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Abstract
One promising technique for defending software systems
against vulnerabilities involves the use of self–healing.
Such efforts, however, carry a great deal of risk because
they largely bypass the cycle of human–driven patching
and testing used to vet both vendor and internally de-
veloped patches. In particular, it is difficult to predict if
a repair will keep the behavior of the system consistent
with “normal” behavior. Assuring that post–repair be-
havior does not deviate from normal behavior is a major
challenge to which no satisfactory solutions exist.

We investigate the feasibility of automatically mea-
suring behavioral deviations in software that has under-
gone a self–healing repair. We provide a first exami-
nation of the problem of assessing a repair’s impact on
execution behavior, and we define a model for represent-
ing post–repair behavior using machine–level intraproce-
dural control flow. In essence, we advocate performing
anomaly detection on an application’s execution after it
has been attacked and subsequently repaired. Our goal,
however, is not to detect an attack, but rather to provide a
tool for assisting a system administrator to perform vul-
nerability triage. Our system can help them discover
the relative impact of a repair so that they can begin to
track down and analyze the cause of post–repair execu-
tion anomalies.

1 Introduction
This paper presents an initial foray into the field of as-
sessing the behavior of systems that have undergone an
automatic repair such as those proposed by various “self–
healing” frameworks [1, 2, 3, 4]. While it stands to rea-

son that some of the lessons learned in creating a post-
repair behavior evaluation framework can be applied to
assessing software patches in general, we explicitly con-
sider the analysis of traditional source or binary patches
as out of the scope of this paper. In particular, source and
binary patches introduce a level of variability into a sys-
tem that interferes the underlying structure of the model
we employ in this paper. In addition, we focus narrowly
on security–related faults, as we expect the “repairs” for
this type of fault to be small (relative to larger changes
involving the addition of features or other refactoring).
Section 5 contains the results of a survey supporting this
notion.

Software systems have large, complex codebase that
usually contain a number of vulnerabilities. Patching
these errors in anticipation of or in response to attacks
that exploit them remains one of the primary methods
of software defense. Patching, however, is a disruptive
activity. Patches have the potential to change system be-
havior in unanticipated ways. Administrators must there-
fore thoroughly vet patches before deployment: a time–
consuming activity usually involving little formal anal-
ysis and a great deal of exhaustive regression testing.
Nevertheless, the alternative is less than appealing, as
the “patches for patches for patches” problem shows that
patching is far from being an exact science.

1.1 Self–Healing
One alternative to traditional binary or source patching
may be to adopt and deploy “self–healing” repairs; such
systems ultimately envision a process of online reactive
patching. Given that offline patching and patch test-
ing are still difficult tasks, and that the technical chal-
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lenges of actually patching a running system have only
recently been researched [5], online reactive patching is
an ambitious goal. Even if such systems existed1, the
system administrator has little information to examine
whether such a repair perturbs the application and its en-
vironment in a non-desirable way before it is deployed2.
Hence, real-world deployments of self–healing systems
have lagged research efforts.

In short, completely automated repairs present both
technical and policy difficulties. Leaving aside the tech-
nical challenges of achieving a repair or successfully ap-
plying a patch to a running system [5], system owners
and administrators may hesitate to embrace such tech-
nology because of the possibility of making an incorrect,
ineffective, or detrimental repair. System administrators
are reluctant to allow a defense system to make unsu-
pervised changes to the computing environment, even
though (and precisely because) a machine can react much
faster than a human. They therefore need to have some
way of measuring the impact of such repairs. Our goal
in this paper is to provide a tool for measuring this im-
pact; we leave the construction of automated root cause
analysis for future work.

1.2 Contributions
This paper explores the feasibility of a technique that en-
sures that the behavior of an application after a repair is
applied matches a profile of normal behavior: we pro-
pose post-attack anomaly detection to complement pre-
attack anomaly detection. While anomaly detection is
normally applied to a system to detect exploit attempts
in progress or new behavior of an already compromised
process or host, the application of anomaly detection
post-attack can provide insight into four different types
of scenarios:

1. new emergent behavior (e.g., a flash crowd)

2. legal behavioral updates (e.g., software patches)

3. failure of a repair (malcode still in control)

4. successful repair (execution consistent with normal
behavior)

It is this last scenario that we are concerned with in this
paper.

Most previous work in self–healing has focused on
the feasibility of the core mechanisms (i.e., what actions

1Of course, no general procedure exists that can generate correct
fixes for arbitrary faults, vulnerabilities, or other system problems, but
we can repair certain known classes of vulnerabilities.

2A self–healing system could “pause” after generating a repair and
allow the administrator to examine it. Attacks, however, occur at
machine speed, and pausing for the human decision–making process
should be minimized.

to take to attempt a repair). Relatively little work has
been done to understand the process of automatically val-
idating that the repair was ultimately successful. The
meaning of success can range from correctly stopping
future exploit instances to not destabilizing the software
application. We investigate whether a repair perturbs
the execution of a process such that it experiences rad-
ically different behavior after a fault or exploit attempt.
Briefly, we focus on the “execution tail”: the control
flow paths that follow the exercise of a repair. We de-
rive the main features of the execution tail model from
both intra-procedural and inter-procedural control flow
artifacts. Execution tails provide a foundation for mea-
suring the subsequent behavior of a software program.

