly once in the first |V |+ 1 positions of S. If action j
were to show up k times (k≥ 2), then Risk j(S, |V |+1) =

−σ

2 × k + (|V |+ 1− k)× σ

2×|V | = σ

2

(
−k + |V |+1−k

2×|V |

)
≤

σ

2

(
−2+ |V |−1

2×|V |

)
= −σ

2

(
1+ |V |+1

2×|V |

)
< −σ

2 , which is a
contradiction. Also, if action j were not used at all dur-
ing the first |V |+1 positions of S then some other action
i had to be used more than once, leading to the same con-
tradiction.

Given that each action is used exactly once in the
first |V |+ 1 steps, Risk j(S, t) ≥ −σ

2 ∀t ∈ {1 . . . |V |+ 1},
∀ j ∈ {1 . . . |V |+ 1}, because Risk j(S, t) is the sum of at
most one negative term (i.e. −σ

2 ) and several positive
ones (i.e. σ

2×|V | ). As for the beneficiaries α and β , their
worst risks depend on the subset V ′ of elements in S that
go before the first occurrence of action |V |+ 1. Bene-
ficiary β ’s risk decreases monotonically from zero until
action |V |+ 1 is chosen, then abruptly becomes positive
and thereafter decreases monotonically to zero. Thus the
worst risk for beneficiary β occurs right before action
|V |+1:

−σ

2
≤ Riskβ (S, |V ′|) =−

∑
v∈V ′

v⇒
∑
v∈V ′

v≤ σ

2

Beneficiary α’s worst risk occurs immediately after ac-
tion |V |+1, since Riskα(S, t) =−Riskβ (S, t), ∀S, ∀t:

−σ

2
≤ Riskα(S, |V ′|+1) =

∑
v∈V ′

v−S⇒
∑
v∈V ′

v≥ σ

2

Consequently
∑

v∈V ′ v = σ

2 ⇒
∑

v∈V−V ′ v = σ

2 , conclud-
ing the proof for the first part of the claim.

We now prove the “ONLY-IF” part of the claim: if
there exists a partition of V into V ′ and V −V ′ such that∑

v∈V ′ v =
∑

v∈V−V ′ v, then there exists a sequence of
length K that generates a worst risk of −σ

2 .
Let S be a periodic sequence whose period consists

of an arbitrary permutation of the actions in {i|vi ∈ V ′}
followed by action |V |+ 1 and an arbitrary permutation
of the actions in {i|vi ∈ V −V ′}. Because the sequence
S is periodic, the sequence of risks produced by S is
also periodic. Therefore it is enough to verify that all
risks are greater than or equal to −σ

2 during the first
|V |+ 1 time steps. Note that each action is used exactly
once during the first |V |+ 1 steps, so we can verify the
worst risk for each beneficiary using arguments similar
to those in the first part of the claim’s proof. There is a
single action j that affects beneficiary j’s risk negative
way, so Risk j(S, t)≥−σ

2 . Beneficiary α’s risk improves
monotonically from zero to σ

2 during the first |V ′| steps;
then becomes −σ

2 at the next step as a result of action
|V |+ 1; then improves monotonically afterwards. Ben-
eficiary β ’s risk worsens monotonically, until it reaches
−σ

2 after step |V ′|; afterwards it becomes equal σ

2 due to
action |V |+ 1 and will remain positive until the end of
the period.

By building sequence S we have shown that a worst
risk of −σ

2 is possible, and since WR≤−σ

2 , then WR =
−σ

2 is optimal. Therefore a correct Worst Risk Maxi-
mization Problem solver must find some sequence with
the same performance. This concludes the proof for the
second part of the claim.

Therefore one can decide the answer to any instance
of the Partition Problem by solving the corresponding
Worst Risk Maximization Problem instance. To sum-
marize: compute the risks for the first |V |+ 1 steps of
the optimal-WR sequence. If at any time some risk was
strictly less than −σ

2 , then the partitioning is impossible;
otherwise make a multiset V ′ consisting of all v j such
that action j encountered before action |V |+ 1, and re-
turn the partition V ′, V −V ′.

The problem instance transformation and result inter-
pretation are obviously polynomial in the size of the in-
put, so we conclude that the existence of a polynomial
time algorithm for the Worst Risk Maximization Prob-
lem implies P = NP.

Corollary 1. Generating an infinite sequence with opti-
mal worst risk is intractable.

Proof. A direct consequence of Theorem 1.

Corollary 2. Generating an infinite sequence with opti-
mal worst relative risk is intractable.

