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Abstract
The field of mobile robotics is on the forefront of robotics
research around the world. Control architectures for
complex autonomous mobile robots have largely settled
on hybrid architectures for their suitability at dealing
with the opposing forces of planning and reactivity. We
present a general, heterogeneous 3-Tier hybrid architec-
ture for control of an autonomous mobile robot and dis-
cuss an implementation in the domain of campus navi-
gation. The architecture features a useful organization
structure for high-level skills and offers flexible construc-
tion options for low-level behavior hierarchies.

1 Introduction
The field of mobile robotics is on the forefront of robotics
research around the world. Recent public attention and
government dollars have been drawn to the field due
largely to the DARPA Grand Challenge (DGC) competi-
tions from 2004–2007 [2, 12]. There is clear interest in
robust and useful automomous driving systems for both
civilan and military use. One of the most important as-
pect of such a complex autonomous system is the con-
trol architecture making decisions and reacting to the dy-
namic, real-world environment.

Control of autonomous robots has been a subject of
active research since the first mobile robot, Shakey, built
by SRI in the early 1970s. Shakey used a deliberative
architecture, a schema which came to be called Sense-
Plan-Act (SPA). SPA is a closed loop of three parts: the
sensor input is processed and a world model developed
or updated from the data; a deliberative planner is used
to create a sequence of actions; the sequence of actions is

attempted until a failure condition is detected. The delib-
erative planner [8] is a complex and search-intensive op-
eration. Any deviation from the plan causes an expensive
re-planning loop which can often exceed the time frame
of usefulness. Later researchers addressed this limita-
tion by techniques of partial planning, leading to modern
planners which feature dynamic-scope planning [20].

To increase reactivity in a dynamic environment, the
behavior-based architecture was introduced by Brooks
[3]. Brooks’ Subsumption architecture organized actions
by layers of competency, with obstacle avoidance at the
bottom and progressively complex goal-attainment be-
haviors in several higher levels. Each behavior is ex-
ecuted asynchronously and is reactive (low-latency and
maintains no state). In Brooks’ original formulation,
the behaviors were encoded as Finite State Machines
(FSMs), although many techniques have been used in
later implementation. A higher level can inhibit (or sub-
sume) the actions of a lower level, thus gaining con-
trol of the outputs. The introduction of the behavior-
based architecture resulted in an explosion of research
[1, 10, 11, 16] that resulted in a diverse ecosystem of re-
lated architectures. Although Brooks argued that strict
representations of objects and world models were unnec-
essary for notions of intelligence [4, 5], behavioral archi-
tectures have limitations regarding issues of tractability
and the complexity of the set of goals a behavior-base
architecture can achieve.

The solution to the problems of both architectures was
to combine them into hybrid architectures. The reactive
behaviors are essential for interacting with a complex
and dynamic world, but a planner is appropriate (and
even required) for more complex goal sets. Hybrid archi-
tectures are typically arranged in a 3-Tier (3T, 3-Layer)
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organization: behaviors on the bottom, a planner on the
top, and an interface layer of various descriptions [14].
Gat et al. [9] argues that 3T hybrids are the natural, even
ideal, organization for an architecture for reasons of op-
timal separation of time and complexity domains.

We propose a 3T hybrid architecture for the general
problem of autonomous control of a mobile robot. We in-
troduce a definition of mission domain, a novel organiza-
tional structure for high-level behaviors based on disjoint
skill domains, and a highly flexible behavior implemen-
tation for creating a wide variety of complex reactive be-
haviors. The architecture is heterogeneous between and
within layers. To firmly establish the principles of the ar-
chitecture, this report also details plans for our prototype
implementation using the prototype as a running exam-
ple. This prototype will be constructed in Spring 2009
for a competition in late April, 2009.

This technical report is organized as follows: Section 2
covers the general mission profile that is the focus of our
interest and the robotics platform that will be used for the
creation of the prototype. Section 3 introduces and dis-
cusses the the proposed general architecture, using the
planned prototype as an example implementation. Sec-
tion 4 offers some concluding thoughts on the both the
proposed architecture and prototype.

2 Mission Description
The GMU Applied Robots Club has had a long-standing
informal design goal dubbed the ”GMU Grand Chal-
lenge”, inspired by the DGC. The goal of the challenge is
to autonomously navigate between the front of the main
CS building and any GPS waypoint on campus, driving
only on pedestrian pathway, and avoiding all obstacles.
These goals are fairly low-hanging fruit, but still, various
attempts have only garnered tepid interest over the last
several years.

More recently, formal competitions have begun to
spring up around a similar set of goals, also likely in-
spired by the DGC if naming conventions hold. The most
notable of these competitions is called the “Mini Grand
Challenge” sponsored by Penn State Abington.

