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Abstract

We provide a simplified proof of the 3-competitiveness
of the greedy algorithm for scheduling weighted pack-
ets in the multi-FIFO buffer model. Azar and Richter
provided a proof using the zero-one principle (Azar and
Richter. STOC 2004). We use a different approach and
we hope our approach can lead to an improved FIFO
buffering algorithm.

1 Problem Setting

Time is discrete as time steps. Online algorithms have
no knowledge about one packet’s characteristics until
it actually arrives. There are m ≥ 2 buffers called
Q1, Q2, . . . , Qm respectively. At any time, the buffer
Qi can store at most bi ∈ Z+ packets. All the buffers
are preemptive. Packets arrive over time. Each packet
p is associated with an integer release date rp ∈ Z+, a
non-negative value wp ∈ R+, and one target buffer that it
can reside in. Arriving packets may be buffered at their
destined buffers for future delivery. In each time step,
only one pending packet is allowed to be sent. The or-
der of sent packets should comply with the order of their
release dates (which is called the First-In-First-Out or-
der). Our objective is to maximize the total value gained
by delivering packets in an online manner. In this model,
the online policy has to make the decision of selecting
one buffer to send a packet, as well as managing individ-
ual buffers. Even the variant in which all packets have
the same value is not a trivial problem.

2 Algorithm MQ

Azar and Richter propose a greedy algorithm called TLH
on the multi-FIFO buffer model in [1]. We name it MQ
(Multiple Queues) and briefly introduce the algorithm
again here.

There are m buffers Q1, Q2, . . . , Qm. For each buffer,
we use the Greedy policy to accept and send packets.
In each time step, Qi accepts packets which are assigned
to it greedily and sends the first packet whenever Qi is
allowed to send a packet. Consider an arbitrary time step
t. MQ works as in Algorithm 1.

Algorithm 1 MQ
1: Run Greedy on buffers Q1, · · · , Qm respectively.

(That is, drop the minimum-value packet if the buffer
is full.) Append newly accepted packets, if any, at
the end of the packet queues.
The m candidate packets to send (which are the first
packets of those m buffers) are e1

t , · · · , em
t .

2: Send ei
t with the max{we1

t
, · · · , wem

t
}.

3 MQ’s Competitive Analysis

Azar and Richter [1] show that MQ is 3-competitive,
based on an analysis including 0/1 principle and a mark-
ing scheme.

Theorem 1 Zero-one Principle. [1] Let A be a
comparison-based switching algorithm (deterministic or
randomized). A is a c-approximation algorithm if and
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only if A achieves c-approximation for all packet se-
quences whose value are restricted to 0/1.

We will prove that MQ is 3-competitive using a differ-
ent analysis from a marking scheme method. The basic
idea is that we compare MQ with another over-charged
online algorithm, and the over-charged value is regarded
as the gain of our algorithm’s adversary ADV. MQ and
ADV have identical buffers at the beginning of each time
step.

We still include zero-one principle in our analysis of
MQ. Note that MQ is a comparison-based algorithm. We
consider MQ’s competitiveness for instances with (0/1)-
value packets only, and this competitiveness is the same
as MQ runs over instances with arbitrary packet values.

Let OPT denote the optimal offline algorithm, let O
be the set of packets sent by OPT. Let ADV denote MQ’s
adversary.

Theorem 2 MQ is 3-competitive.

Proof 1 Our proof works as follows. We create an on-
line algorithm called ADV. We also illustrate a procedure
of overcharging ADV. In order to prove Theorem 2, we
should create ADV and define its charging scheme such
that

a. MQ and ADV have identical buffers at the begin-
ning/end of each step’s delivery.

b. We overcharge ADV such that the total overcharged
value is no less than what OPT gains, that is, the
total value charged on ADV is ≥

∑
j∈O wj .

c. MQ gains at least 1/3 of the overcharged value of
ADV in each time step.

We assume that ADV selects the same queue as OPT,
but schedules the first packet that Greedy expects to
send. Notice that in some time steps, ADV does not really
send a packet (i.e., the first packet is still in ADV’s buffer);
however, we still let ADV “gain” some value to favor ADV
(e.g., we charge we to ADV).

Given a time step t, assume the queue MQ selects is
Qi, the packet MQ sends is ei

t. MQ’s gain is Wt := wei
t
.

Let Qj be the queue ADV selects — (Qj is also the queue
OPT selects.) Let ADV’s overcharged value be Vt.

1. Assume Qi = Qj .

Wt := wei
t

and we let Vt := 2·wej
t

= 2·wei
t
. Notice

that at the end of this step, MQ and ADV have identi-
cal buffers and they will have identical buffers after
both applying the greedy admission of new packets
for the next step. Therefore, above requirements [a.]
and [c.] are satisfied.

We will show that charging 2 · wej
t

for ADV in this
step satisfies the requirement [b.] in Lemma 1.

2. Assume Qi 6= Qj .

We do not remove ej
t from Qj ; but at first, we

charge wej
t

for ADV. (If ej
t is an overloaded packet

with wej
t

= 1, we assume ADV “sends” the over-

loading packet but leaves ej
t , which becomes un-

overloaded, in the buffer Qj .) We will show that
charging wej

t
for ADV due to ej

t ’s existence in Qj at
the end of this step satisfies the requirement [b.] in
Lemma 1.

Also, we remove ei
t from Qi for MG. ei

t should be
in ADV’s buffer at the end of this step. To keep MG
and ADV have identical buffers, it only favors ADV
if we let ADV “send” one more packet ei

t. ei
t may

be an overloaded packet (i.e., an O-packet is not
accepted by ADV due to ei

t in ADV’s buffer) and thus,
we charge 2 · wei

t
for ADV as well in this step.

All other queues are the same for MQ and ADV at
the end of this step. In this way, we keep ADV and
MQ have identical buffers at the end of this step’s
delivery.

The charged value ratio in this step is bounded by

Vt

Wt
=

2 · wei
t
+ wej

t

wei
t

≤
wej

t

wei
t

+ 2 ≤ 3.

�

Lemma 1 The charging scheme for ADV in the proof of
Theorem 2 satisfies requirement [b.].

Proof 2 First of all, due to 0/1 principles, the packets
sent by OPT, i.e., O, should be a subset of those packets
with value 1.

Consider the Greedy policy in accepting packets (for
both ADV and MG). At the time when a new arrived packet
p ∈ O is rejected by ADV, the destined queue Qi for p
must be full of packets with value 1, and there must exist
one packet q that has been sent by OPT but is still in
ADV’s buffer. We can map p to the earliest such packet
q in the buffer Qi. Thus, any packet q with value 1 in
ADV’s buffer Qi is overloaded by at most one unsent O-
packet. All packets before such overloaded packet q (if
any) are packets with value 1.

Notice that the packets in the input sequence are with
(0/1)-values only, and thus, if ADV sends a packet with
value 1 in Qi and if the first packet in Qi is a packet with
value 1, we can always regard ADV sends the first packet
in this time step. Also, if the first packet in queue Qi

is one with value 0, any packet in Qi is not overloaded
(please refer to the charging scheme for ADV). Therefore,
Lemma 1 holds. �
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