Proof. A direct consequence of Corollary 1 and Theo-
rem 1 when δ > 0.
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Corollary 3. Generating the infinite sequence that lex-
imin optimizes the vector of worst risks (or worst relative
risks) of each beneficiary is intractable.

Proof. We prove it by reduction from the Worst
Risk Maximization Problem, since the se-
quence S that leximin-optimizes the vector
[mint Risk1(S, t) . . .mint Risknb(S, t)] also optimizes
minb mint Riskb(S, t). The proof for relative risks is
similar.

4 Algorithms
The most intuitive solution to optimizing worst risk(s) is
to try to keep all risks as large as possible at all times,
i.e. greedily choose the action that leximin optimizes
risks during the next step (choose the action with the
best immediate effects). We will refer to this strategy as
GR (Greedy leximin-optimizing next-step Risks). One
weakness of this approach is that it assumes the world
ends at the next step. In Example 1 it will always chose
action 3, leading to arbitrarily bad risks for both benefi-
ciaries if the game lasts long enough. Note that F?

3 = 0,
meaning action 3 should not be played at all. One can
easily extend the greedy heuristic to ignore the “unus-
able” actions, but that is not enough to prevent risks
from getting arbitrarily bad. Consider Example 2, with
U? = [240,240,240] and unique F? = [ 4

15 , 6
15 , 5

15 ]. For
this problem GR will chose action 1 repeatedly, leading
to arbitrarily bad risks for the first and last beneficiaries.
The reason is that action 2 and 3 hurt one of those ben-
eficiaries more than action 1 hurts any of them, and GR
lacks the look-ahead to see the benefits of using actions
2 and 3.

Example 2.

Beneficiaries
b1 b2 b3

1 -20 30 -20
Actions 2 60 30 -40

3 -56 -60 64

The algorithms we propose in this paper are based on
the following observation. All beneficiaries’ risks are
zero at time t if the number of times each action j was
used up to time t are all proportional to the correspond-
ing components of some F? vector (i.e. k j(St) = F?

j × t,
∀ j). Ideally all k j(St) = F?

j × t at all times, but since the
k j functions only take integer values, that is not always
possible. It is intuitive that the risks cannot get very bad
at any time t ′ if the relative counts (k j/t ′) for how much
each action was used up to time t ′ are close enough to
the corresponding values in F?. There are many ways
one can construct sequences S to keep the k j(St) values
close enough to the F?

j × t values; we will present two

simple methods, and derive risk upper and lower bounds
for both of them.

Our methods completely ignore the actions j which
are not “used” in F? (i.e. F?

j = 0). Let n?
a be the number

of actions “used” in F?; for simplicity, we rename the
actions (reorder the dimensions of the simplex) such that
all actions used in F? come before the other ones:

∀ j ∈ {1 . . .n?
a} : F?

j > 0∧ (7)

∀ j ∈ {n?
a +1 . . .na} : F?

j = 0 (8)

Method 1 Intuitively, this method choses an action
that, up to that point, has been used the least relative
to how often the action should have been used. Con-
sequently, an action j can be chosen at time t + 1 if it
has the smallest ratio k j(Dt )

F?
j ×t , where D is the sequence of

decisions produced by this method (so Dt contains all its
past decisions). Without affecting the decision process,
one can eliminate t from the denominator. We formally
describe this method with the following notation:

dt ∈

{
j ≤ n?

a

∣∣∣∣∀i≤ n?
a :

k j(Dt−1)
F?

j
≤ ki(Dt−1)

F?
i

}
(9)

where all functions k j are extended such that k j(D0) = 0,
∀ j ∈ {1 . . .nb}. Note that multiple actions could tie for
the minimum.

Method 2 While the previous approach helps less-
often chosen actions catch up to the others, the next ap-
proach choses actions that — if used — will get the least
ahead of the others. The sequence of decisions D′ for this
method is described formally as follows:

d′(t) ∈
{

j ≤ n?
a

∣∣∣∣∀i≤ n?
a :

k j(D′t−1)+1
F?

j
≤

ki(D′t−1)+1
F?

i

}
(10)

We will derive the risk bounds for the first method,
then reduce the second method to the first.

Lemma 1. ∀ j ∈ {1 . . .n?
a} and ∀t ∈ N: kdt (Dt−1)

F?
dt

≤
k j(Dt−1)

F?
j

Proof. The result follows directly from Equation 9.

Lemma 2. ∀i, j∈{1 . . .n?
a} and ∀t ∈N: ki(Dt )−1

F?
i
≤ k j(Dt )

F?
j

Proof. If ki(Dt) = 0, then the inequality holds since the
left hand side is strictly negative and the right hand side
is positive. If ki(Dt) > 0, let t ′ be the last time action i
was used (t ′ = argmaxτ=1...t dτ = i).