We expect that in the near future additional competi-
tions will rise in prominence. With some variation, we
anticipate a central core requirement of these competi-
tions to involve navigating an environment principly sim-
ilar to that of a college campus. We have fused these
known and anticipated goals into a problem definition
we call the Autonomous Campus Navigation (with Tour
Guide) (ACN/ACNTG) problem. The primary goals of
the problem are:

• Operate on a typical college campus, in an environ-
ment assumed devoid of malicious agents, in one of

two driving regimes:

On-Road: Drive on pedestrian pathways only;
the robot should not interact with automobile traf-
fic. Should operate smoothly, with respect to other
users of the pathway. There will never be more than
light human traffic on the roadway, and often none.
Pathway may be restricted by orange traffic cones
12–18 inches tall.

Off-Road: Drive over cleared fields with
sparse or no vegetation (e.g. football field or
open public space). Obstacles will be generally
large in relation to the vehicle, and detectable by
horizontally-oriented body-frame-mounted 2D sen-
sors (e.g. laser range finder or sonar ring).

• Navigate an ordered list of GPS waypoints from
start position to goal position. The waypoints are
guaranteed to be connected by navigable on-road or
off-road terrain sections (as defined above). Road-
way may not follow shortest distance.

• Drive subject to a flexible set of parameters (max
speed, obstacle avoidance policy, pause and enter-
tainment cues, etc) that is provided with the way-
points.

• Avoid local obstacles, subject to a given policy (e.g.
swerve around obstacles or stop). Obstacles may be
static or moving, and may come from a variety of
sources (sensors, map restrictions, etc). Static ob-
jects may be known a priori or discovered dynami-
cally.

• Practice ”Safe Robotics”, including no unintended
contact with environment, humans always have
right-of-way, full safe E-Stop, and mechanisms to
ensure self-protection.

• Report technical feedback for diagnostics and re-
search.

• Support a variety of technologies to entertain human
companions/travellers/guests; to fulfill competition
feedback requirements and eventually for applica-
tions in autonomous tours of the campus.

We intend to construct a prototype implementation
of the proposed architecture (called the George Ma-
son University / Universal Touring Guide or GMUTG)
to compete in the 2009 Abington MGC. The Abing-
ton MGC competition rules are a subset of the ACNTG
problem, but a large contributor to the problem’s for-
mulation. This section describes the hardware that has
been provided for the project. Virtually all of the hard-
ware was provided by GMU’s Applied Robotics Lab
(http://cs.gmu.edu/∼eclab/robotlab/pmwiki.php).
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Figure 1: The Prototype Robot Platform

2.1 Mobile Robot

The mobile robot platform will consist of an ActivMedia
Pioneer AT mobile robot and attached sensors. The Ac-
tivMedia Pioneer is a well-known and popular robotics
platform for research and industry. The AT model is an
outdoor-only mobile robot with a maximum velocity of
0.6 m/s. The drivetrain is 4 wheel drive from two electric
motors configured in a skid-steer arrangement (turns like
a tank). It has traversal specifications of maximum 35
degree grade, 10cm vertical step, and 12.5cm horizontal
gap. Continuous runtime is 4–8 hours from built-in 12V
sealed lead-acid batteries (252 watt-hr). Payload capac-
ity is 30 kg.

The Pioneer robot includes several built-in features
that will be utilized. First, the firmware offers status in-
formation of the running system which, for purposes of
the prototype, will be limited to the battery level. Addi-
tionally, there are position encorders with 500-tick preci-

sion. These measurements can be integrated over time to
construct the robot pose. Finally, there is a built-in sonar
ring with 16 sensors, divided 8 front and 8 rear. These
are low-resolution compared to other sensors available
on the robot. The ring will likely be deactivated for the
prototype, but the capability exists.

2.2 Sensor Suite
The following equipment is installed on the Pioneer AT
frame and comprises the sensor suite available for the
prototype.

2.2.1 Hokuyo Laser Range Finders

Two Laser Range Finder (LRFs), model URG-04LX, for
local object detection. The URG is capable of sweeping
240 degrees in ∼100ms with a stated accuracy of 1mm.
The data result is an array of length 683 at∼0.36 degrees
per index. One LRF is mounted horizontally on the front
of the Pioneer deck for local obstacle avoidance and the
second is mounted vertically on top of the mast for de-
tecting both vertical clearance and dropoff conditions.