We define the execution tail model (discussed in Sec-
tion 2) for capturing the behavior of a system after a re-
pair has been applied. This model of machine–level con-
trol flow complements function or system call level be-
havior models (the level of granularity is drastically dif-
ferent). We created Calypso, a system that computes and
compares these types of behavior profiles. The concepts
underlying Calypso are agnostic to the particular repair
mechanism in use (it looks at the behavior of the system,
not the content of the repair). As a result, it provides a
way to compare behavioral impact across different self–
healing techniques.

Calypso operates in a fashion similar to existing
dataflow analysis tools [6, 7, 8]: it intercepts machine
instructions to record the branch target addresses (along
with other information) that the program has encountered
post–repair. In Section 4, we use our system to observe
the behavior of a program after the repair of a real vul-
nerability. We also observe its behavior on a published
testbed of synthetic vulnerabilities [9].

1.3 Limitations
Our approach can be considered a form of whitebox val-
idation. Our approach fundamentally differs from black-
box approaches that only observe if the application has
crashed, or if the application has returned a similar status
code to past successful requests (e.g., 200 OK). While
our tools do not require source code access, they do
require the ability to supervise the system’s instruction
stream. Blackbox approaches have the advantage of be-
ing less disruptive by only looking at I/O. Consequently,
they can also be less precise. We expect that system ad-
minstrators will have an evironment to automatically dis-
patch a run of a supervised, post–repair copy of an appli-
cation (perhaps in an infrastructure that hosts multiple
disposable virtual machines, one per detected attack).

We assume that most self–healing systems do not gen-
erate fixes in an adversarial fashion; that is, the legal be-
havioral changes induced by these fixes only tweak small
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amounts of state or control flow and do not vastly perturb
the behavior of the application. Many security–related
patches support availiability by refusing to process input
aimed at subverting it. Given that such behavior is simi-
lar to existing program code, most patches (and the self–
healing fixes proposed in the research community) sim-
ply redirect execution along existing control paths (for
example, calling an internal logging routine and exiting
the current function with an error code). It is, however,
conceivable for repairs to drastically change the behav-
ior of the program, making it difficult to differentiate be-
tween normal post–repair behavior and anomalous post–
repair behavior. We consider the problem of efficiently
retraining anomaly sensors in response to sanctioned or
legal behavioral changes in other work [10].

As we mention above, we do not attempt to address
a switch to a new version of an application or large,
widespread changes in the program text. We also re-
frain from dealing with traditional patches (although our
evaluation compares the post–repair behavior of a library
to later versions of the library that contain a patch for
the vulnerability in question). Patches present at least
two challenges that the self–healing techniques we ex-
amine do not. First, patches for proprietary3 COTS sys-
tems often come in binary form that (1) combines multi-
ple patches into one binary delta and (2) is often obfus-
cated to make it harder for blackhats or competitors to
reverse–engineer the vulnerability from the patch [11].
Second, our model relies on the address values of pro-
gram components (i.e., basic blocks) remaining consis-
tent across training and testing runs. Patching (and the
subsequent recompilation), however, introduces a dif-
ferent layout of virtual addresses, thus adding a large
amount of noise to the “testing” run: new, valid con-
trol flow transfer sequences occur that represent legal
(but now de-synchronized) updates to existing parts of
the model derived from the training data.

Automatically detecting attacks and automatically re-
pairing attacks can lead to an infrastructure capable of
autonomously managing its own defense posture, but
such a capability is dangeous without some automated
repair validation mechanism. We note that automatic re-
pair validation is a fairly large problem with many differ-
ent aspects (one of which we study here). In particular,
it is important to test whether the self–healing fix actu-
ally stops the input or exploit data that caused the repair
process to initiate. Furthermore, a complete repair val-
idation system can check that the repair blocks similar
instances of the initial exploit [6, 12, 13] or all exploits
that exercise the underlying vulnerability.

3Even most mainstream open-source “patches” are distributed as
updated versions of the program or library binary.

Figure 1: Vulnerability path, patched code point, and execu-
tion tail sequence. A vulnerability path is a sequence of ma-
chine address pairs that lead to the exercise of a particular vul-
nerability, the “patch point” is the set of locations in the code
where the effects of the vulnerability are dealt with, and the ex-
ecution tail is the sequence of address pairs that express post–
repair behavior.

2 Approach: Execution Tail Model
One common approach for defining program behavior
involves sequences of system calls [14, 15]. Because
system calls represent the method by which processes
affect the external world, these sequences are thought
to provide the most tangible notion of system behavior.
These models, however, are susceptible to mimicry at-
tacks [16]; an attacker can keep the system within some
delta of the “normal” patterns while executing calls of
their choosing. This problem suggests that we require a
more fine-grained notion of program activity4.

Capturing program behavior in more detail than sys-
tem call sequences used to be a challenging task; re-
cent advances in binary instrumentation tools for x86
(e.g., Valgrind [17], Pin [18]) have eased the burden sig-
nificantly. As a result, we can capture a much finer-
grained model of program control flow than system call
sequences.