7



All functions kl(Dt) are monotonically increasing with
t because ∀l ∈ {1 . . .n?

a} and ∀t ∈N: kl(Dt) = kl(Dt−1)+
1 if dt = l and kl(Dt) = kl(Dt−1) otherwise.

Consequently, the following must hold:

ki(Dt)−1
F?

i
=

ki(Dt ′)−1
F?

i
=

kdt′
(Dt ′)−1
F?

dt′

=
kdt′

(Dt ′−1)
F?

dt′

≤
k j(Dt ′−1)

F?
j

≤
k j(Dt)

F?
j

(11)

Theorem 2. Regardless of how the first method breaks
the ties, the following double inequality is guaranteed to
hold ∀b ∈ B and ∀t ∈ N:

n?
a∑

i=1

min(Xi,b,0)≤ Riskb(D, t)≤
n?

a∑
i=1

max(Xi,b,0) (12)

Proof. Since
∑n?

a
i=1 F?

i × Xi,b = 0, we can rewrite
Riskb(D, t) =

∑n?
a

i=1 ki(t) × Xi,b as Riskb(D, t) =∑n?
a

i=1 ki(Dt) × Xi,b −
kdt (Dt )

F?
dt

×
(∑n?

a
i=1 F?

i ×Xi,b

)
.

Equivalently:

Riskb(D, t) =
n?

a∑
i=1

(
ki(Dt)−F?

i ×
kdt (Dt)

F?
dt

)
×Xi,b

=
n?

a∑
i=1
i6=dt

(
ki(Dt)−F?

i ×
kdt (Dt)

F?
dt

)
×Xi,b

=
n?

a∑
i=1
i6=dt

(
ki(Dt−1)−F?

i ×
kdt (Dt−1)

F?
dt

)
×Xi,b

(13)

It follows as a direct consequence of Lemma 1 and
Lemma 2 that:

0≤ ki(Dt−1)−F?
i ×

kdt (Dt−1)
F?

dt

≤ 1 (14)

The theorem follows directly from the combination of
Equation 13 with Equation 14.

Theorem 3. Regardless of how the second method
breaks ties, the following double inequality is guaran-
teed to hold for ∀b ∈ B and ∀t ∈ N:

−
n?

a∑
i=1

max(Xi,b,0)≤ Riskb(D′, t)≤−
n?

a∑
i=1

min(Xi,b,0)

(15)

Proof. We submit the following observation regarding
the first method: since 1

fi
> 0

f j
∀i, j ∈ {1 . . .n?

a}, no ac-
tion can be chosen a second time before every action has
been chosen once. This implies that ∀ j: k j(Dn?

a) = 1,
i.e. each action is chosen exactly once during the first n?

a
decisions.

We now claim that the second method makes the same
sequence of decisions as the first method, but shifted to
the right by n?

a positions. That is, d′t = dt+n?
a , provided

corresponding ties are broken the same way. This is be-
cause the “+1” in the decision function for the second
method covers the difference of n?

a steps between the two
methods for each beneficiary.

The first methods’ risk at time step n?
a is

Riskb(D,n?
a) =

∑n?
a

i=1 Xi,b, which corresponds to a
Riskb(D′,0) = 0. After that the two methods make the
same decisions, so they change the risks the same way
(because if they both chose action j, then they both add
X j to their risks). Therefore,

Riskb(D,n+ t) = Riskb(D′, t)+
n?

a∑
i=1

Xi,b (16)

The theorem follows directly from applying Equa-
tion 16 to Theorem 2.

5 Discussion
We proposed two methods for choosing actions such that
the risks are always lower-bounded. While GR leximin-
optimizes next-step risks, our methods greedily optimize
actions’ usage frequencies (relative counts) relative to
some optimal configuration F?; we will call our meth-
ods GF.

We denote with LB1 and LB2 the lower bounds on risks
guaranteed by the two GF methods respectively.

LB1 = min
b

n?
a∑

i=1

min(Xi,b,0) (17)

LB2 = min
b

n?
a∑

i=1

−max(Xi,b,0) (18)

There is an obvious way to unify the two: compute LB1
and LB2 ahead of time, then use the most promising
method. Therefore our best worst risk guarantee is:

WR≥max(LB1,LB2) (19)

In order to compute the approximation ratio, we need
an upper bound on the optimal worst risk. Based on the

8



fact that some action must be chosen first, it holds that
WR≤max j minb X j,b.

ε ≤ max(LB1,LB2)
max j minb X j,b

(20)

The computational complexity of our algorithms is
O(lgn?

a) per time step. This is because one can use a
heap to store actions’ k j [+1]

F?
j

scores, since our algorithms

change a single action’s score at each time step.