The horizontally-mounted LRF is robust for detec-
tion of obstacles of concern to the robot body, which
is suitable for general traversibility. The vertically-
mounted LRF yields accurate data for dropoff detection
and height-clearance, but is constrained to a 2D plane of
limited usefulness (the centerline of the robot). The 2D
plane has consequences for both detection requirements.
In dropoff detection, the sensor can fail to detect a pair
of unfortunately-placed potholes which are large enough
to cause the robot distress. In height detection, we are
aided by the narrow dimensions of the mast relative to
height, meaning any obstacle with clearance for the top-
mounted sensor should have adequate clearance for the
entire width of the mast. However, if additional sensors
are added to the mast, any increase in width will increase
the chances of mast collision.

We are investigating the possibility of mounting the
vertical LRF on a swivel, allowing for a simple 3D pic-
ture of the space directly ahead and behind the robot.
This would solve both of the problems outlined above.

2.2.2 GPS Receiver

A GPS receiver is required, but we have not settled on
the specific equipment we will use. We have access to
a consumer-grade, non-corrected (10m-resolution) unit,
but are actively seeking to acquire a sub-meter unit.

2.2.3 Vision Subsystem

Built around the Point Gray Scorpion camera (640x480
@ 30fps Color or 60fps Mono). The camera requires a
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IEEE-1394 connection and 12V @ 1A power. The cam-
era is mounted at the top of the mast for optimal visibil-
ity.

A full description of the subsystem is outside the scope
of this document. In brief, a color camera is monitoring
the area directly in front of the robot. Road detection
is accomplished by a novel histogram matching method.
The system also performs color matching to detecting or-
ange cones used to signal out-of-bounds (for path con-
trol). Relevent interfaces to the prototype will be noted
where appropriate (specifically Sensor Behaviors, sub-
section 3.3.1).

2.3 Computing Platform
The computer used will be an Apple Macbook with the
general specifications: Intel dual-core T7200 @2.0GHz,
2GB RAM, 5400RPM drive, 13” screen, running Linux
2.6.2x. Critically, the Macbook features a 6-pin IEEE-
1394 (Firewire) connector which is essential for interfac-
ing with the camera. The majority of laptops that include
Firewire only provide the 4-pin variant of the plug, ne-
cessitating the use of a card-based Firewire adapter.

2.4 Development Environment
The prototype software will be written in C/C++. The
language provides the necessary object-oriented features
and offers maximum flexibility in interfacing to other
subsystems.

We have chosen to use the Player/Stage open source
project for robot and sensor interface. The reasons for
Player/Stage are four-fold: open source principles, the
wide variety of sensor systems with built-in support, the
ease of integrating custom sensors, and an active com-
munity providing documentation and support.

GMU has an active project underway to investigate the
use of the Intel C/C++ compiler instead of GCC. Test-
ing with algorithms of similar complexity to those for
both navigation and vision indicated a 10x speedup or
more. The Intel compiler produces better optimization
results on Intel hardware than the open source, platform
independent GCC. There exist problems interfacing the
Intel-compiled code with GCC-compiled code (like ker-
nel header files).

3 Proposed Architecture
We propose a hybrid architecture based on the popular
3-Tier (3-Layer) model of design, as shown in Figure 2.

The Mission Layer is comprised of one or more plan-
ners, which create long-term contingency strategies and
short-term concrete plans to accomplish a set of mission

Figure 2: Architecture Overview

goals. A planner operates on very long timescales, main-
taining the overall mission goals and monitoring their
completion. The planner is less concerned with the me-
chanics of how a particular action gets done than in how
the action is sequenced with other actions to attain a goal.
It can be push- or pull-based with respect to assignment
of tasks and monitoring the progress of goals.

The Competency Layer is responsible for accomplish-
ing tasks assigned by the planner(s). The layer consists
of small number of competencies which are individually
responsible for a specific task domain (e.g. Driving, Lo-
calization). Each competency is composed of a set of
skills (high-level behaviors) which use a mix of low-level
behaviors and longer-term state management to monitor
progress, handle fault conditions, and interact with other
competencies. A skill should be able to robustly handle
the execution of a specific complex task, on a persistent
(non-reactive) basis.

The Behavioral Layer is comprised of behaviors,
which are reactive components that manage, solve, or
interface atomic actions. Behaviors comprise the basic
actions by which the robot interacts with the world, usu-
ally holding exclusive access to the hardware inputs and
outputs. Behaviors may be composed into hierarchies
of complex reactive behaviors through use of Arbitration
Operators (Arbitrators).

The division line between the layers has some flexi-
bility subject to design requirements. The decision of
whether a module should be a behavior or a competency
should hinge on whether the action can be done reac-
tively (in a guaranteed fixed and very short time). Behav-
iors must be reactive; Competencies offer design flexi-
bility, access to the full world model, and adequate CPU
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cycles for heaftier calculations. The decision between
mission and competency should hinge on whether the
module needs to use forward-planning or projection of
future results.