We are interested in observing the behavior of a pro-
gram after it has exercised an area of code that was sub-
ject to a self–healing repair. This tail of execution rep-
resents the post–repair behavior — behavior that might
be incorrect because of a broken patch or behavior that
might remain under the influence of the attacker. In
essence, we are proposing a form of anomaly detection
by comparing these observed “execution tail” samples
with a model of “normal” execution for that point in con-
trol flow.

Our insight is that for most use cases, the most com-
mon feature that patch testers and system administrators
are interested in is the sequence of code that will be exe-
cuted following the exercise of a fix. Essentially, a repair

4Note that our goal is not to make Calypso resistant to mimicry
attacks or to criticize system call approaches for being susceptible
to them; instead, the lesson we should learn is that relatively large
amounts of work can happen “between” system calls, and it is the more
precise nature of this activity that can help inform our models of pro-
gram behavior.
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should allow the system to deal with malicious or mal-
formed input and continue behaving normally. There-
fore, the system should largely obey the same processing
path, or one of a few different default processing paths
(note that we are not attempting to differentiate the se-
mantic meaning of various paths).
...
tail(13) 0x804a987 -> 0x804a95f png_calculate_crc
tail(14) 0x8062b3c -> 0x8062bdd crc32
tail(15) 0x8062be0 -> 0x8062b44 crc32
tail(16) 0x8062bff -> 0x8062bec crc32
tail(17) 0x8062bff -> 0x8062bec crc32
tail(18) 0x8062bff -> 0x8062bec crc32
tail(19) 0x805b543 -> 0x805b564 png_crc_finish
tail(20) 0x805b4cc -> 0x805b514 png_crc_error
...

Figure 2: Example Execution Tail From libpng. This
tail has a loop expressed in entries 16 to 18: control flow jumps
backward from 2bff to 2bec, then flows forward via straight-
line execution to the jump at 2bff.

In their simplest form, execution tails are sequences
containing some number of pairs of machine addresses.
These pairs express a series of control flow transfers. The
first machine address in the pair denotes the instruction
initiating the control transfer or branch (e.g., the address
of a CALL instruction). The second address denotes the
branch target addresses. We focus specifically on the
class of branching instructions (e.g., JMP, JNZ, CALL)
because between branch targets or basic block entrances,
control flow proceeds in sequential order. This sequen-
tial control flow is implied by the arrival at a particu-
lar branch target (see Figure 2). An execution tail is
a sequence of pairs of addresses (aj , ak) expressing a
change in control flow from instruction j to instruction
k. A conjunction over these pairs expresses a particular
path of dynamic control flow taken by the application in
response to some input data. We believe that this fea-
ture (along with some context information) expresses the
essence of application behavior.

Assume that the operation of a self–healing repair be-
gins at some machine instruction i. The execution tail
starting at instruction i is a sequence:

Ti = {(ai, aj), (aj , ak), · · · , (am, an)} (1)

The set of all execution tails in a program is the union
of all Ti for each instruction i in the program.

We construct a similarity measure using the distance
between the test sample execution tail (the execution tail
observed by our system after a patch is applied and ex-
ercised) and each normal execution tail relevant to that
point. That is, we expect the behavior profile to contain
a number of (similar) execution tails, or clusters of such
tails. Measuring the distance between the sample and

each normal tail or cluster of tails can provide an indica-
tion of the repair’s fidelity to the original behavior.

Some patch or self–healing repair P applied to a pro-
gram produces a sample execution tail tsample for test-
ing. Given that a program behavior model expresses N

execution tail behaviors (where each behavior compo-
nent could be a single execution tail training sample or
a summary of a cluster of execution tail samples), the be-
havioral impact measure is the sum of the difference be-
tween these N behaviors and the test sample execution
tail. The measure can be computed by either a weighted
or unweighted sum of the differences between each be-
havior model component ci and tsample. We consider the
unweighted option below.

DISTANCE(tsample) =

N∑

i=1

DIFF(ci, tsample) (2)

where DIFF is a procedure that provides a numeric
score of the distance between the representations of
each relevant behavior profile component and tsample.
This procedure depends on the particular model in use.
In our system, we use three measures for the string–
based model: string equivalence, longest common sub-
string, and longest common subsequence. For the 2-
gram model, we employ Manhattan Distance between
the gram positions. These measures are described more
fully in Section 3.

Larger values of DISTANCE indicate less of an exe-
cution anomaly; the repair keeps the difference between
post–healing behavior and the components of normal be-
havior small. While abnormal behavior may actually be
correct, the score can help the system owner or adminis-
trator prioritize patch investigations. A sufficiently large
difference may even help the system automatically roll
back the patch or temporarily employ some other defen-
sive strategy like data patches [13], vulnerability–driven
execution filters [6], or Shield filters [19].

2.1 Augmenting the Model
Our model captures and measures a single important fea-
ture in determining the normality of post–patch applica-
tion behavior. We acknowledge that our model may not
be comprehensive enough for any imaginable use case.
Organizations interested in automatically testing and val-
idating post–repair behavior might be interested in cer-
tain aspects of application behavior that we have not con-
sidered. We believe, however, that the basic model is ser-
viceable enough given that we are the first to look at try-
ing to quantify this problem for a live repair system. The
model is extensible; defining additional features means
making Calypso capture that feature as part of its train-
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ing mode5 and modifying DIFF to take that additional
feature into account. As we mention above, additional
features may include context like the state of the CPU,
some user token, operating system state, or file system
state.