5.1 Eliminating Unnecessary Actions

If the vector F? is not unique, the particular choice of
F? influences both the time complexity (through n?

a), and
also WR, the worst risk. Each beneficiary’s worst risk is
lower-bounded by the sum of his negative X values (or
the negative sum of its positive X values), so eliminating
an action can only improve the worst risk.

Although the locus of F? is convex, the goal of find-
ing the F? with the most zeros, or the F? with the con-
figuration of zeros to optimize min(LB1,LB2) require the
use of mixed integer programming, and thus exponential
computation time. In lieu of finding the subset of ac-
tions leading to the best WR, one can go with a greedy,
polynomial-time approach.

Lemma 3. There must always exist F? such that n?
a≤ nb.

Proof. We associate with each action an nb-dimensional
point whose coordinates are equal to that action’s re-
wards for each beneficiary. We note that leximin-
optimality implies pareto-optimality, so U? must be on
the convex hull of the na points. The result follows di-
rectly from the boundary case of Carathéodory’s theorem
[11].

Based on this result, one can eliminate at least
max(na − nb,0) actions in a preprocessing phase, thus
reducing the per-step complexity to O(lg(min(na,nb))).
We sketch a simple algorithm for this task based on a
particular constructive proof for Carathéodory’s theorem
(e.g. [6]). One can use the Gauss elimination algorithm
(e.g. [10]) to find a non-trivial solution α2, . . . ,αn?

a to
the following system of nb equations (Xi,b−X1,b)×αi =
0. Let α1 = −

∑n?
a

i=2 αi. Note that
∑n?

a
i=1 αi = 0 and∑n?

a
i=1 αi×Xi = 0. Let θ = min1≤i≤n?

a F?
i /αi|αi > 0. We

compute a new F? vector by subtracting θ×αi from each
F?

i . The new vector has at least one extra zero at posi-
tion k where F?

k /αk = θ . The complexity of the Gauss
elimination is O(nan2

b), and there are at most na− 1 it-
erations, so the entire pre-process of eliminating actions
can be done in O(n2

an2
b).

5.2 Breaking Ties with GR

The lower-bounds on worst risks (Equations 17 and 18)
make no assumptions on how ties are broken, which
means they assume the ties are broken in the worst pos-
sible way. Finding the best way to break ties is NP-
hard (see the proof of Theorem 1), so a greedy approach
will have to do. The most obvious solution would be to
use GR to break ties for GF (for a time complexity of
O(nb×n?

a) per time step).
The potentially frequent occurrence of ties is not nec-

essarily a weakness of the GF methods. One can use the
opportunity to pursue other goals while being guaranteed
that the risks are held in check. For instance, one can try
to address the S1 versus S4 paradox for Example 1. In
this case one should break ties to optimize beneficiaries’
cumulative risks (weighted by the probability the game
ends at the next time step).

6 Related Work
The game-theoretic work in [2, 8, 9] is concerned with
finding Nash equilibria that result in alternating joint-
actions (also referred to as turn-taking), but these results
were tailored for specific classes of 2-by-2 games.

The starting point in our research on long-term fair-
ness was the work in [18] on “periodic policies.” Their
reward model comes in the form of a normal-form game,
but the players are actually cooperative learning agents
(rather than self-interested). The process consists of the
learners playing selfishly to discover a pure Nash equi-
librium, while being interrupted periodically to compare
accumulated rewards. The player gaining the most (in
the current Nash equilibrium and overall) has its action
put off-limits until the others catch up. Alternatively
[17], after the learners discover all pure Nash equilib-
ria, they create a periodic policy consisting of those joint
actions with the fairest outcomes. In the authors’ exam-
ples the players have only two actions: a highly lucrative
one and a social one they fall back on while waiting for
the other(s) to catch up. Both of these greedy algorithms
could lead to utility profiles arbitrarily worse than the op-
timum.

The Worst Risk Maximization Problem is actually
a variant of the Compact Vector Summation Problem
[5, 14, 16]. This problem states that given a finite set
of vectors X1, . . . ,Xn ∈ Rm such that

∑n
i=1 Xi = 0, one

must find a permutation π of {1,2, . . . ,n} that minimizes
max1≤k≤n ‖

∑k
i=1 Xπi‖. In the earliest such work ‖·‖ was

l2, the Euclidian norm (i.e. ‖y‖2 =
√∑m

i=1 y2
i ), so the

problem consisted of ordering the vectors such that the
path resulting from adding vectors one by one stays in-
side a minimum-radius m-dimensional circle centered at

9



the origin. Later research has focused on results gen-
eral enough to accommodate arbitrary norms (intuitively
a norm is a function associating a “size” value to every
vector).