The architecture assumes the use of a world model, but
places no restriction on the implementation details. The
world model will generally be developed hand-in-hand
with the Mission and Competency layers, and will fit the
exact requirements of a given mission domain. In Fig-
ure 2 we suggest that the model is only accessible from
the Mission and Competency layers. In our prototype,
behaviors will have limited access to the model in order
to store their raw values in a common, public place. We
anticipate that access to those values for testing and tun-
ing will be useful.

3.1 Mission Layer

Academic and research interests aside, a robot serves no
useful function if it cannot successfully accomplish a set
of predefined goals. The Mission layer is responsible for
the the planning required to discover the sequence of ac-
tions sufficient to solve a series of goals, and for the over-
seeing the progressive execution of actions to achieve
those goals. We have purposefully chosen the term mis-
sion, which we argue can be defined as a plan coupled
with both the intention and capability to execute. A plan
alone is useless without the means to see the goals of the
plan achieved, or a waste of time to construct if you have
no desire to achieve the goals.

A set of related missions, all achievable by the same
agent(s), have a common description language that is fa-
miliar to the agent(s) capable of carrying it out. Like
any language, it describes the structure (nouns and verbs)
used to describe the actions and goals, and by conse-
quence, the domain of problems the language can solve.
A language with more complex operators/operations can
describe more complex goals. The languages needed
to describe the respective mission domains would be
quite different for a search-and-rescue robot and a cross-
country autonomous truck for military applications.

The mission layer is best defined only after the entire
mission domain has been specified and sufficient infor-
mation is available to make informed decisions. The re-
quirements of the mission are integral to the design of the
software required to execute the mission. The mission
layer must at minimum include the capability to define
new missions for the robot to perform – For the forsee-
able future, the mission must be defined by an expert hu-
man operator.

Our own prototype implementation includes a planner
that is simple but well suited for the limited mission do-
main we have chosen to solve.

The user input to the system will consist of an ordered

list of waypoints to achieve, in the form of a plaintext pa-
rameter file. The datapoints will include GPS position,
the driving policy to follow for the travel segments, and
potentially other data. The driving policy will include
data on the On-Road/Off-Road conditions, the maximum
safe speed, whether to chat up any human travelling com-
panions, whether to stop at the destination, and poten-
tially other data.

The planner will startup in a simple FSM we will call
”Pit Mode”. While in Pit Mode, the robot can be driven
via a Wii Remote Controller (hereafter, Wiimote) and the
various subsystems can be tested. The robot is driven to
the competition starting position under human control.
Once at the start, the Wiimote is used to put the robot
into ”Run Mode”. The Wiimote becomes innactive (no
cheating), and the robot waits for a start signal. Once the
start signal is given, the FSM issues the first waypoint
to the Captain (the Manager competency) and enters a
passive mode.

The Captain goes about attempting to drive to the way-
point. The Captain will periodically poll the planner
when waypoint achievement is immenent in order to be
prepared for continuous movement. If the Captain de-
tects a path-blocked or path-unreachable condition, the
planner will be notified and asked for a new plan. The
planner will examine the current map, determine possi-
ble back-track locations, and issue new orders or call for
failure. At the completion of the mission (success or fail-
ure), the Pit Mode is automatically reactivated.

3.2 Competency Layer

Within this architecture, we use the term Skill to denote
a high-level capability at performing a given task. A
skill executes an individual complex task, with as much
robustness as is reasonable, and reports success/failure
within a reasonable amount of time. A Competency is a
family of related skills that together solve all the require-
ments within a task domain. Our use of the term is es-
sentially a logical organization and is simply a shorthand
for ”the family of skills that accomplishes . . . ”. For ex-
ample, the Airplane Pilot competency handles all flight
operations, and has individual skills such as Takeoff,
Cruise, Land, EmergencyOverWater, EmergencyOver-
Land, etc.

Competencies are generally disjoint in their task do-
mains and possess exclusive access to the inputs or out-
puts they are responsible for operating (only the pilot is
allowed to fly the plane). A mobile robot will typically
have at minimum an Actuation competency and a Local-
ization & Mapping competency, with others as necessary.
The Localization & Mapping competency would use sen-
sor behaviors to create data for the world model, which
the Actuation competency would use to make decisions
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about steering and velocity. The Actuation competency
would handle tasks such as GotoXY and Stop by activat-
ing relevant skills, which would in turn activate the be-
haviors necessary to accomplish the specified task.

Skills run at a much lower frequency than the reac-
tive behavior layer. If we use an FSM to implement a
skill, each state would establish a set of behaviors as ac-
tive. These behaviors would execute reactively while the
FSM is periodically executed to examine the model and
determine if a transition is required.