We could weight each component of the execution tail
behavior model. Since some execution tails may be more
frequent than others, it is more likely that these tails are
“normal” behavior for the system, and thus deviation
from them should be treated as a greater distance than
deviation from less frequent component behaviors. We
plan to explore this extension in future work.

Finally, it may be possible to use basic data compres-
sion techniques to provide a baseline indication of how
similar two execution tails are. Compression naturally
identifies redundancy in data and would therefore expose
salient features of an execution tail. In the near future, we
intend to compare our distance measure proposed above
with the output of a COTS compression mechanism.

3 Implementation
Calypso operates in two modes: tail collection and tail
comparison. The execution tail contains entries that
record both the source and destination branch addresses
as well as the name (or callsite address) of the current
routine.

Calypso utilizes the Pin [18] dynamic binary rewriting
framework to intercept the execution of a process and
insert some basic repair instrumentation. Calypso takes
advantage of Pin’s ability to collect machine–level infor-
mation, including branch target addresses and function
callsites, to help characterize the process’s control flow
behavior.

Calypso intercepts each instruction, decide if the in-
struction was a branching instruction, and assess if the
branch was actually taken. If the branch was taken, then
Calypso records the source and destination addresses.
This profile serves as a model of normality that we use
during the tail comparison phase. The tail comparison
phase starts after a self–healing repair has been applied
to the application.

Since profile storage requirements are a concern,
and string-based comparisons have limited tolerance for
slight variations, we employ a statistical summary of
the content of an execution tail as an alternative method
of storing and comparing the information in the profile
execution tails with the test execution tail. We collect
sequences of address pairs and treat them as 2-grams
(source address, destination address) and keep track of

5For our implementation, additional features must be something Pin
can observe or generate from observed information. Given that Pin can
see many machine–level events, this condition is far from a restriction.

the frequency of these 2-grams for the execution tail. We
calculate the difference between two models using the
Manhattan Distance (the sum of the difference between
the frequency at each corresponding gram).

The downside of this approach is that it loses sequence
information and can miscompare tails, as the 2-gram
content may change if the application is recompiled.
For a strictly self–healing approach in which no code is
changed (just execution artifacts like return values), we
do not anticipate that such a change would cause a prob-
lem, as machine addresses will not have changed. For
traditional patches, which can alter addresses, we plan to
investigate other fast trace analysis techniques as well as
approaches such as encoding control flow graph structure
(rather than labels) with longer n-grams.

In tail collection mode, Calypso accumulates a record
of execution tails from different points in program exe-
cution. This profile serves as a model of normality that
we use during the tail comparison phase. There are some
practical barriers to storing and loading this profile; we
discuss them in Section 3.2. Calypso only enters the
comparison phase if the patched or repaired code is exer-
cised.

3.1 Execution Tail Comparison
The tail comparison phase starts after a patch or a run-
time self–healing repair has been applied to the appli-
cation. We use several comparison functions for se-
quences of address pairs. We implemented four com-
parison strategies, three of which are used for execution
tails represented as strings and one that we use for com-
paring 2-gram models. For comparing strings, we use:
string equivalence, longest common substring (LCS),
and longest common subsequence (LCSeq). For com-
paring 2-gram models, we use the Manhattan Distance
between the 2-gram features.

Substring Comparison Comparisons based on string
equivalence, while easy to implement, are unsatisfactory
because the comparison must have some amount of tol-
erance for normal behavior artifacts. For example, invo-
cation of a system call might time out and be repeated.
These types of artifacts manifest as slight variations in
the execution tail, making straight string comparisons in-
effective. We implemented LCS and LCSeq in PatchEp-
ilogue and use them to compare the model with the sam-
ple execution tail.

n-gram Comparison Since profile storage require-
ments are a concern, we employ a statistical summary of
the content of an execution tail as an alternative method
of storing and comparing the information in the profile
execution tails with the test execution tail. We collect
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sequences of address pairs and treat them as 2-grams
(source address, destination address) and keep track of
the frequency of these 2-grams for the execution tail.
This process helps merge and cluster execution tails. We
calculate the difference between two models using the
Manhattan Distance (the sum of the absolute value of the
difference between the frequency at each corresponding
gram).

3.2 Execution Tail Database
While collecting and storing large amounts of execution
tail traces is relatively straightforward, we are faced with
a dilemma during the comparison phase. Since we can-
not anticipate when and where (i.e., in what program lo-
cation) a program will be patched or repaired, we do not
know in advance which execution tails need to be tested
against. Therefore, PatchEpilogue, when it starts up to
supervise a software application, would need to read in
the entire profile database because it cannot anticipate
which parts of the profile it might need.