The best performance guarantee we are aware of
was proven in [1]: there exists a permutation such
that max1≤k≤n ‖

∑k
i=1 Xπi‖ ≤M(m−1+ 1

m ), where M =
max1≤k≤n‖Xi‖ is the size of the largest vector (with re-
spect to that norm). Later on the result was extended to a
relaxed version of norms called “asymmetric norms” (we
define these concepts shortly) and an O(n2m2) algorithm
was proposed [14, 15].

We submit that this algorithm is the most relevant al-
gorithm for a comparison with our algorithms: it has the
best guarantee and time complexity and it accommodates
“asymmetric norms.” The last item is relevant because
comparing algorithms is more meaningful if they actu-
ally try to optimize the same function, and the function
we try to optimize can be rearranged as an asymmetric
norm but not a norm. Maximizing the worst risk is equiv-
alent to minimizing is the largest absolute value of any
negative coordinate of any partial sum of X vectors. This
function is an asymmetric norm, but not a norm, since
it satisfies the triangle inequality (‖y + z‖ ≤ ‖y‖+ ‖z‖)
and positive definiteness (‖y‖ = 0⇒ y = 0), but it only
satisfies the scalability condition (‖ky‖ = |k| × ‖y‖) for
positive scaling factors [3, 13].

Guarantee Comparison We submit that |LB1| ≤
M(n?

a − 1). This results from Equation 17 by replac-
ing every negative Xi,b with −M, the smallest coordi-
nate of any X vector, and noticing that for any given
beneficiary b at most n?

a − 1 of his X values can be
negative.3 Therefore the absolute value of our worst
risk, |WR| ≤ |LB1| ≤M(n?

a−1) = M(min(na,nb)−1) <
M(nb−1+ 1

nb
), which is the guarantee of Sevast’janov’s

algorithm.

Complexity Comparison Sevast’janov’s algorithm
picks a vector n−m times, and each such operation has
a complexity of O(km2), where k is the number of alter-
natives (k = n, . . . ,n−m). An iteration in Sevast’janov’s
algorithm has the same complexity as an iteration in our
preprocessing phase (they’re both based on Gauss elimi-
nation). We also submit that the number of iterations in
Sevast’janov’s algorithm is at least the number of itera-
tion in our preprocessing phase (each action has at least
multiplicity 1). Therefore the time complexity of our
preprocessing phase cannot be larger than that of Sev-
astianov’s algorithm. More importantly, even if that al-

3From Equation 6 it follows that for any beneficiary b, if there exists
i ∈ {1 . . .n?

a} such that Xi,b < 0 than there must exist j ∈ {1 . . .n?
a} such

that X j,b > 0.

gorithm were extended to benefit from our preprocess-
ing phase and to explicitly deal with multiplicities (i.e.
k = n?

a), its complexity would still be O(n?
an2

b) per time
step which is an order of magnitude higher than the com-
plexity of our algorithms when breaking ties with GR.

In summary, by eliminating unnecessary actions and
only keeping track of multiplicities, we are able to of-
fer worst case guarantees that are never worse than (and
sometimes much better than) Sevast’janov’s.

7 Future Work
It turns out that if two beneficiaries get the exact same
rewards out of every action, eliminating one of them has
no effect on the algorithms proposed here. The U? vec-
tor stays the same (the algorithm computing U? acts as
constructive proof), and so does the lower bound on risks
(Equation 17 and Equation 18). Therefore one can see nb
as the number of user classes rather than the number of
users in one’s system.

This observation might prove very helpful with respect
to both quality of guarantees and computational com-
plexity if there are lots of beneficiaries, which belong to
relatively few classes. We plan to investigate the impli-
cations of clustering together beneficiaries with similar,
but not identical reward profiles.

We also intend to modify the action elimination algo-
rithm. In a first stage we wish to find a computationally
inexpensive way to bias it towards eliminating specific
actions (e.g. those the negatively affect LB1 or LB2 the
most). In the second stage we wish to find an approxi-
mation scheme for finding feasible action subsets whose
min(LB1,LB2) stays within a certain factor from the op-
timum.

8 Conclusions
In this paper we studied the problem of achieving certain
long-term fairness guarantees in a simple repeated-game
setup: (1) all beneficiaries are entitled to their socially-
optimal utilities and (2) no matter when the game ends
all beneficiaries are guaranteed to have received close to
what they were entitled to that point. We proved that
finding an optimal solution with respect to the second
guarantee is NP-hard and proposed two efficient approx-
imation algorithms.
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