There must be one Competency Manager and all other
Competencies are subordinate to the Manager. The Man-
ager is the primary interface between the Mission and
Competency layers. In theory, it is the only Competency
that communicates with (or knows about) the Mission
layer. The Manager’s responsibility is to execute the or-
ders (sequence of tasks) given from the planner, making
its primary skill the delegation of tasks to the subordinate
competencies. Like any good manager, one must effec-
tively use the talent pool available. Tasks are delegated
to competent subordinates and only status messages and
task changes need be communicated thereafter.

The Manager can communicate to all subordinates,
but subordinates can only communicate to the Man-
ager. Subordinates should exchange status and messages
through the world model. At no time may a competency
other the Manager issue a task to another competency.

Each competency must expose a list of the tasks it can
handle and the information it requires to do so. This
is necessary so that the Manager can make proper as-
signment decisions. The competency may expose meta-
commands and use a dispatcher to activate skills accord-
ing to some internal criteria, or may use a one-to-one
mapping, listing all the available skills directly. The
choice of how a competency’s task assignment is mapped
to skill activation has important implications.

For example, an implementation that forced all com-
petencies to expose one-to-one mappings could assign
pre- and post-conditions to those skills and manipu-
late the skills directly in the planner [14]. A compe-
tency that retains the authority to choose the skills must
be built smarter. For Actuation, the skills might en-
compass complexities such as GotoXY-OffRoad which
would ignore vision and place high priority on laser
range finder data, GotoXY-OnRoad which might use vi-
sion data for steering and ”rules-of-the-road” logic, and
GotoXY-OnRoadBadWeather which might force a most-
direct path and use audio cues to encourage humans to
follow the robot to safety. The smart skill dispatcher
would have to classify the input request and make de-
cisions appropriate to the situation.

The architecture is heterogeneous with respect to the
methodology used to construct skills. Skills should be
built with the methodology that best suits the needs of the

tasks. For our prototype, most skills will be built from
FSMs (with timers) whose states activate different high-
level composite behaviors. Other methods that are iden-
tified as potential candidates include petri nets [6] and
Hierarchical Behavior Networks (HBNs) [14], although
many techniques exist in the literature.

For the prototype, we chose to use the metaphor of a
naval ship to delineate and label the competencies. Thus,
the Manager competency is called the Captain, and the
subordinate competencies are labelled Pilot, Navigator,
Engineer, and so forth. The metaphor provides a famil-
iar naming scheme that crosses cultural boundaries and
idioms, which aids in making decisions in support of the
clear delineation of tasks.

Figure 3: Prototype Competency Layer

Captain

The Captain has the primary responsibilities of the Man-
ager, as described above. The interface to the Mission
layer will be described in that subsection. The Captain
will assign tasks to competencies based on a lookup ta-
ble. A monitoring skill (built from an FSM) will check
the progress of task completion. An error detection
skill (of undefined method) will handle cases such as
path blocked (forcing back-tracking) or unreachable path
(forcing a request to the planner for new orders).

The Captain will create and monitor the EStop behav-
ior and upon receiving an event, will issue suspend orders
to all competencies. The Captain will also be designed
to accept messages from other competencies regarding
health and status, from battery level through traversal er-
ror conditions (grade or height restrictions, destination
unreachable from path, etc).
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Pilot

The Pilot competency is responsible for all actuation of
the platform (except sensors). Tasks are accomplished
by use of the compound behaviors that fuse data from
the model of the local surroundings, localization and the
current map. The skills are each designed to drive in a
particular regime (based on policy), with several general
use behaviors such as Spin and Pause.

The skills will be constructed from FSMs, one for each
driving regime. Each FSM will have 5-10 states that de-
tect faults and recovers from errors gracefully. Arbitra-
tion is likely to be a straight-forward sum of vectors with
some notion of activation or priority (see Behaviors be-
low).

Navigator

The Navigator competency is responsible for perform-
ing localization and mapping, and maintaining the world
model with that information. The skills will include pro-
cessing the various sensors and performing fusion on the
data, transforming it to the representations of the model.

The methods for data fusion will be based on simple
algorithms that can be completed and testing within the
timeframe. More advanced algorithms, such as parti-
cle filters or full Simultaneous Localization and Mapping
(SLAM) may be added in future upgrades.

For localization, the primary sensors will be the
GPS receiver and the Pioneer position encoders (dead-
reckoning), fused for mutual correction.