Loading such a large collection of execution tails at
application startup is undesirable. First, these tails may
never be used if the process is never attacked. Second,
not all the tails are relevant to locations in the code (i.e.,
vulnerabilities) that will be exercised. Third, the poten-
tially large number of tails (depending on the depth of
training) could soak up large amounts of primary mem-
ory, leaving little room for Pin to dynamically recompile
the application and even less room for the application’s
native memory needs. Finally, it could take a potentially
long time to read in the entire database.

In order to avoid this startup cost and wasted mem-
ory space, we created a PHP/MySQL web service
whereby PatchEpilogue feeds execution tails acquired
during training to a database for storage. When an ex-
ecution tail is needed during the post–repair compari-
son phase, PatchEpilogue requests the set of execution
tails associated with the current point in control flow. At
this point, our system can proceed with the comparisons
above. Having this centrally accessible service reduces
the memory requirements and startup times of any par-
ticular application supervised by PatchEpilogue.

3.3 Limitations
One of our major assumptions is that the ngram model
values do not change. The self–healing repairs we ex-
amine modify critical data items: they do not replace or
rewrite code or instruction sequences (and thereby cause
a recomputation of virtual addresses).

We do not currently impose a maximum length on an
execution tail: PatchEpilogue stores all tail components
it encounters. Calibrating this limit on a per-application

basis is the subject of some of our ongoing efforts. We
do, however, limit PatchEpilogue to observing only a few
execution tails at any particular time, as we do not ex-
pect a system to handle multiple separate vulnerabilities
at the same time. Even though we expect to repair or
patch the application over time, we do not expect attack-
ers to simultaneously exploit more than a few new and
different vulnerabilities (although in an operational en-
vironment, it would be of interest to discover how well
this procedure scales in terms of handling sustained and
simultaneous attacks).

4 Evaluation

Our evaluation is deep rather than broad; we focus nar-
rowly on investigating the effects that our system ob-
serves for a small set of “self–healing” cases and vul-
nerabilities.

Note that Calypso is not meant to demonstrate the ul-
timate correctness of code patches. As we explain in
Section 1, such analysis is a far more difficult problem
than measuring behavioral deviations. Labeling an ex-
ecution trace resulting from a patch as “correct” or “in-
correct” assumes a much deeper knowledge of program
semantics that is difficult to achieve with even extensive
human supervision and analysis. To that end, our evalu-
ation is not designed to examine a mingled collection of
some patches that work correctly and patches that con-
tain bugs and distinguish between the two with 100%
accuracy. Such a result would serve as a dramatic step
forward for the field. Instead, Calypso provides a foun-
dation for that type of research by offering one way to
observe behavior deviations of an unmodified program
binary as it undergoes a self–healing repair. This distinc-
tion is crucial to understanding the scope of the current
work: we are not promising a decision procedure that
distinguishes between arbitrary non-trivial properties of
two programs.

We are interested in evaluating the process of captur-
ing and comparing a post–patch execution tail with a
database or profile of “normal” execution tails. In order
to do so, we first gain an understanding of how PatchEp-
ilogue models of the same application compare against
each other as well as against a system-call based record
of execution (using strace). Figure 3 shows the exper-
iment space: of particular interest are comparisons be-
tween branch (3) and branch (7). For each vulnerable or
patched version of an application, we observe the behav-
ior using a sensor (either PatchEpilogue or strace) under
some input (either benign or malicious).
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Figure 3: Experimental Combinations. For each application
we test, there are three variables to examine: the version of the
application (vulnerable or patched), what sensor we use to ob-
serve execution behavior (strace or PatchEpilogue), and what
type of input we provide the program (benign or malicious).
The main purpose of this paper is to provide a metric for as-
sessing how well cases (7) and (8) compare to case (3). In
particular, a BIM representing a large difference between (7)
and (3) indicates that the patch or repair warrants further ex-
amination. We also expect the difference between (8) and (4)
to be fairly large in cases where a successful exploit expressed
in case (4) begins to execute an attacker’s code.

4.1 Baseline Measures
We wanted to calibrate our expectations about the sen-
sitivity and resilience of PatchEpilogue as a sensor. Ac-
counting for inherent perturbations in the model can aid
us in comparing a post–patch execution tail with the nor-
mal profile of pre–patch execution. We do so in two
ways. First, we analyze how much variation PatchEp-
ilogue itself introduces for normal (consumption of be-
nign input) runs of the same application. Second, as a
control for this measure, we employ the strace tool
to collect higher–level control flow information of mul-
tiple runs of the application on the same input. Table 1
presents the results of the comparisons described below.

As mentioned in Section 3, we compare execution tails
using four comparison strategies. When we treat execu-
tion tails as strings, we use equivalence, LCS, or LC-
Seq. Otherwise, when using the 2-gram representation,
we employ Manhattan Distance. From these baseline ex-
periments, we learn that LCS and LCSeq are much too
expensive in both time and storage requirements to use
on profiles of more than a few MB. The strace tool
does not provide an output that can be structured to eas-
ily quantify the difference between two runs. We diff two
runs and compute the percentage of system calls that are
different (both the arguments of the system calls as well
as the return values can differ).

For this baseline evaluation we considered a variety
of applications, ranging from sorting, hashing, and com-
pression programs to a Web server. For each program,

we generated two profiles each using PatchEpilogue and
strace. We do not vary the input across runs of the
same application. We used the following set of input
(so that our results can be easily replicated): date -
N/A, echo - “Hello World!”, gzip - httpd-2.2.8.tar, gun-
zip - httpd-2.2.8.tar.gz, httpd -GET localhost HTTP/1.0,
libpng toucan.png, md5sum httpd-2.2.8.tar, sha1sum -
httpd-2.2.8.tar, sort - httpd.conf (the unmodified config
file for httpd-2.2.8). Given that we assess libpng in
Section 4.3, we also observe its operation on a benign
image file for both pre and post patched versions.

4.2 Wilander Testbed
The Wilander Testbed [9] consists of a variety of buffer
overflows that attack the process memory space through
manipulation of stack data and function pointers; it is
meant to evaluate the efficacy of protection mechanisms
like StackGuard and Propolice. Our purpose in using
this testbed is to demonstrate the basics of creating post–
repair execution tails for real vulnerability types. We se-
lected six of the 18 cases to demonstrate the feasibility of
capturing and comparing post–repair execution tails. We
run these test cases in PatchEpilogue with a basic self–
healing fix that automatically repairs the corrupted stack
frame. We observe the behavior of these test cases in
three situations:

1. without any repair or attack to acquire the “normal”
profile

2. in the presence of an attack, but without any repair

3. in the presence of an attack, but with a repair

We first verified that these cases could be exploited;
we marked the testbed executable as needing an exe-
cutable stack and switched off address space random-
ization on our experiment environment. All six cases
were successfully exploited; they drop a shell. We then
observe the standard execution of the test cases. Next,
we observe the attack profile with no automated repair
in place. Finally, PatchEpilogue observes the test case’s
behavior after PatchEpilogue enacts the repair.

The testbed is somewhat of a special case in that it
is designed to exploit a series of built-in vulnerabilities.
The only benign execution behavior is when the software
prints out a usage and help message. Nevertheless, a suc-
cessful exploit involves forking a shell whereas the be-
nign case involves screen output and program termina-
tion. With the addition of our self–healing mechanism,
the testbed can gracefully recover from the overwrites.
Doing so results in a post–patch behavior profile that we
compare to the unprotected case and the benign case, as
shown in Table 2.

7



Table 1: Survey of Execution Tail Variation. The table lists the BIM value for the LCS and LCSeq string models and
the Manhattan Distance for the 2-gram model. We can see that, in our calibration runs, most behavior measurements
remain identical or near–identical: a result we expect from running the same program on the same input. Some
variation, however, must be expected — and this variation is present in measurements made by a third–party tool,
strace, as well as PatchEpilogue.

Application SE LCS BIM LCSeq BIM ManDis BIM strace diff
date identical ∞ ∞ ∞ 25.64%
echo identical ∞ ∞ ∞ 36.36%
gzip identical ∞ ∞ ∞ 0.65%
gunzip identical ∞ ∞ ∞ 0.93%
httpd different N/A N/A 4.29e-8 35.66%
libpngpre different N/A N/A 0.05 36.28%
libpngpost different N/A N/A 0.02 20.72%
md5sum identical ∞ ∞ ∞ 0.18%
sha1sum identical ∞ ∞ ∞ 0.18%
sort identical ∞ ∞ ∞ 5.07%

Table 2: Comparing a Wilander Test Case. Because
our self–healing mechanism only repairs execution when
an attack occurs, no case (7) exists; this situation dif-
fers from that of a traditional patch as shown in Table 3.
Here, we are interested in how the post–repair execution
matches the profile collected during the exercise of the
vulnerability (4) as well as a benign execution trace (3).

Scenario Manhattan Distance BIM
(8,4) 6491 1.54e-4
(8,3) 8093 1.24e-4

4.3 The libpng Vulnerability
Older versions of libpng contain a major vulnerabil-
ity [20]. We assessed the behavior of the PNG library
both before and after we applied a patch for this vulnera-
bility. We linked a small image viewer against a vulnera-
ble version of the library (1.2.5) and as well as a patched
version and two later versions (1.2.6 and 1.2.8). We ran
the various versions of this image viewer in PatchEpi-
logue on both a benign PNG image as well as an image
designed to trigger the vulnerability. The patch for this
issue logs an error message and halts execution. Using
the 2-gram model approach, we calculated the Manhat-
tan Distance and BIM for the four relationships shown in
Table 3.

Interestingly, the profiles shown in Table 3 for case
(8) and case (4) are similar because the actual exploit
is a proof of concept that crashes the program shortly
after the exploit succeeds. Likewise, the patch, when ex-
ercised by malicious input in case (8), brings execution

to an end by printing an error message and version in-
formation and then cleanly terminating. Thus, these two
models have a common preamble that dominates most of
their 2-gram model. In the case where the exploit was
attack code that began to download a Trojan or engage
in other nefarious activity, we expect the models to differ
sharply. We observe that the “patched” normal behavior
(expressed in (7)) is closer to (3) (normal behavior) than
(8) is. The patched normal behavior is also closer to (3)
than it is to (8).

Table 3: Comparing libpng-1.2.5 with libpng-patched.