For mapping, the model stores a list of GPS points
that define the valid roadway, as detected by the local
surroundings. This list is initially empty. At a defined
“start state”, the current GPS reading is stored as the start
point of the robot. This start point is used as reference
for normalizing sensors to the local conditions. As GPS
waypoints are issued by the planner, the Captain will add
these to the list (corrected for GPS start). As the robot
travels, the Navigator will periodically add current inter-
mediate GPS locations to the list. Eventually, this list
will comprise the entire road network the robot has de-
tected. If the vision subsystem can be made to detect in-
tersections in the roadway, the map would include unfol-
lowed intersections that could be used for back-tracking.

Tactical

The Tactical competency is responsible for detecting and
tracking all objects in the local space, and maintaining
the world model with that information. The skills will
include processing the various sensors and performing
fusion on the data, transforming it to the representations
of the model.

An example skill for fusion of situational awareness
data is the ConstructOccupancyGrid skill: Execute
the LRFHorizObstacles and LRFVertObstacles be-
haviors, each returning an array of length 683, and the
VisionCorridor behavior, returning a list of lines seg-
ments in the body frame of the robot. All behaviors al-
ready perform smoothing on the data. Compile the data
into an occupancy grid centered about the robot: use the
vertical LRF as gospel on objects ahead; supersample the
horizontal LRF data to world model grid size; Transform
vision data to walls. Compare this grid to the one stored
in the model. Add/Update/Remove objects to new grid
and update the model.

We are investigating the possibility of mounting the
vertical LRF on a swivel, as discussed in Section 2. This
would vastly increase the complexity of this competency
and the representation capabilities of the model. The ac-
tuation of this sensor would be handled by skills within
this competency.

Engineer

The Engineer competency is responsible for monitoring
the overall health of the robot. Skills include monitoring
battery level, fault detection, and detecting e-stop events
from button on Pioneer. Implementations will all be sim-
ple, for demonstration of capabilities.

Comms (Communications)

The Comms competency is primarily responsible for
sending and receiving all messages to and from the
robot. It maintains exclusive access to the communica-
tions hardware via its behaviors. The prototype requires
no off-board communications, so this competency is void
of those responsibilities. Later implementations could
add wireless connectivity to a base station so that mis-
sion updates could be pushed to the autonomous guides.

A secondary function of the competency is the main-
tainance of a GUI of essential data. This GUI will in-
clude the current camera image, data from the Pilot re-
garding steering vectors and velocities, robot status in-
cluding battery level warnings, and a console (or several)
that contain debug information from the internals of the
system.

An additional function of the competency is to han-
dle the communications with humans in regard to voice
recognition, speech synthesis and text-to-speech. Cer-
tain competitions require this, others award bonus points.
How much speech capability that is included in the pro-
totype is an open question. Depending on the degree to
which these functions are implemented, all entertainment
tasks could be refactored to a new competency, called the
Purser or Guide.
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Monitor

The Monitor competency is responsible for all logging
and debugging within the system. It includes the capa-
bilities for data collection (continuous or periodic model
dumps) for output to logging files on the drive or real-
time to a console for output (via the Comms).

If time allows, possible expansions include a full log-
ging system for after-action replay and the capability to
save the video of a run to hdd (currently not planned to
maximize system reactivity).

Flag (Optional)

The Flag competency is responsible for all coordination
within a multi-agent system. This competency is marked
optional and will not be developed for the prototype.

The naming of this Role is based on the naval “Flag”
officer, usually some kind of Admiral, who is in overall
command of the fleet. The Admiral issues orders to all
ships, including the one she is on (the “flagship”). The
captain of the flagship is still and always responsible for
the vessel and crew, subject to the orders of the Admiral,
up to and including an order certain to result in destruc-
tion.

In a multi-agent expansion of this prototype, the Flag
would exist simultaneously in both the Mission and
Competency layers. It would need to be a behavior to
directly access the Comms competency to transmit mes-
sages and would need to be a planner to issue tasks to the
Captain. This is perhaps a matter of semantic difference,
and we leave the details to those that will implement.

Sensor/Payload (Optional)

The Specialist competency is responsible for all tasks re-
lated to the use of an on-board, mission-specific sensor
or payload package. The skills would include activation
and monitoring of the hardware, actuation (as required),
and for data collection, filtering, and transformation to
model representations. This competency is marked op-
tional and will not be developed for the prototype.

This Specialist could also span the Mission-
Competency layer barrier. It is forseeable that the
events from the payload could cause replanning, for
example a science goal generated from sensor readings
forces a replanning of the travel path. A direct link to the
planner could streamline the interactions and representa-
tion differences. In a behavior-only implementation, the
planner could receive events through the world model.

3.3 Behavior Layer
The behavior layer is a collection of atomic and com-
posite behaviors that serve as the basis for all function-

ality. Atomic behaviors perform atomic actions (drive
straight). Composite behaviors are hierarchies of be-
haviors that perform complex actions (drive straight and
don’t hit anything). Behaviors are defined to be reactive
components – returning in a finite and very short time-
frame. Behaviors should only depend on current state
information, or a finite and very small number of pre-
vious steps for filtering purposes. No forward-looking
planning should be done.