Scenario Manhattan Distance BIM
(8,4) 2,722 3.67e-4
(8,3) 475,688 2.10e-6
(7,3) 386,996 2.58e-6
(7,8) 476,702 2.09e-6

It would be useful to have some sense of scale for the
BIM, even though our primary purpose is to achieve a
rank ordering rather than a strictly relative scale. To
help accomplish this, we wanted to see what the BIM
would be for later versions of the library. To this end, we
retested using versions 1.2.6 and 1.2.8 of libpng rather
than a hand–patched 1.2.5. Our results appear in Table 4.

5 Discussion
A patch can affect a behavioral model by changing con-
trol and data flow. We performed a review of some
security–related patches; the collection that we studied
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Table 4: Comparing libpng-1.2.6 and libpng-1.2.8. We
can see that the behavior diverges even more, presum-
ably because these library versions included changes and
patches beyond the patch for the vulnerability in 1.2.5.
Compare the BIM relationship between case (3) and (7)
here with that in Table 3.

Version Scenario Manhattan Distance BIM
(8,4) 2986 3.34e-4

1.2.8 (8,3) 475,798 2.10e-6
(7,3) 626,449 1.59e-6
(7,8) 484,446 2.06e-6
(8,4) 2973 3.3e-4

1.2.6 (8,3) 475,789 2.10e-6
(7,3) 625,728 1.59e-6
(7,8) 460,397 2.17e-6

cause only small perturbations in program behavior. As a
result, we can expect that security–related patches should
cause only small, localized changes in control flow. It is
precisely this “local” information that execution tails en-
code.

Briefly, we observe that the goal of many security–
related patches is to support the availability of the sys-
tem by refusing to process input aimed at subverting
it. Given that such behavior is similar to existing pro-
gram code, most patches simply redirect execution along
one of these paths (for example, calling an internal log-
ging routine and exiting the current function with an er-
ror code). It is, however, possible for patches to dras-
tically change the behavior of the program, making it
difficult to differentiate between normal post–patch be-
havior and anomalous post–patch behavior. This pa-
per provides a model and mechanism for detecting such
changes, whether they are sanctioned or not. The cur-
rent state of the art consists of manually–driven testing
of patched versions of the application in simulated envi-
ronments with little or no widely–accepted measures of
behavioral deviation.

5.1 Security Patch Survey
Security–related patches cause only small perturbations
in program behavior. As a result, we can expect that
security–related patches should cause only small, local-
ized changes in control flow. It is precisely this “local”
information that execution tails encode.

A patch can affect a behavioral model by changing
either or both the control and data flow. Examples of
changes in control flow include updating, removing, or
introducing new decision control structures; introducing

a new child function; or inserting a new parent func-
tion (e.g., a sanity check on input parameters). Changes
in data flow include adding new variables or symbolic
values; adding or removing arguments or function pa-
rameters; and modifications to the set of possible return
values. We note that our examination in this section is
strictly static: it does not attempt to execute the patches
or otherwise determine if the code contained in them is
ever actually executed. In addition, we make no distinc-
tion between macros and function calls. We also do not
investigate changes made to global state as part of newly
introduced functions.

Table 5 lists our results for a variety of applications,
including stunnel [21], some web servers [22, 23, 24],
linux [25], cvs [26] and fetchmail [27], as well as various
vulnerabilities in libpng [20], Firefox [28], and Samba
[29]. Most of the control flow changes we observed re-
sult from invocations of new functions as well as the in-
sertion of new if statements or updates of if condi-
tions. Most data flow changes involve new arguments to
function calls, or new ways of wrapping those arguments,
as well as new return statements that introduce new
values. A majority of the patches we examined made
very minor changes; for example, the patch to ghttpd
substitutes the use of a “safe” library function and de-
rives the value of a new argument for that call. The patch
for nullhttpd introduces a new if statement and condi-
tion with a call to an application function to log an error
(presumably, the dynamic behavior also involves the in-
vocation of the library printf() family of functions
and the write() system call).

6 Related Work
Although patches are typically vetted offline before they
are applied to production systems, the problem of au-
tomating such a task is currently unaddressed in the re-
search literature, mostly because the very concept of on-
line patching or software self–healing is a relatively new
research area. Most existing systems only consider rough
tests of survivability or “liveness” (e.g., does the machine
respond to an ICMP request) and whether the application
has not crashed. The closest work to ours is the paper on
Delta Execution [30]. In contrast to this work, we focus
exclusively on the self-healing repair validation problem,
and we employ a form of anomaly detection rather than
partial replication.

Other efforts focus on identifying, measuring, and
controlling the path leading up to a vulnerability (al-
though recent work has also examined how to use
patches to drive the automatic creation of exploits [11]).
In particular, efforts at dynamic taint analysis [7, 31] and
vulnerability–specific alerts [12] keep track of the se-
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Table 5: Survey of Patches. We list the vulnerable version of an application, the size of a patch in lines (including comments),
and the changes in data and control flow introduced by the patch, as listed above. The magnitude of the difference between the
changes and the application’s total size supports the notion that patches introduce relatively confined model updates.

Application Patch Size (lines) control flow ∆ data flow ∆
Linux-2.4.19 20 3 1
ghttpd-1.4 16 4 5
nullhttpd-0.5.0 12 2 1
stunnel-3.21 29 0 3
libpng-1.2.5 98 10 12
cvs-1.11.15 81 1 2
Apache-1.3.24 11 0 1
fetchmail-6.2.0 183 1 5
Samba (CVE-2004-0882) 65 0 7
Samba (CVE-2004-0930) 386 99 39
Firefox-2.0.0.3 22 8 0

quence(s) of instructions that propagate taint and even-
tually lead to the exercise of a vulnerability. Our execu-
tion tail model mirrors these vulnerability descriptions:
whereas the pre-patch control flow path models the vul-
nerability, the post-patch control flow defines the execu-
tion tail (these systems concern themselves only with de-
tection, not with post–detection behavior or automated
repair). Similarly, whereas anomaly-based intrusion de-
tection [32, 33] seeks to identify anomalies that predict
the presence of an attack, Calypso seeks to identify devi-
ations from normal behavior after a defense to an attack
has been enacted.

Execution trace analysis and measuring code similar-
ity and execution features is a resurgent area of work. In
particular, Ganapathy et al. [34] describe a procedure for
fingerprinting source–level artifacts to identify similar
source code locations that might be missing an authoriza-
tion check. While profiling application behavior at the
system call level [14, 35, 15, 32, 36, 37] is a somewhat
saturated field, other work considers how to extract be-
havioral features of arbitrary malcode samples [38], and
very recent work provides a way for extracting security–
related properties from source code by correlating known
security checks with the contexts they are used in to de-
tect contexts that are missing such a check. In contrast,
Calypso does not aim to understand the semantics of
an arbitrary piece of malware, nor do we perform sym-
bolic execution or program slicing. Instead, our system
is meant to address a deceptively simple task: measur-
ing the similarity of two execution traces to quantify the
impact of the repair mechanism that produced one of the
traces.

6.1 Self–Healing

Software self-healing and survivable systems is an active
area of research. Rinard et al. [39] developed compiler
extensions that deal with access to unallocated memory
by expanding the target buffer (in the case of writes) or
manufacturing a value (in the case of reads). They em-
ploy this system for failure oblivious computing to exe-
cute through such faults [3]. The Reactive Immune Sys-
tem [1] aims at roughly the same concept: process exe-
cution can be forced through a fault or exploited vulnera-
bility by “slicing off” the corrupted function and return-
ing an error code. Demsky [40] discusses mechanisms
for detecting corrupted data structures and fixing them to
match specified constraints. The pH system [41], while
not strictly self–healing, is an active response mechanism
that frustrates an attacker by using system call interposi-
tion to slow down an attacker’s code. This system nego-
tiates a fine line between providing semantically correct
continued execution and making the target less attractive
to an attacker.

Instead of attempting to force execution through an
exploited vulnerability, a significant body of work at-
tempts to rewind execution to a pre-fault or otherwise
uncorrupted state [42, 43, 44]. In particular, the Rx sys-
tem [2] checkpoints an application in anticipation of er-
rors, faults, or attacks. Rx uses a series of heuristics to
explore safe alterations of program state. If Rx finds such
a semantically safe change, then execution proceeds. If
not, then the system falls back to crashing. PatchEpi-
logue focuses on creating a measure of post–repair simi-
larity to validate the operation of these self–healing sys-
tems and can be applied to both “rewind” and “execute
through” approaches.

ASSURE [45] attempts to minimize the likelihood of
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a semantically incorrect response to an attack by using
error virtualization rescue points. A rescue point is an
existing program location that is known — or at least
conjectured — to successfully propagate errors and re-
cover execution. The key insight is that a program will
respond to malformed input differently than legal input;
during an offline training phase, the system learns about
locations in the code that successfully handle these sorts
of anticipated input “faults.” These locations serve as
good candidates for recovering to a safe execution flow.
ASSURE can be understood as a type of exception han-
dling that dynamically identifies the best scope to handle
an error (rather than statically determined by a program-
mer).

7 Summary
The limits of detection technology have historically man-
dated that researchers address the shortcomings of intru-
sion detection before automated repair mechanisms are
considered — an attack must be detected before a re-
sponse can be mounted. As computing infrastructures
increase in size and complexity, the use of abstraction as
a design principle begins to interfere with the ability to
rapidly diagnose and repair errors and exploited vulnera-
bilities. Providing continued availability of key services
demands an active response mechanism. Unfortunately,
such an active response or self–healing mechanism intro-
duces the possibility for further and greater instability in
the system.

In this paper, we focus on creating a system that can
assist administrators as they begin to analyze the effects
that automated repair might have on their systems. In
essence, we advocate performing anomaly detection on
post-attack program behavior. Our behavior model is
based on a simple, space-efficient n-gram representation
of intra-procedural control flow. Our analysis of our sys-
tem’s operation on a testbed of synthetic vulnerabilities
and a real vulnerability indicates that such control flow
is a sensitive and useful feature for observing behavior
deviations due to self–healing repairs that modify pro-
gram state (as opposed to patches that modify program
code locations). Our analysis also indicates that a better
model should preserve more of the meta-structure of the
control flow, perhaps by using some existing trace anal-
ysis [46] techniques.
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