Behaviors exist in either an active or inactive state.
The activation state of a behavior can only be changed
by a skill. Active behaviors are executed asynchronously
at a parameterized rate (10-50Hz). Activation of a com-
posite behavior may or may not trigger activation of all
child behaviors – this is implementation-specific.

We define two general categories of behaviors, for ac-
tions and sensors. Sensor behaviors passively gather in-
formation. Action behaviors cause the robot to interact
with the world.

Methodology for behaviors is heterogeneous. Behav-
iors should be built with the methodology that best suits
the needs of the action. Our research has identified a
number of methods which show promise for implement-
ing behaviors [7, 13, 17, 19, 21].

The following behavior descriptions are examples
from the prototype.

3.3.1 Sensor Behaviors

Sensor behaviors observe the world. They are primar-
ily input-oriented and generally have read-write access
to the world model.

Sensor behaviors provide generic access to the sen-
sors of the robot, often changing the raw data to the vari-
ous representations stored in the world model. Many are
simple ”virtual sensors” that wrap the abstract the imple-
mentation details of the sensor and follow a Read-Filter-
Update (RFU) pattern: Read data from source, perform
filtering, update data in model and return data. They
can use any filtering technique, including simple window
or integer smoothing, advanced Kalman filters, or none.
Data filtering must be accomplished within the reactivity
requirements of the behavior layer – If too much pro-
cessing is required, move the functionality to the Com-
petency layer.

EStop: Monitor the status of the Pioneer built-in Stop
button. When pressed, the power to the wheel motors is
automatically shutoff, stopping the vehicle. This behav-
ior captures that event so the architecture can be made
aware of the condition. This behavior is usually created
and used by the Captain competency that is responsible
for robot safety. Other competencies could receive these
notifications directly or indirecly through the actions of
the Captain.
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RoboStatus: Read the current status from the Pioneer.
For the prototype, the only status information we are con-
cerned with is the battery level. This will be critical to
monitor on competition days as well as during testing to
ensure there are no unplanned recharge delays.

RoboLocalize: Read wheel-watcher data from Pio-
neer and filter the data using a simple and fast smoothing
method (TBD).

GPSLocalize: Read data from GPS receiver and ap-
ply a filter. The prototype version will be implemented
with Player/Stage and will be able to interface with any
receiver using the standard NMEA format. An additional
version of this behavior will be written, if time allows, to
interface with a GMU-designed sensor suite that includes
GPS. Additional versions are possible, such as reading
proprietary formats or standard NMEA through direct se-
rial (without player/stage).

LRFHorizObstacles: Read the horizontally-mounted
LRF to detect all nearby objects and filter the data using
a simple and fast smoothing method (TBD).

LRFVerticalObstacles: Read the vertically-mounted
LRF to detect all nearby objects and filter the data using
a simple and fast smoothing method (TBD).

MonitorVertical: Monitor the vertically-mounted
LRF to detect dropoff conditions, grade restrictions, and
height-clearance conditions.

VisionVector: Read the suggested drive vector(s)
from the vision subsystem. The result is an array (un-
known length, max 8) containing the (x,y) coordinates
of the approximate center of the road in the body frame
of the robot. As more road is seen ahead, more data
points are returned. The multiple return values represent
the possibility for analyzing the state of the road ahead
(curving or straight).

VisionCorridor: Read the suggested line-obstacles
detected by the vision subsystem. These are usually the
road edges, but may also include color-based detections,
such as orange cones in the roadway. The vision sub-
system returns a list of detected line segments. The line
segments are provided in the coordinate system of the
robot (all transformations completed by the subsystem).

3.3.2 Action Behaviors

Action Behaviors interact with the world. They are pri-
marily output-oriented and generally have read-only ac-
cess to the world model.

Action behaviors are responsible for all actuation on
the robot. Action behaviors typically gather information
from the world model and output a set of commands to
the robot platform. Action behaviors can be accessed
by any Competency, but generally only one Competency
has exclusive access to a given output (and all action be-
haviors that have the same output) at a time. For a syn-

chronous drive robot with a turret, one Competency may
be responsible for driving the wheels and a second for
aiming the turret. Both would use action behaviors, but
always behaviors with clearly disjoint outputs.

Spin: Spin in place a specified number radians at a
specified angular velocity.

DriveForward: Drive straight with a specified veloc-
ity, subject to a speed governor. Use a PID controller to
maintain straight line.

StopForObstacle: If obstacle detected ahead within
specified distance D1, slow down with a PD controller
until stopped at specified distance D2. The Abington
MGC rules specify that the robot should stop if it detects
an obstacle ahead (no attempt to swerve). This behavior
accomplished that. If the robot is expected to attempt to
drive around obstacles, a behavior such as SwerveOb-
stacle should be used to turn the vehicle away from the
object, thus clearing the front sensor to quiet this behav-
ior. This behavior should always be active in order to
protect the robot from harm. Practice Safe Robotics!

SwerveObstacle: If obstacle detected ahead within a
specified distance, suggest a heading vector to avoid it.
Use the presence of obstacles left/right of centerline to
aid in the decision. Do not use the vision-based vector(s)
in this behavior; Mix the results through an arbitrator.
If this behavior is not loaded/active, the robot will not
turn in the face of an obstacle; If the StopForObstacle
behavior is active, the robot will gracefully come to a
stop, else, it will crash.

VelocityGovernor: Update the maximum global
speed for the robot. This ”set member” method is en-
capsulated into a behavior for use by competencies with
respect to the current state or goal (change max speed to
go under a bridge or around a tight corner).

3.3.3 Composite Behaviors

Any instance of multiple active behaviors, whether hier-
archical or parallel, must have a means to arbitrate be-
tween the opinions of the behaviors. Many theories exist
on the best way to accomplish arbitration [15, 17]. All
of the methods in the literature are good for a particular
subset of needs, assumptions, capabilities, and goals. In
the interests of maximizing flexiblity, we implement ar-
bitration using the behavior system. It is hoped that this
flexibility will lead to a wide variety of techniques avail-
able in a growing behavior library.

The architecture implements a generic type of behav-
ior that accepts as input a set of data from multiple
sources and a set of decision parameters (priorities, data
from model state, etc). When the behavior is executed,
each subordinate behavior is polled for input (executed)
and the decision criteria is consulted. The arbitrator per-
forms the work of determining a single set of data to out-
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put, including potentially performing some kind of mix-
ing. The signature of the data set returned by an Arbitra-
tor may be identical to the input set or completely differ-
ent.

Arbitration operators can be constructed to mimick
most other arbitration methods. Our prototype uses sum-
of-vector and priority-based arbitration for driving and
custom fusion arbitrators to take different sensor datasets
and normalize their values to one another. A subsump-
tion arbitrator could use an inhibit/suppress input from
each behavior to determine the output to use [3]. A fuzzy
arbitrator could use fuzzy classification rules [18].

Figure 4: Behavior Composition with Arbitrators

Figure 4 is an example of a multi-level hierarchy con-
structed to develop increasingly complex driving behav-
iors.

The DriveForward behavior (providing positive ve-
locity) is combined with the StopForObstacle behavior
by priority arbitration. The StopForObstacle behavior is
given a higher priority to prevent a collision. The robot
will move forward until its path is blocked, whereupon it
will slow and stop at a safe distance.

The DriveSafe behavior (providing safe positive ve-
locity) is combined with the SwerveObstacle behav-
ior (providing a heading) through a Synthesis arbitra-
tor, forming a (velocity, heading) pair that is ready for
transmission to the robot. The SwerveObstacle behav-
ior must provide enough turning motion to clear the front
of the robot before the DriveSafe behavior completely
stops forward motion. The competency which uses this
behavior should detect the case of no forward motion
(due to wide blockage, corner, or other anomolous cases)
and use the Spin behavior to clear the front of the robot

and allow forward motion to resume.

4 Conclusion
The proposed architecture is purposefully under-defined,
specifically with regard to the composition of the mis-
sion layer and the methodologies employed in all lay-
ers. Much of the architecture literature is focused on the
use of a particular method and building an architecture
around that method. We feel the unrestricted nature of
this architecture will encourage collaboration and pro-
mote reuse of components in a move toward incremental
development of complex mission architectures. Experts
in algorithms or sensor systems can create behaviors to
better manage sensor input, using methods and knowl-
edge sets entirely different from the mission planner (AI,
search, reinforcement) or the actuation (reactive motor
control).

The mission domain to be completed by the proto-
type is lacking in sufficient complexity to warrant de-
velopment of a complex planner and support subsystem.
The planned implementation is sufficient to successfully
complete both the GMU and Abington MGC competi-
tions and to demonstrate the interaction between the Mis-
sion and Competency layers with sufficient depth.

The hard deadlines imposed by the competition limits
the scope of the prototype. Additional development time
would likely yield a more full-featured robot with bet-
ter “personality”, or an attempt to develop a more proper
planner. That said, we fully intend to compete, not em-
barass ourselves or our school, and hopefully show up
with a legitimate shot at winning.
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